
Computing and Informatics, Vol. 22, 2003, 1001–1015, V 2007-Feb-14

DEBUGGING ONTOLOGY MAPPINGS: A STATIC APPROACH

Peng Wang, Baowen Xu

School of Computer Science and Engineering
Southeast University
#2, Si Pai Lou
Nanjing, 210096, China
e-mail: pwangseu@gmail.com, bwxu@seu.edu.cn

Abstract. Ontology mapping is the bottleneck in solving interoperation between Seman-
tic Web applications using heterogeneous ontologies. Many mapping methods have been
proposed in recent years, but in practice, it is still difficult to obtain satisfactory mapping
results having high precision and recall. Different from existing methods, which focus on
finding efficient and effective solutions for the ontology mapping problem, we place em-
phasis on analyzing the mapping result to detect/diagnose the mapping defects. In this
paper, a novel technique called debugging ontology mappings is presented. During debug-
ging, some types of mapping errors, such as redundant and inconsistent mappings, can be
detected. Some warnings, including imprecise mappings or abnormal mappings, are also
locked by analyzing the features of mapping result. More importantly, some errors and
warnings can be repaired automatically or can be presented to users with revising sugges-
tions. The experimental results reveal that the ontology debugging technique is promising,
and it can improve the quality of mapping result.

Keywords: Ontology Mapping, Debugging, Algorithm

1 INTRODUCTION

Ontologies clarify the structure of domain knowledge and enable knowledge sharing, and
they play a crucial role in dealing with heterogeneous and computer-oriented huge amount
of data. Ontologies have been used popularly in many fields such as knowledge represen-
tation, information retrieval, natural language understanding, biology and e-Science. In
recent years, the Semantic Web [1], which aims at providing high-quality intelligent ser-
vices on the Web, exploits ontlogies to model the knowledge of various semantic web

1002 P. Wang, B. Xu

applications. In turn, the Semantic Web promotes the researches of ontology greatly.
Usually, ontologies are distributedly used and built by different communities. That

causes many heterogeneous ontologies in same domains or relative domains, which is
the major obstacle to realize semantic information sharing. Ontology mapping is the
main approach to solve the problem through capturing the communication rules between
heterogeneous ontologies. Current mapping methods usually employ the technologies
such as literal or structure similarity matching [2], machine learning [3], or combining
several technologies [4], to compute the similarity between the corresponding entities in
different ontologies.

In fact, although many mapping systems have been developed, when they are used
in practical applications, they often can’t work well as expected, and the precision and
recall of mapping result are not always high [5]. In our opinions, there are two main
reasons. First, for the variety of the representations and random modeling perspective of
actual ontologies, it often lacks of enough information for discovering correct mappings.
Second, a certain mapping algorithm is often just effective for some types of ontologies
but not for all.

Till now, most existing mapping approaches focus on the mapping skills and tech-
niques. However, we find that finding out such mapping result can not be the end of an
ontology mapping process. Through examining some initial mapping results, we find an
interesting fact: the mapping result often includes error mappings (such as redundant and
inconsistent mappings), imprecise mappings (mappings are not the best ones) and abnor-
mal mappings (the behavior of a mapping is strange). Therefore, we want to compensate
such gap by detecting the mapping bugs and even repairing them if possible. We call such
idea debugging ontology mappings. Notice that this novel technique is not a new mapping
approach but a beneficial complement to the existing ontology mapping methods.

The original contributions of this paper are the following: (1) The ontology mapping
debugging idea is proposed for the purpose of improving the quality of mapping result; (2)
The efficient methods for detecting and diagnosing mapping bugs (including errors and
warnings) are presented; (3) Some bugs would be repaired automatically or be presented
to users with generated repair suggestions for the final decision. The suggestions can
help users improve or modify the mapping algorithms to avoid such types of errors. (4)
Experimental results demonstrate that the debugging technique is promising.

The remainder of this paper is organized as follows: After a brief overview of related
work (Section 2), we give general ideas about ontology mapping debugging in Section
3. In Section 4 we describe the methods for debugging ontology mapping results. Some
experimental results and discussions are presented in Section 5. Section 6 is conclusion.

2 RELATED WORK

Ontology mapping is an open problem. Some ontology mapping solutions have been pro-
posed in recent years, whereas we don’t review them here but refer the readers to some
comprehensive surveys [6–8]. Most existing works on ontology mapping focus on the
mapping algorithms. There are only a few works that address the issues related to the

Debugging Ontology Mappings: A Static Approach 1003

mapping result, but most of them pay attention to evaluating or reusing mappings. Heβ
showed how to use the given mappings to a third ontology as training data or background
knowledge to improve mapping accuracy [9]. Euzenat and Ehrig proposed a more rea-
sonable precision and recall measure to evaluate the mapping result [10,11]. These works
did not discuss the bugs in the mapping result.

Hanif et al. described an approach of detecting and eliminating misalignment at the
time of aligning two different ontologies [12]. In their method, two mapping results ex-
tracted by different mapping techniques from the same pair of ontology, were fed to the
misalignment detection and elimination process to produce better alignments. This ap-
proach just combines different mapping results as a new one, so it can reduce limitation
of a specific technique of ontology alignment. Obviously, this work can not find the map-
ping bugs in a single mapping result. Furthermore, it did not give a clear definition of
what is a misaligned mapping. According to its misalignment definition, a mapping mi

could be regard as aligned under alignment sets AS and AT , but could be misaligned under
alignment sets A′S and A′T . Therefore, this approach did not adapt to our problem.

The heart of this paper is how to detect and diagnose the bugs of ontology mapping
result. To our surprise, we have not found any work that directly addresses how to deal
with the problem in the published literature. The most related work may be [14], in which
Stuckenschmidt et al. proposed a theory for reasoning about ontology mappings. This
work identified four properties that reflect the quality of a mapping, namely containment,
minimality, consistency and embedding. Then these properties can be decided based on
existing reasoning services for distributed description logics. The theory could detect
some unsatisfactory and inconsistent mappings, but the authors did not declare their the-
ory would be applied to debug ontology mapping bugs. From the web site of DRAGO
project [13], we find a brief introduction of an ontology mapping debugging tool, which
can debug the mappings created using CtxMatch matching tool1. According to its experi-
mental results, the debugger can detect and remove malicious bridge rules them between
ontologies. It did not tell what a malicious bridge rule is, and whether the tool can repair
some malicious bridge rules. For the reason that there are no corresponding literatures,
we can not know more detail information about this ontology mapping debugging tool.
However, we are sure that this work has the similar goal to ours.

Chiticariu, Alex and Tan developed SPIDER [15, 16], which was the first prototype
tool for debugging schema mappings. The heart of SPIDER was a data-driven facility
for understanding a schema mapping through the display of routes. A route essentially
described the relationship between source and target data with the schema mapping. SPI-
DER was also equipped with standard debugging features such as breakpoints, step-by-
step computation of routes and a watch window for visualizing data exchanging and vari-
ables used in a dependency at each step. However, SPIDER can not discover and diagnose
the bugs in schema mappings. Hence, SPIDER’s goal is not same as ours.

Debugging idea has been used in ontology building process. In order to detect and
diagnose the cause of errors in ontologies, some debugging methods based on logic rea-
soning or heuristic ruls are proposed. Kalyanpur and Parsia et al. integrated a number

1 http://dit.unitn.it/ zanobini/downloads.html

1004 P. Wang, B. Xu

of simple debugging cues generated from their description logic reasoner, Pellet, in their
ontology development environment, Swoop. They aimed to debug unsatisfiable classes
and repair them in OWL ontologies [17–19]. Schlobach proposed a technique called pin-
pointing, and it could significantly improve the quality of semantic clarification, a process
which in itself was useful for quality assurance of ontologies [20]. Wang et al. presented
a “black boxed” heuristic approach based on identifying common errors and inferences to
diagnose unsatisfiable classes in OWL ontologies [21]. In ontology mapping debugging,
both heuristic approach and logic reasoning would be useful. Logic reasoning approach
for mapping debugging needs distributed description logic(DDL) reasoner, and we will
discuss it in our other work. This paper discusses how to utilize heuristic rules to solve
ontology mapping debugging problem.

3 THE GENERAL IDEA

Creating original mapping result should not be the end of ontology mapping process. In
this section, we will examine several mapping cases to demonstrate that error mappings,
imprecise mappings and abnormal mappings could exist in the mapping result. We should
compensate these bugs before providing mappings to users.

3.1 Mapping Cases Study

Similarly to the work in [8], we define a ontology mapping as a 4-tuple: mi =< e, e′, s, r >,
where i is a unique identifier of the given mapping element; e and e′ are the entities of
the first and the second ontology respectively; s is a confidence measure in some mathe-
matical structure (typically in the [0,1] range) holding for the correspondence between e
and e′; r is the relation holding between e and e′. We just consider the equivalence(=) and
generic/specific(w/v) relation (is-a relation) in this paper. If s > ε, where ε is a predefined
threshold, we simplify a mapping by <e r e′>, such as O1:AwO2:B.

We assume that the ontologies discussed in this paper are presented in OWL, and e
and e′ are concepts, i.e. we just consider the mappings between concepts.

We use some mapping examples shown in Fig.1 and Fig.22 , which include part of
mappings between two publication and university ontologies respectively. For the sake of
simplicity in the following discussions, We mark the left ontology as O1, and right one as
O2.

Mapping Case 1. From the mapping result set:
{O1:Thesis = O2:Thesis,O1:DoctoralThesis v O2:Thesis,O1:MasterThesis v O2:Thesis},

we can obviously obtain that the last two mappings are redundant, because the O1:Thesis =

O2:Thesis can deduce the other two mappings. Similar examples are:
{O1:Article=O2:Article,O1:BookArticle v O2:Article} and

{O1:TeachingAst=O2:TeachAssistant,O1:Assistant w O2:TeachAssistant},

2 In the process of generating Fig.1 and Fig.2, we used an ontology visualization tool: RDF
Gravity++ (http://www.salzburgresearch.at).

Debugging Ontology Mappings: A Static Approach 1005

where O1:BookArticlevO2:Article and O1:AssistantwO2:TeachAssistant are redundant map-
pings.

Generic MappingEquivalent Mapping

Fig. 1. Part of mappings between two publication ontologies

Mapping Case 2. Given the mapping result set:
{O1:Organization=O2:CommericalOrg,O1:Organization=O2:EducationOrg,O1:Organization=O2:NonPro f Org} ,

we can obtain:
O2:CommericalOrg=O2:EducationOrg=O2:NonPro f Org .

Obviously, it is an unreasonable conclusion, especially when there is a disjointWith axiom
is declared between the three concepts. So the above mappings about O1:Organization
are imprecise. There are two potential solutions: (1) Importing a complex concept and
representing the mappings as:

O1:Organization=O2:CommericalOrg
∨

O2:EducationOrg
∨

O2:NonPro f Org

(2) Considering two sub-concepts of O1:Organization are mapped to the sub-concepts of
O2:EducationOrg, we also can simply treat the mapping of O1:Organization as:

O1:Organization = O2:EducationOrg.
It needs users to determine which choice is better.

Mapping Case 3. Let’s notice a mapping:
{O1 : ResearchGroup = O2 : S ocialGroup}.

1006 P. Wang, B. Xu

Generic MappingEquivalent Mapping

Fig. 2. Part of mappings between two university ontologies

We can doubt it from two aspects. First, we observe the behavior of the mapping: the
siblings of concept O1:ResearchGroup are mapped to the children of O2:EducationOrg, but
O1:ResearchGroup is mapped to the parent of O2:EducationOrg, so the behavior of the
mapping is strange. Second, the mapping can also cause the inconsistent:

O1:ResearchGroup = O2:S ocialGroup
O2:S ocialGroup w O2:EducationOrg
O1:Organization = O2:EducationOrg

⇒ O1 : ResearchGroup w O1 : Organization.

It apparently clashes with O1:Organizationw O1:ResearchGroup. Therefore, this map-
ping is error and should be removed.

Mapping Case 4. The two mappings:
{O1:F Pro f essor = O2:Pro f essor} and {O1:V Pro f essor = O2:Pro f essor}

are similar to Case 3, but we inspect them from other perspective. We know the mapping
should not destroy the hierarchy structure (is-a structure) in ontology, but the two map-
pings will cause is-a circles as following:

Circle 1: O1:F Pro f essor v O1:NonAdminPro f v O1:Pro f essor = O2:Pro f essor = O1:F Pro f essor

Circle 2: O1:V Pro f essor v O1:NonAdminPro f v O1:Pro f essor = O2:Pro f essor = O1:V Pro f essor

Here, the equivalent mappings are treated as bidirectional is-a relations. The two is-a
circles destroy the hierarchy of ontology.

Maybe we have not listed all the problems in mapping results, but we thinks the cases
we discussed have proved that there are some defects in original mapping results. And
further more, most of them can be discovered and could be avoided, that is the goal of our
work.

Debugging Ontology Mappings: A Static Approach 1007

3.2 Bugs in Ontology Mapping Results

According to the mapping cases mentioned before, some common types of bugs may
appear in the mapping result. We divide them into four categories.

(1) Redundant Mappings. Some mappings are redundant if they can be deduced
from the existing ones. Redundant mapping is one of the most common bugs. However,
deleting all redundant mappings is not the best choice, because some redundant mappings
can be useful in applications. For instance, storing redundant mappings before could be
beneficial to the query efficiency and avoid the burden of reasoning them again. Another
strategy is discovering all redundant mappings (including existing ones) and then storing
them. Whereas, in fact, the number of such redundant mappings may be many, not all of
them will be useful.

(2) Imprecise Mappings. Due to the limitation of the mapping algorithm, imprecise
mappings would occur. Namely, the algorithm has not found the best answer but the
approximate answer. We could revise these approximate mappings or combine them into
more precise mappings.

(3) Inconsistent mappings. Some mappings could destroy the structure of original
ontologies and disobey the declared axioms. We call such mappings inconsistent map-
pings. Both mappings causing is-a circle and the mappings disobeying the axioms (typi-
cally equivalentClass and disjointWith axioms) are inconsistent.

(4) Abnormal mappings. Some suspicious mappings do not belong to the above three
categories. It is difficult to find them with ordinary ways. However, such kind of mappings
often shows the abnormal behavior. Namely, if two entities are close (such as siblings)in
O1, but they are mapped to O′2s two concepts, who are far away from each other. The er-
rors, which caused by homonymy phenomenon, often have abnormal mapping behaviors.

Perhaps the four categories do not cover all the suspicious and erroneous mappings,
but they certainly occur in mapping results frequently. Notice that the four categories are
not mutually exclusive, they may have intersection.

4 DEBUGGING ONTOLOGY MAPPINGS

In this section, we will define the types of mapping bugs, and then discuss the methods
for detecting, repairing and diagnosing them.

4.1 Errors and Warnings in Mappings

Like programming debugging, we treat all suspicious mappings as two categories: errors
and warnings. Apparently, errors are the confirmed wrong mappings, but warnings are
the ones which may be wrong, right or imprecise.

Before defining the mapping defects, we give some basic symbols and definitions
used throughout the paper.

Let T denote the concept set in ontology, T1 and T2 are the concept sets in O1 and O2

respectively. Set T m
1 (or T m

2) denotes the concepts in O1(or O2) used by mapping. Given

1008 P. Wang, B. Xu

a mappings mi=<e, e′,s,r>, let L f t(mi)=e∈ T1 , Rit(mi)=e′∈ T2, Rel(mi)=r, M={mi|06i6
Nm} denote the mapping set, where Nm is the number of mappings.

We first define mapping implication, and then use it to explain redundant mappings.

Definition 1 (Mapping Implication). If a mapping m1 can deduce another mapping m2,
we call m1 implies m2, and denote as m1 w m2. If m1 w m2 and m2 w m1, they are
equivalent, i.e. m1 ≡ m2.

Then we obtain the redundant mappings by the following theorem.

Theorem 1 (Redundant Mappings). Given a mapping mi, if ∃m j ∈ M and m j w mi, mi

must be redundant.

Theorem 1 holds apparently, so we omit the proof.
There are two types of redundant mappings. One type is caused by is-a mapping and

equivalent mapping as Mapping Case 1 shows. The other type is caused by equivalent-
Class axiom, which states two concepts are equivalent. If both two equivalent concepts
are mapped to a same concept, a redundant mapping occurs.

In debugging, we will not delete the redundant mappings, so we treat them as warn-
ings and list them to the users.

There is no error in some mappings, but they are not the best answers we expect.
Determining whether a mapping is the best answer is not easy. However, we can obtain
more precise mapping by reusing existing mappings. In fact, when a concept C is mapped
to multiple concepts {Di} in another ontology, we can combine the multiple concepts into
a complex concept by conjunction or disjunction operations, such as C=

∨
Di or C v ∨

Di.
Stuckenschmidt has used this idea for approximate information filtering [22].

Definition 2 (Imprecise Mappings). Given a concept C, C is mapped to multiple concepts
{Di}(26i 6 k) by relation r. if ∀l,m (26l,m6k and l , m), Dl v Dm dose not exist, then
we obtain the rules: (1) if r is w, more precise mapping is Cw∨Di ; (2) if r is v, more
precise mapping is Cv ∧

Di; (3) if r is =, we need more knowledge (such as the mappings
of C’s child and parent) to decide which Di is the precise mapping, or we can simply use
Cw∨Di.

The imprecise mappings are the warnings. When we obtain more precise mappings,
the imprecise ones should be replaced.

The inconsistent mappings may destroy the ontology structure or violate axioms. For
the sake of convenience, we use graph to represent the ontology with mappings.

Definition 3 (Ontology Graph with Mappings). Let G=(V ,E) denote an ontology graph,
where V is the set of concepts; E is the set of is-a edges. If (v1, v2)∈E, v1 is the direct child
of v2. Two ontology graphs G1 and G2 can be connected by the mappings between them:
the equivalent mappings are treated as bidirectional is-a edges, and the is-a mappings are
transformed into is-a edges.

We assume that the original ontology is sound and does not include circles. When
two ontology graphs are connected by mappings, that should not cause circles in such
graph. In this way, we can identify the inconsistent mappings easily.

Debugging Ontology Mappings: A Static Approach 1009

Definition 4 (Inconsistent Mappings Causing is-a Circles). Combining two ontology
graph G1 and G2 with the mappings M into a single graph G. p = {v1, v2, ..., vm} is a path
in G, and if v1=vm, we call p a circle. For all paths px in G, if px is a circle, px must
contain inconsistent mappings.

Notice that not all mappings in path px are inconsistent.
In ontology debugging, the inconsistent mappings causing is-a circles are errors.
The other inconsistent mappings may violate the axioms in original ontology. We just

consider equivalentClass and disjointWith axioms in this paper.

Definition 5 (Inconsistent Mappings Violating Axioms). Given concepts {Ai}, which sat-
isfy equivalentClass axiom, mappings {mk}mapped {Ai} to concepts {B j} in another ontol-
ogy, if {B j} fail to satisfy equivalentClass axiom, {mk} must have inconsistent mappings.
Similarly, if {Ai} satisfy disjointWith axiom, but {B j} fail to satisfy the same axiom, map-
pings {mk} have inconsistent mappings.

In debugging, the inconsistent mappings violating axioms are errors.
The last kind of bug is the abnormal mapping. In order to describe the abnormal

mapping, we define mapping behavior first.
Intuitively, when close concepts in O1 are mapped to O2, the counterpart in O2 would

likely be close too. we use this intuition to define the mapping behavior.

Definition 6 (Mapping Behavior). Given two mappings mi=<ci,bi,s,ri> and m j=<c j,b j,s,
r j>, let ri=r j, the mapping behavior of mi on ci relative to m j on c j is

Bh(mi|(m j, c j)) =
d(ci, c j)
d(bi, b j)

,

where d(ci, c j) and d(bi, b j) denote the distance between concepts.
Apparently, the mapping behavior is a relative value. We also can compute the map-

ping behavior of mi on ci relative to ci’s neighbors:

Bh(mi|(m1, c1), ..., (mk, ck)) =
1
k

k∑

t=1

d(ci, ct)
d(bi, bt)

, (t , i)

The closer to 1 the mapping behavior value is, the more normal the mapping behavior
is.

Definition 7 (Abnormal mappings). If the mapping behavior of mi relative to its neigh-
bors satisfies

|Bh(mi|(m1, c1), ..., (mk, ck)) − 1| > θ
mi is a abnormal mapping. θ is a predefined threshold.

In debugging, we treat abnormal mappings as warnings as well, because we need to
judge whether an abnormal mapping is an error mapping.

1010 P. Wang, B. Xu

4.2 Detecting and Diagnosing Mappings

During ontology mapping debugging, the most important process is detecting and diag-
nosing the suspicious mappings. We present the heuristic approach debugging algorithms.
The algorithms should lock the suspicious mappings and output useful suggestions.

For the redundant mappings, we first deal with the redundancies caused by equiv-
alentClass axiom, and then check other redundancies caused by mapping implication.
Algorithm 1 shows the process for debugging redundant mappings.

Algorithm 1 Debugging redundant mappings
1: for all concept pair {Ai, A j} involving equivalentClass axiom do
2: if ∃mi,m j AND Rel(mi) == Rel(m j) then
3: if (L f t(mi)==Ai AND L f t(m j)==A j AND Rit(mi)==Rit(m j)) OR (Rit(mi)==Ai

AND Rit(m j)==A j AND L f t(mi)==L f t(m j)) then
4: Output: [Warning] mi or m j is redundant
5: end if
6: end if
7: end for
8: for all mapping mi do
9: for all mapping m j(mi , m j) do

10: if (mi w m j) then
11: Output: [Warning]m j is redundant
12: else if mi v m j then
13: Output: [Warning]mi is redundant
14: end if
15: end for
16: end for

Using mapping implication, the redundant mappings can be re-organized into the
structure like hierarchy.

The inconsistent mappings caused by is-a circles can be found according to definition
4, and detecting other inconsistent mappings needs check the axioms (see Algorithm 2).

Algorithm 2 Debugging inconsistent mappings
1: Combine ontology O1, O2 and mappings M into a graph G
2: Traverse G to find all circles P
3: for all circle pi do
4: Output:[Error]Inconsistent mappings in pi

5: end for
6: for all concepts Ai satisfy equivalentClass/disjointWith axiom do
7: if mk map Ai to B j AND B j fail to satisfy equivalentClass/disjointWith axiom then
8: Output:[Error] Inconsistent mappings in mk

9: end if
10: end for

Debugging Ontology Mappings: A Static Approach 1011

The users can repair the inconsistent mappings according to debugging information
until no other inconsistent mappings appear.

According to definition 2, we design an algorithm to debug imprecise mappings. For
imprecise mappings are often ambiguous, we debug them with some heuristic rules.

Algorithm 3 Debugging imprecise mappings
1: for all concept Ci ∈ T1 ∪ T2 do
2: mk map Ci to D j,(2 6 |mk|, |D j| 6 n)
3: if ∀s, t,Ds v Dt does not exist then
4: Select Case (the mapping relation of mk)
5: Case w:
6: Output:[Warning] mk may be imprecise
7: Output:More precise mapping may be: Ci w ∨

D j

8: Case v:
9: Output:[Warning] mk may be imprecise

10: Output:More precise mapping may be: Ci w ∧
D j

11: Case =:
12: Output:[Warning] mk may be imprecise
13: Suggestion 1: More precise mapping may be: Ci w ∨

D j

14: Suggestion 2: Check the mappings of Ci’s children/ parents for final decision;
15: End Select
16: end if
17: end for

For the abnormal mappings, we calculate their behavior value. For a given concept
and related mappings, we consider the relative mapping behavior to the concept’s neigh-
bors. The algorithm is following.

Algorithm 4 Debugging abnormal mappings
1: for all mapping mi do
2: Ci = L f t(mi) or Ci = Rit(mi)
3: Di denotes Ci’s neighbors within distance δ
4: {Ei}⊆{Di}, |{Ei}|=k, and ∀Ei, ∃mt and Rel(mt) = Rel(mi)
5: Calculate mi’s behavior as: Bh(mi|{Ei}) = 1

k

∑k
t=1

d(ci,ct)
d(ei,et)

6: if |Bh(mi|{Ei}) − 1| > θ then
7: Output:[Warning]mi is abnormal mapping
8: end if
9: end for

10:

1012 P. Wang, B. Xu

5 EXPERIMENTS AND DISCUSSIONS

5.1 Experiment results

We report some results we have obtained. In our experiment, we use five-pair ontologies,
which describe university, food, publication, travel and film domains respectively. All of
the ontologies are collected through the semantic search engine Swoogle3. Before using
the five-pair ontologies, we preprocess them with several steps, which include translat-
ing DAML format to OWL format, removing some complex classes and revising some
concepts and properties. In order to create the original mapping result, we utilize several
simple mapping techniques: (1)Literal similarity computes Levenshtein distance between
concepts information (including local-names, labels and comments) to estimate the simi-
larity ; (2) Structure Similarity examines concepts’ neighbors, siblings, domain and range
to measure the similarity.

The ontology mapping debugging algorithms are implemented using java JDK1.5 and
Jena-2.44 API. The input data are a pair of ontologies and the mappings between them, and
the output data is debugging information. According to output information in debugging,
the user can accept or reject the suggestions generated by debugging algorithm. When
a suggestion is accepted, the user can examine the warnings/errors, and then repair them
manually. Notice that the mapping debugging is an iterative process, which can avoid that
new change on the mappings would cause new warnings/errors.

Table 1. Ontology mapping debugging results
Redundant Inconsistent Mappings Imprecise Abnormal
Mappings Causing Violating Mappings Mappings

Circles Axiom
Num P/R Num P/R Num P/R Num P/R Num P/R

University 12 1.00/ 7 1.00/ 7 1.00/ 5 1.00/ 5 0.80/

1.00 1.00 1.00 0.83 1.00

Food 23 1.00/ 12 1.00/ 3 1.00/ 9 0.77/ 4 0.50/

0.92 1.00 1.00 1.00 1.00

Publication 30 0.93/ 6 1.00/ 0 5 1.00/ 7 0.71/

0.88 1.00 1.00 1.00

Travel 10 0.90/ 3 1.00/ 3 1.00/ 2 1.00/ 0
0.82 1.00 1.00 0.67

Film 5 1.00/ 0 2 1.00/ 6 0.83/ 2 1.00/

1.00 1.00 0.63 0.50

We also use precision and recall to evaluate the performance of our debugging tech-
nique. If a suggestion is accepted by the user, or the user agrees that an output er-
ror/warning is useful, then the suggestion/error/warning is right. Table 1 shows the de-
bugging results in our experiment.

3 http://swoogle.umbc.edu/
4 http://jena.sourceforge.net/index.html

Debugging Ontology Mappings: A Static Approach 1013

After debugging, some mapping errors may be repaired. We re-calculate the precision
and recall of the mapping result, and compare with the original one(Fig.3 shows). Fig.3
demonstrates that the debugging process is useful, and the quality of mapping result is
improved significantly.

Fig. 3. Mapping results comparison (before debugging and after debugging)

5.2 Discussions

In fact, the debugging technique we discussed is just a static process. If we can import
some dynamic techniques, such as setting breakpoints in the debugging process, we could
control the mapping process and choose the best parameters.

The abnormal behavior of mappings is based on the intuition. In debugging process,
the abnormal mappings algorithm is very useful for dealing with homonymy concepts.
However, when two ontologies have divarication for same concepts, the abnormal map-
pings debugging could return wrong results.

The mapping bugs defined in this paper probably do not cover all kinds of mapping
defects. Moreover, some intensive experiments are needed to verify this technique.

We have not used reason methods in the debugging process. We believe the dis-
tributed description logic(DDL) reason will be of benefit to the ontology mapping debug-
ging.

Exhilaratingly, to the best of our knowledge, some companies is adopting(or will
adopt) the mapping debugging idea in their semantic information integration product. The
mapping debugging could be a useful tool/component for the ontology mapping systems.

6 CONCLUSIONS

An novel technique called ontology mapping debugging technique is proposed. Four
types of mapping bugs are defined, and the methods for detecting and diagnosing them

1014 P. Wang, B. Xu

are proposed as well. The experiment results demonstrate that the technique is promising
and can improve the quality of mapping result.

7 ACKNOWLEDGEMENTS

This work was supported in part by the NSFC(60425206, 90412003), and Excellent Ph.D.
Thesis Fund of Southeast University (YBJJ0502). The authors thank Yimin Wang and Jie
Bao for the early discussions on this paper. Jin Zhou read and polished the entire paper.
The authors would also like to thank the anonymous reviewers for their helpful comments
and suggestions for improving the manuscript.

REFERENCES

[1] B-L, T.—H, J.—L, O.: The Semantic Web. Scientific American,
Vol. 284, 2001, No. 5, pp. 34-43.

[2] N, F. N—M, A.: The PROMPT suite: interactive tools for ontology merging and
mapping. Int. J. Hum.-Comput. Stud, Vol. 59, 2003, No. 6, pp. 983-1024.

[3] AH, D.—J, M.—R, D.— .: Learning to match ontologies on the Semantic
Web. The VLDB Journal, Vol. 12, 2003, No. 4, pp. 303-319.

[4] E, M.—S, S.: QOM - Quick Ontology Mapping. Proceedings of the Third Interna-
tional Semantic Web Conference, ISWC2004, Hiroshima, Japan, 2004.

[5] E, J.—S, H.—Y,M.: Introduction to the Ontology Alignment
Evaluation 2005. Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies,
Banff, Canada, 2005.

[6] E, R.—P, A. B.: A survey of approaches to automatic schema matching. The
VLDB Journal, Vol. 10, 2001, No. 4, pp. 334-350.

[7] K, Y.—S, M.: Ontology Mapping: The State of the Art. The Knowl-
edge Engineering Review, Vol. 18, 2003, pp. 1-31.

[8] S, P.—E, J.: A Survey of Schema-Based Matching Approaches. Journal on
Data Semantics, Vol. 4, 2005, pp. 146-171.

[9] Hβ, A.: An Iterative Algorithm for Ontology Mapping Capable of Using Training Data.
Proceedings of the 3rd European Semantic Web Conference, ESWC2006, Budva, Montene-
gro, 2006.

[10] E, M.—E, J.: Relaxed Precision and Recall for Ontology Matching. Proceedings
of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, 2005.

[11] E, J.: Semantic Precision and Recall for Ontology Alignment Evaluation. Proceedings
of the 20th International Joint Conference on Artificial Intelligence, IJCAI2007, Hyderabad,
India, January 6-12, 2007.

[12] H, S.—S, Y.—A, M.: Automatic Alignment of Ontology Eliminating the Prob-
able Misalignments. Proceedings of the 1st Asian Semantic Web Conference, ASWC2006,
Beijing, China, 2006.

[13] D R A G O M D,
://sra.itc.it/projects/drago/applications-debugging.html.

Debugging Ontology Mappings: A Static Approach 1015

[14] S, H.—S, L.—W, H.: Reasoning about Ontology Mappings, In
ECAI2006 Workshop on Context Representation and Reasoning, Ria del Garda, Italy, 2006.

[15] C, L.—T, W.: Debugging Schema Mappings with Routes. Proceedings of Inter-
national Conference on Very Large Data Bases , VLDB2006, Seoul, Korea, 2006.

[16] A, B.—C, L.—T, W.: SPIDER: a Schema mapPIng DEbuggeR. Proceedings
of International Conference on Very Large Data Bases, VLDB2006, Seoul, Korea, 2006.

[17] K, A.—P, B.—S, E.— .: Debugging Unsatisfiable Classes in OWL
Ontologies. Journal of Web Semantics, Vol. 3, 2005, No. 4, pp. 268-293.

[18] Parsia, B.—Sirin, E.—Kalyanpur, A.; Debugging OWL Ontologies. Proceedings of the 14th
Inter-national World Wide Web Conference, WWW2005, Chiba, Japan, 2005.

[19] K, A.—P, B.—S, E.— .: Repairing Unsatisfiable Concepts in OWL
Ontologies. Proceedings of the 3rd European Semantic Web Conference, ESWC2006,
Budva, Montenegro, 2006.

[20] S, S.: Debugging and Semantic Clarification by Pinpointing. Proceedings of the
Second European Semantic Web Conference, ESWC2005, Heraklion, Greece, 2005.

[21] W, H.—H, M.—R, A.: Debugging OWL-DL Ontologies: A Heuristic Ap-
proach. Proceedings of the 4th International Semantic Web Conference, ISWC2005, Galway,
Ireland, 2005.

[22] S, H.: Approximate Information Filtering with Multiple Classification Hierar-
chies. International Journal of Computational Intelligence and Applications, Vol. 2, 2002,
No. 3, pp. 295-302.

Peng W received his bachelor and master degrees from Northwest-
ern Polytechnical University, PR China in 2000 and 2003 respectively.
Now, he is a PhD candidate in the school of computer science and en-
gineering, Southeast University. His current research interests include
Semantic Web, ontology, and information retrieval on the web.

Baowen X is a professor of school of computer science and engi-
neering, Southeast University. His research areas include Program-
ming Languages, Software Engineering (Software Analysis and Test-
ing, Re-engineering), Formal Software Techniques, Web Information
Analysis and Testing Techniques, Knowledge and Information Re-
trieval Techniques. He has published more than 20 books and more
than 200 papers in scientific journals and international conferences/
workshops in the above research areas. He is the general chair, pro-
gram chair or PC Member of more than 20 international conferences.

