
Formal Model for Ontology Mapping Creation?

Adrian Mocan, Emilia Cimpian, Mick Kerrigan

Digital Enterprise Research Institute, University of Innsbruck, Austria
{adrian.mocan, emilia.cimpian, mick.kerrigan}@deri.org

Abstract. In a semantic environment data is described by ontologies
and heterogeneity problems have to be solved at the ontological level.
This means that alignments between ontologies have to be created, most
probably during design-time, and used in various run-time processes.
Such alignments describe a set of mappings between the source and tar-
get ontologies, where the mappings show how instance data from one
ontology can be expressed in terms of another ontology. We propose a
formal model for mapping creation. Starting from this model we explore
how such a model maps onto a design-time graphical tool that can be
used in creating alignments between ontologies. We also investigate how
such a model helps in expressing the mappings in a logical language,
based on the semantic relationships identified using the graphical tool.

1 Introduction

Ontology mapping is becoming a crucial aspect in solving heterogeneity problems
between semantically described data. The benefits of using ontologies, especially
in heterogenous environments where more than one ontology is used, can only be
realized if this process is effective. The trend is to provide graphical tools capable
of creating alignments during design-time in a (semi-)automatic manner [2,10,9].
These alignments consist of mapping rules, frequently described as statements
in a logical language. One of the main challenges is to fully isolate the domain
expert (who is indispensable if 100% accuracy is required) from the burdens of
logics using a graphical tool, and in the same time to be able to create complex,
complete and correct mappings between the ontologies.

It is absolutely necessary to formally describe the mapping creation process
and to link it with the instruments available in a graphical tool and with a
mapping representation formalism that can be used later during run-time. This
allows the actions performed by the user to be captured in a meaningful way
with respect to the visualized ontology structure and to associate the results
of these actions (mappings) with concrete statements in a mapping language
(mapping rules).
? Work funded by the European Commission under the projects ASG, DIP, enIRaF,

InfraWebs, Knowledge Web, Musing, Salero, SEKT, Seemp, SemanticGOV, Super,
SWING and TripCom; by Science Foundation Ireland under the DERI-Ĺıon Grant
No.SFI/02/CE1/I13; by the FFG (Österreichische Forschungsfrderungsgeselleschaft
mbH) under the projects Grisino, RW2, SemNetMan, SeNSE, TSC, OnTourism.



The document structure is as follows: the next section presents the context
and motivation for the work. Section 3 introduces the model we propose ex-
pressed using First-Order Logic [4]. Section 4 describes how this model can be
applied to WSMO [3] ontologies, while Section 5 presents the creation of map-
ping rules; the prototype that implements and applies the proposed formal model
is described in Section 6. Following, related work and conclusions are presented.

2 Context and Motivation

The work described in this paper has been carried out in the Web Service Execu-
tion Environment (WSMX) working group, whose scope is to build a framework
that enables discovery, selection, mediation, invocation and interoperation of
Semantic Web Services [6]. Web Services are semantically described using on-
tologies, but as they are generally developed in isolation, heterogeneity problems
appear between the underlying ontologies. Without resolving these problems the
communication (data exchanged) between Web Services cannot take place. The
data mediation process in WSMX includes two phases: a design-time and a run-
time phase. The mismatches between the ontologies are resolved at design-time,
while these findings are used at run-time to transform the data passing through
the system. The run-time phase can be completely automated, while the design-
time phase remains semi-automatic, requiring the inputs of a domain expert.

For the design-time a semi-automatic ontology mapping tool was developed
that allows the user to create alignments between ontologies and to make these
alignments available for the run-time process. There has been much research
in the area of graphical mapping tools, e.g. [9,10], however we believe there
are many challenges still to be addressed. In particular, our focus has been on
defining strategies that hide the burden of logical languages, that are generally
used to express ontology alignments, from the domain expert. The mapping
process must remain simple to use but simultaneously allow the creation of
complex mappings between two ontologies.

Table 1. Ontology Fragment

concept person
name ofType xsd:string
age ofType xsd:integer
hasGender ofType gender
hasChild ofType person
marriedTo ofType person

concept gender
value ofType xsd:string

instance male memberOf gender
value hasValue "male"

instance female memberOf gender
value hasValue "female"

As described in [8], we noticed that the graphical point of view adopted
to visualize the source and target ontologies makes it easier to identify certain
types of mappings. The ontology fragment in Table 1 can be visualized using
different viewpoints by shifting the focus from one ontology element to another
(see Table 2). We call such a viewpoint a perspective and argue that only by
switching between combinations of these perspectives on the source and target



ontologies, can certain types of mappings be created using only one simple oper-
ation, map, combined with mechanisms for ontology traversal and contextualized
visualization strategies.

A formal model that describes the general principles of the perspectives al-
lows a better understanding of the human user actions in the graphical tool and
of the effects of these actions on the ontology alignment (i.e. mapping rules) that
is being created. This model defines the main principles that support the graph-
ical instruments (e.g. perspectives) and how they fit with the underlying logical
mechanism (e.g. decomposition, context updates). The same model is also used
to describe how the inputs placed through these graphical instruments by the do-
main expert effects the generated mappings. Having this formal model as a link
between the graphical elements and the mappings, defines precisely the process
of hiding from the domain expert the complexity of the underlying logical lan-
guages; it also allows some of the mapping properties such as (in)completeness
or (in)consistency to be reflected back into the graphical tool. Additionally, such
a model allows experts to become more familiar with the tools and to create
extensions that are more suited to capturing certain types of mismatches.

Table 2. PartOf, InstanceOf and RelatedBy Perspectives

• string
• integer
• person

` name → string
` age → integer
` hasGender → gender
` hasChild → personx

marriedTo → person
• genderx

value → string

• string
• integer
• person

` hasGender → male:genderx
hasGender → female:gender

• gender

• name
` hasDomain → personx

hasRange → string
• hasGender

` hasDomain → personx
hasRange → gender

• marriedTo
` hasDomain → personx

hasRange → person
...
• value

` hasDomain → genderx
hasRange → string

3 A Model for Mapping Creation

This section defines a model to be used in the creation of mappings between
ontologies. The roles that appear in the graphical user interface, and which will
be later associated with ontological entities, are defined here. First-Order Logic
[4] is used as a formalism to represent this model.

3.1 Perspectives

In our approach the ontologies are presented to the user using perspectives. A
perspective can be seen as a vertical projection of the ontology and it will be
used by the domain expert to visualize and browse the ontologies and to define
mappings. We can define several perspectives on an ontology as presented in
Section 4, all of them characterized by a set of common elements.



Table 3. Types of items for the perspectives in Table 2

PartOf InstanceOf RelatedBy

ci person, gender person name, hasGender, marriedTo, value
pi string, integer string, integer, gender -
di name, age, hasChild, marriedTo hasGender hasDomain, hasRange
si string, integer, gender, person male, female person, string, gender

We identify four types of such elements (items): compound, primitive, descrip-
tion and successor. We use the following unary relations to denote each of them,
ci(x) where x is a compound item, pi(x) where x is a primitive item, di(x) where
x is a description item and si(x) where x is a successor item. Both primitive and
compound items represent first-class citizens of a perspective while description
and successor items link the compound and the primitive items in a graph-based
structure. In addition we define a set of general relationships between these items
that hold for all perspectives:

– Each compound item is described by at least one description item:

∀x.(ci(x) <=> ∃y.(di(y) ∧ describes(y, x))) (1)

where describes is a binary relation that holds between a compound item
and one of its description items. The participants in this relation are always
a compound item and a description item:

∀x.∀y.(describes(x, y) => ci(y) ∧ di(x)) (2)

– Each description item points to at least one successor item:

∀x.(di(x) <=> ∃y.(si(y) ∧ successor(y, x))) (3)

where successor is a binary relation that holds between a description item
and one of its successor items. The participants in this relation are always a
description item and a successor item:

∀x.∀y.(successor(x, y) => di(y) ∧ si(x)) (4)

– The successor items are either primitive or compound items:

∀x.(si(x) => pi(x) ∨ ci(x))) (5)

– The compound, primitive and description items are mutually exclusive for
the same perspective:

∀x.(¬((ci(x) ∧ pi(x)) ∨ (ci(x) ∧ di(x)) ∨ (di(x) ∧ pi(x)))) (6)

This is a set of minimal descriptions for our model, but by inference other useful
consequences can be inferred. For example, note that sentences 1 and 6 im-
ply that primitive items have no description items. Table 4 shows examples of
relationships for the perspectives in Table 2.



Table 4. Relations between items in the perspectives depicted in Table 2

successor(·, ·) describes(·, ·)
PartOf (string, name), (gender, hasGender) (name, person), (hasGender, person)

(person, marriedTo) (marriedTo, person)
InstanceOf (male, hasGender), (female, hasGender) (hasGender, person)
RelatedBy (person, hasDomain), (string, hasRange) (hasDomain, name), (hasRange, name)

(gender, hasRange) (hasRange, hasGender)

As a consequence we can define a perspective as being a set φ = {x1, x2, ..., xn}
for which we have:

∀x.∀φ.(member1(x, φ) => pi(x) ∨ ci(x) ∨ di(x)) (7)

In addition, for any perspective the following sentences hold:

∀x.∀y.∀φ.(describes(y, x) => (member(x, φ) <=> member(y, φ))) (8a)

∀x.∀y.∀φ.(successor(y, x) => (member(x, φ) <=> member(y, φ))) (8b)

Sentences 8a and 8b together with 2 and 4 state that the description of a com-
pound item appears in the perspective iff the compound item appears in the
perspective as well. Similarly, a successor of a description item appears in a
perspective iff the description item appears in the perspective too.

3.2 Contexts

Not all of the information modeled in the ontology is useful in all stages of the
mapping process. The previous section shows that a perspective represents only
a subset of an ontology, but we can go further and define the notion of context. A
context is a subset of a perspective that contains only those ontological entities,
from that perspective, relevant to a concrete operation. We can say that γφ is a
context of the perspective φ if:

∀x.(member(x, γφ) => member(x, φ)) (9)

For a context from formulas 8a and 8b only 8a holds, such that:

∀x.∀y.∀γφ.(describes(y, x) => (member(x, γφ) <=> member(y, γφ))) (10)

As a consequence we can say that all perspectives are contexts but not all con-
texts are perspectives.

A notion tightly related with contexts is the process of decomposition. A
context can be created from another context (this operation is called context
update) by applying decomposition on an item from a perspective or a context.
Let decomposition(x, φ) be a binary function which has as value a new context
obtained by decomposing x in respect with the context γφ. We can define the
following axioms:

∀x.∀y.∀γφ.(member(x, γφ) ∧ pi(x) =>

(member(y, decomposition(x, γφ)) <=> member(y, γφ))) (11)

1 member is a relationships expressing the membership of an element to a list.



∀x.∀y.∀γφ.(member(x, γφ) ∧ ci(x) =>

(member(y, decomposition(x, γφ)) <=> y = x ∨ describes(y, x))) (12)
∀x.∀y.∀z.∀γφ.(member(x, γφ) ∧ di(x) ∧ successor(z, x) ∧ (pi(z) ∨ (ci(z) ∧member(z, γφ))) =>

(member(y, decomposition(x, γφ)) <=> member(y, γφ))) (13)
∀x.∀y.∀z.∀γφ.(member(x, γφ) ∧ di(x) ∧ successor(z, x) ∧ ci(z) ∧ ¬(member(z, γφ)) =>

(member(y, decomposition(x, γφ)) <=> member(y, decomposition(z, φ)))) (14)

Intuitively, formula 11 specifies that the decomposition of a primitive con-
cept does not update the current context (the context remains unchanged). Also,
decomposition applied on a description item that has a primitive successor (for-
mula 13) leaves the current context unchanged. The same formula also does
not allow the decomposition of those description items that have as successor a
compound item already contained by the current context (recursive structures).

Table 5 presents some examples of decompositions and context updates: each
column shows how the context changes by decomposing any of the marked items
in the top row. The decomposition can be applied simultaneously on multiple
items, and the result of decomposing each item is contributing to the new con-
text. Note as described over for column 1 no change occurs as all of the marked
items cannot trigger decomposition conforming to formulae 11 and 13.

Table 5. Decomposition and context updates

Original Context

• string

• integer

• person
` name → string

` age → integer

` hasGender → gender

` hasChild → person
x

marriedTo → person
• genderx

value → string

• string
• integer
• person

` name → string
` age → integer
` hasGender → gender
` hasChild → personx

marriedTo → person
• genderx

value → string

• string
• integer
• person

` name → string
` age → integer

` hasGender → gender

` hasChild → personx
marriedTo → person

• gender

x
value → string

New Context
• string
• integer
• person

` name → string
` age → integer
` hasGender → gender
` hasChild → personx

marriedTo → person
• genderx

value → string

• person
` name → string
` age → integer
` hasGender → gender
` hasChild → personx

marriedTo → person

• genderx
value → string

3.3 Mappings

To create mappings between ontologies, a source and target perspective is used
to represent the source and target ontologies. We refer to this approach as inter-
active mapping creation. It means that the mapping creation process relies upon



the domain expert, who has the role of choosing an item from the source perspec-
tive and one from the target perspective (or contexts) and explicitly marking
them as mapped items. We call this action map and using this the domain expert
states that there is a semantic relationship between the mapped items. Choos-
ing the right pair of items to be mapped is not necessarily a manual task: a
semi-automatic solution can offer suggestions that are eventually validated by
the domain expert [8].

We define a mapping context as a quadruple Mc =< φS , γφS
, φT , γφT

>
where φS and φT are the source and target perspectives associated to the source
and target ontologies. γφS

and γφT
are the current contexts derived out of the

two perspectives φS and φT . Initially, γφS
≡ φS and γφT

≡ φT .
We also define mapMc(x, y) the action of marking the two items x and y as

being semantically related with respect to the mapping context Mc. Thus, we
have the following axiom:

∀x.∀y.∀φS .∀φT .∀γφS
.∀γφT

mapMc(x, y) ∧Mc =< φS , γφS
, φT , γφT

> ∧
((ci(x) ∨ pi(x)) ∧ (ci(y) ∨ pi(y))) ∨ (di(x) ∧ di(y)) =>

member(x, γφS
) ∧member(y, γφT

) (15)

Formula 15 defines the allowed types of mapping. Thus we can have mappings
between primitive and/or compound items and between description items. As
described in [8] the set of the allowed mappings can be extended or restricted
by a particular, concrete perspective.

Each time a map action occurs the mapping context is updated; we denote the
updates using: Mc ³ Mc

′
meaning that at least one element of the quadruple

defining Mc has changed and the new mapping context is Mc
′
. The mapping

context updates occur as defined in axiom 16:

∀x.∀y.mapMc(x, y) ∧Mc =< φS , γφS
, φT , γφT

> => (16)

Mc
′
=< φS , decomposition(x, γφS

), φT , decompositin(y, γφT
) > ∧Mc ³ Mc

′

There are cases when Mc and Mc′ are identical; such situations occur when
the source and target context remain unchanged, e.g. when creating mappings
between primitive items.

4 Grounding the Model to Ontologies

This section explores the way in which the model presented above can be applied
to a real ontological model and how we can use it to define concrete perspectives
that could be used to create meaningful mappings between ontologies. We first
introduce the main aspects of WSMO ontologies and a mechanism to link these
ontologies with our model and then we will present the three types of concrete
perspectives we identified as being useful in the mapping process.

The Web Service Modeling Ontology (WSMO) defines the main aspects re-
lated to Semantic Web Services: Ontologies, Web Services, Goals and Mediators
[3], from these only Ontologies are interesting in this work. We will focus only
on concepts, attributes and instances in this paper, however we intend to ad-
dress other ontological elements in the future. WSMO ontologies are expressed



using the Web Service Modeling Language (WSML) which is based on differ-
ent logical formalisms namely, Description Logics, First-Order Logic and Logic
Programming [5].

Table 1 presents an example of concepts and their attributes, and some in-
stances of these concepts. The concept person is modeled as having 5 attributes,
each of them having a type (i.e. a range) that is either another concept or a
data type. For the concept gender there are two instances defined (i.e. male and
female) that have attributes pointing to values of the corresponding types.

4.1 PartOf Perspective

The PartOf perspective is the most common perspective that can be used to
display an ontology, focusing on the concepts, attributes and attributes’ types
hierarchies. To link this perspective with our model we define the unary relations
ciPartOf (x), piPartOf (x) and diPartOf (x) such that:

ci(x) iff ciP artOf (x) pi(x) iff piP artOf (x) di(x) iff diP artOf (x) (17)

ciPartOf (x), piPartOf (x) and diPartOf (x) have to be defined in the logical lan-
guage used to represent the ontologies to be aligned, in our case WSML2 as can
be seen in 18. In the PartOf perspective the role of compound items is taken
by those concepts that have at least one attribute - we call them compound con-
cepts. Naturally, the description items are in this case attributes, as stated in
19. Primitive items are data types or those concepts that have no attributes, as
expressed by axiom 20 where x subconceptOf true holds iff x is a concept and
naf stands for negation as failure. Finally we link the describes and successor
relations with the WSML ontologies in 21. The ontology fragment presented in
Table 1 can be visualized using the PartOf perspective as in Table 2.

axiom ciP artOf definedBy ciP artOf (x) equivalent exists ?y, ?z(?x[?y ofType ?z]) (18)

axiom diP artOf definedBy diP artOf (y) equivalent exists ?x, ?z(?x[?y ofType ?z]) (19)

axiom piP artOf definedBy piP artOf (x) :- ?x subconceptOf true and naf ciP artOf (x) (20)

describes(y, x) ∧ successor(z, y) iff ?x[?y ofType ?z] (21)

4.2 InstanceOf Perspective

The InstanceOf perspective can be used to create conditional mappings based
on predefined values and instances. To link this perspective with our model we
define ciInstanceOf (x), piInstanceOf (x) and diInstanceOf (y, w) such that:

ci(x) iff ciInstanceOf (x) pi(x) iff piInstanceOf (x) di(< y, w >) iff diInstanceOf (y, w) (22)

2 In WSML α[β ofType γ] is an atomic formulas called molecule; in here both α
and γ identifies concepts while β identifies an attribute and ’?’ is used to de-
note variables. An example of a molecule for the ontology fragment in Table 1 is
person[name ofType string]



The description items are tuples < y, w > where y is an attribute matching
the above conditions and w is an instance member of y ’s type explicitly defined in
the ontology or an anonymous id representing a potential instance of the y ’s type.
In the same way as above, ciInstanceOf (x), piInstanceOf (x) and diInstanceOf (x)
are defined using WSML; also the describes and successor relations can be linked
with the WSML ontologies in a similar manner as presented in the previous
section. From space reasons, they are omitted from this paper. The fragment of
ontology presented in Table 1 can be visualized using the InstanceOf perspective
as in Table 2.

4.3 RelatedBy Perspective

The RelatedBy perspective focuses on the attributes of the ontology, and de-
scribes them from their domain and type perspective.

ci(x) iff ciRelatedBy(x) pi(x) iff piRelatedBy(x) di(x) iff diRelatedBy(x) (23)

In the same way as above, ciRelatedBy(x), piRelatedBy(x) and diRelatedBy(x)
are defined using WSML; also the describes and successor relations can be linked
with the WSML ontologies in a similar manner as presented in Section 4.1.
From space reasons, they are omitted from this paper. The fragment of ontology
presented in Table 1 can be visualized using the RelatedBy perspective as in
Table 2.

5 Linking the Model to a Mapping Language

In this section we specify the allowed mappings for each of the perspectives
described in Section 4. We start from the following premise mapMc(xS , yT ) ∧
Mc =< φS , γφS , φT , δφT > which means that the elements xS and yT from
the source and target ontology, respectively, are to be mapped in the mapping
context Mc. In the following subsection we will discuss the situations that can
occur for a pair of perspectives (due to space reasons we address only those
cases when the source and target perspectives are of the same type). The types
of mapping that can be created will be analyzed with respect to the Abstract
Mapping Language proposed in [1], briefly described in 5.1.

5.1 Abstract Mapping Language

We chose to express the mappings in the abstract mapping language proposed in
[1] because it does not commit to any existing ontology representation language.
Later, a formal semantic has to be associated with it and to ground the mappings
to a concrete language (such a grounding can be found in [8]). We provide only
a brief listing of some of the abstract mapping language statements:

– classMapping - By using this statement, mappings between classes in the
source and the target ontologies are specified. Such a statement can be con-
ditioned by class conditions (attributeValueConditions, attribuiteTypeCondi-
tions, attributeOccurenceConditions).



– attributeMapping - Specifies mappings between attributes. Such statements
usually appear together with classMappings and can be conditioned by at-
tribute conditions (valueConditions, typeConditions).

– classAttributeMapping - It specifies mappings between a class and an at-
tribute (or the other way around) and it can be conditioned by both class
conditions and attribute conditions.

– instanceMapping - It states a mapping between two individuals, one from
the source and the other from the target.

In the next sections we illustrate how these mapping language statements are
generated during design time by using a particular combination of perspectives.

5.2 PartOf to PartOf Mappings

When using the PartOf perspective to create mappings for both the source and
target ontologies we have the following allowed cases (derived from axiom 15):

− piPartOf (xS) ∧ piPartOf (xT ) In this case, the mapping will generate a classMap-
ping statement in the mapping language and leaves the mapping context
unchanged (axioms 11 and 16).

− ciPartOf (xS) ∧ ciPartOf (xT ) Generates a classMapping statement and up-
dates the context for the source and target perspectives (axioms 12 and
16).

− diPartOf (xS) ∧ diPartOf (xT ) In this case successor(yS , xS)∧successor(yT , xT )
holds and we can distinguish the following situations:
• piPartOf (yS) ∧ piPartOf (yT ) An attributeMapping is generated between

xS and xT followed by a classMapping between yS and yT . Conform-
ing to the axioms 13 and 16, the mapping context remains unchanged.

• ciPartOf (yS) ∧ ciPartOf (yT ) An attributeMapping is generated having as
participants xS and xT . The mapping context is updated conform to the
axioms 13, 14 and 16.

• piPartOf (yS) ∧ ciPartOf (yT ) Generates a classAttributeMapping between
zS and the xT , where describes(xS , zS). The new mapping context keeps
the source context unchanged while decomposing the target context over
yT .

• ciPartOf (yS) ∧ piPartOf (yT ) This case is symmetric with the one presented
above and it generates a classAttributeMapping between xS and the zT

where describes(xT , zT ).
− ciPartOf (xS) ∧ piPartOf (xT ) It is not allowed for this combination of per-

spectives. To take an example, such a case would involve a mapping between
ciPartOf (person) and piPartOf (string) where describes(hasName, person)∧
successor(string, hasName), which does not have any semantic meaning. A
correct solution would be a mapping between ciPartOf (person) and ciPartOf (uT )
such as ∃vT .(describes(vT , uT ) ∧ successor(string, vT ).

− piPartOf (xS) ∧ ciPartOf (xT ) The same explanation applies as above.



5.3 InstanceOf to InstanceOf Mappings

When using the InstanceOf perspectives we can create similar mappings to those
created with the PartOf perspectives, the difference being that conditions are
added to the mappings, and by this, the mappings hold only if the conditions are
fulfilled. The mappings between two primitive items or between two compound
items in the InstanceOf perspective are identical with the ones from the PartOf
perspective. For the remaining cases we have:

− diInstanceOf (xS , wS) ∧ diInstanceOf (xT , wT ) In this case, we have successor(<
xS , wS >, yS) ∧ successor(< xT , wT >, yT ) and we can distinguish the fol-
lowing situations:
• piInstanceOf (yS) ∧ piInstanceOf (yT ) An attributeMapping is generated be-

tween xS and xT conditioned by two attributeValueConditions imposing
the presence of wS and wT in the mediated data. Also a classMapping
between yS and yT is generated. Conforming to the axioms 13 and 16
the mapping context remains unchanged.

• ciInstanceOf (yS) ∧ ciInstanceOf (yT ) An attributeMapping is generated hav-
ing as participants xS and xT conditioned by two typeConditions. The
mapping context is updated conforming to the axioms 13, 14 and 16.

• piInstanceOf (yS) ∧ ciInstanceOf (yT ) This case generates a classAttributeMap-
ping between zS and the xT , where describes(xS , zS). A typeCondition
is added for xT attribute. The new mapping context keeps the source
context unchanged while decomposing the target context over yT .

• ciInstanceOf (yS) ∧ piInstanceOf (yT ) This case is symmetric with the one
presented above and it generates a classAttributeMapping between xS

and the zT where describes(xT , zT ). A typeCondition is added for xS .
− diInstanceOf (xS , wS) ∧ piInstanceOf (xT ) InstanceOf extends the set of allowed

mappings as defined in 15. For zS such that describes(< xS , wS >, zS), a
classMapping between zS and xT is generated, conditioned by an attribute-
ValueCondition on the attribute xS and value wS .

− piInstanceOf (xS) ∧ diInstanceOf (xT , wT ) Similar with the above case.
− ciInstanceOf (xS) ∧ piInstanceOf (xT ) It is not directly allowed for this combi-

nation of perspectives, but the intended mapping can be created as described
by previous case.

− piInstanceOf (xS) ∧ ciInstanceOf (xT ) The same explanation applies as above.

5.4 RelatedBy to RelatedBy Mappings

In the RelatedBy perspective attributes are seen as root elements, having only
two descriptions: their domain and their type. We identify the following cases:

− piRelatedBy(xS) ∧ piRelatedBy(xT ) This case does not appear as we do not
have primitive items in the RelatedBy perspective.

− ciRelatedBy(xS) ∧ ciRelatedBy(xT ) The mapping will generate an attributeMap-
ping statement in the mapping language having as participants xS and xT .

− diRelatedBy(xS) ∧ diRelatedBy(xT ) The source and the target perspectives are
changed from RelatedBy to PartOf and the context is obtained by decompos-
ing the perspectives over zS and zT , where successor(zS , xS)∧successor(zT , xT )



5.5 Mapping Examples

Table 6 shows examples of mappings in the abstract mapping language and how
these mappings look like when grounded to WSML when mapping the person
concept in the the source ontology with human (and man) in the target ontology.
When evaluated, the WSML mapping rules will generate instances of man if the
gender condition is met, or of human otherwise. The construct mediated(X, C)
represents the identifier of the newly created target instance, where X is the
source instance that is transformed, and C is the target concept we map to.

Table 6. Decomposition and context updates

Abstract Mapping Language Mapping Rules in WSML

Mapping(o1#persono2#man
classMapping(one-way

person man))
Mapping(o1#ageo2#age

attributeMapping(one-way
[(person)age=>integer]

[(human)age=>integer]))
Mapping(o1#nameo2#name

attributeMapping(one-way
[(person)name => string]

[(human)name => string]))
Mapping(o1#hasGendero2#man

attributeClassMapping(one-way
[(person)hasGender => gender] man))

valueCondition(
[(person)hasGender => gender] male)

axiom mapping001 definedBy
mediated(X_1, o2#man) memberOf o2#man:-

X_1 memberOf o1#person.
axiom mapping001 definedBy

mediated(X_2, o2#human) memberOf o2#human:-
X_2 memberOf o1#person.

axiom mapping005 definedBy
mediated(X_5, o2#human)[o2#age hasValue Y_6]:-

X_5[o1#age hasValue Y_6]:o1#person.
axiom mapping006 definedBy

mediated(X_7, o2#human)[o2#name hasValue Y_8]:-
X_7[o1#name hasValue Y_8]:o1#person.

axiom mapping007 definedBy
mediated(Y_11, o2#man)[A_9 hasValue AR_10]:-

mediated(Y_11, o2#human)[A_9 hasValue AR_10 ],
Y_11[o1#hasGender hasValue o1#male].

6 Implementation and Prototype

The ideas and methods presented in this paper are used in the mediation com-
ponent of the WSMX architecture. The WSMX Data Mediation component is
designed to support data transformation, which means to transform the source
ontology instances entering the system into instances expressed in terms of the
target ontology. As described above, in order to make this possible the data
mediation process consists of a design-time and a run-time phase. Each of these
two phases has its own implementations: the Ontology Mapping Tool and the
Run-time Data Mediator.

The Ontology Mapping Tool is implemented as an Eclipse plug-in, part of
the Web Service Modeling Toolkit (WSMT)3 [7] an integrated environment for
ontology creation, visualization and mapping. The Ontology Mapping Tool is
currently compatible with WSMO ontologies (but by providing the appropriate
wrappers different ontology languages could be supported); it offers different
ways of browsing the ontologies using perspectives and allows the domain expert
to create mappings between two ontologies (source and target) and to store them
in a persistent mapping storage. Currently only the PartOf and InstanceOf
perspectives are implemented while decomposition and context principles are
fully supported. These principles, together with the suggestion mechanisms make
the prototype a truly semi-automatic ontology mapping tool.
3 Open Source Project available at http://sourceforge.net/projects/wsmt

http://sourceforge.net/projects/wsmt�


The Run-time Data Mediator plays the role of the data mediation compo-
nent in WSMX (available together with the WSMX system4. It uses the abstract
mappings created during design-time, grounds them to WSML and uses a rea-
soner to evaluate them against the incoming source instances. The storage used
is a relational data base. The Run-time Data Mediator is also available as a
stand alone application.

7 Related Work

MAFRA [10] proposes a Semantic Bridge Ontology to represent the mappings.
This ontology has as central concept, the so called ”Semantic bridge” which
is the equivalent of our mapping language statements. The main difference to
our approach is that MAFRA does not define any explicit relation between the
graphical representation of the ontologies in their tool and the generation of
these Semantic Bridges or between the user’s actions and the particular bridges
to be used. The formal abstract model we propose links the graphical elements
of the user interface with the mapping representation language, ensuring a clear
correspondence between user actions and the generated mappings.

PROMPT[9] is an interactive and semi-automatic algorithm for ontology
merging. The user is asked to apply a set of given operations to a set of possible
matches, based on which, the algorithm recomputes the set of suggestions and
signals the potential inconsistencies. The fundamental difference in our approach
is that instead of defining several operations we have only one operation (map)
which will take two ontology elements as arguments, and multiple perspectives to
graphically represent the ontologies in the user interface. Based on the particular
types of perspectives used and on the roles of the map action arguments in that
perspective the tool is able to determine the type of mapping to be created.
Such that, by switching between perspectives, different ontology mismatches
can be addressed by using a single map action. An interesting aspect is that
PROMPT defines the term local context which perfectly matches our context
definition: the set of descriptions attached to an item together with the items
these descriptions point to. While PROMPT uses the local context in decision-
making when computing the suggestions, we also use the context when displaying
the ontology.

Instead of allowing browsing on multiple hierarchical layers, as PROMPT and
MAFRA do, we adopt a context based browsing that allows the identification of
the domain experts intentions and generates mappings.

8 Conclusion and Further Work

In this paper we define a formal model for mapping creation. This model sits
between the graphical elements used to represent the ontologies and the result of
the mapping process, i.e. the ontology alignment. By defining both the graphical
4 Open Source Project available at http://sourceforge.net/projects/wsmx

http://sourceforge.net/projects/wsmx�


instruments and the mapping creation strategies in terms of this model we assure
a direct and complete correspondence between human user action and the effect
on the generated ontology alignment. In addition we propose a set of different
graphical perspectives that can be linked with the same model, each of them
offering a different viewpoint on the displayed ontology. By combining this types
of perspectives different types of mismatches can be addressed in an identical
way from one pair of views to the other.

As future work, we plan to focus in identifying more relevant perspectives
and to investigate the possible combination of these perspectives in respect with
the types of mappings to be created. These would lead in the end to defining a set
of mapping patterns in terms of our model, which will significantly improve the
mappings finding mechanism. Another point to be investigated is the mapping
with multiple participants from the source and from the target ontology. In this
paper we investigated only the cases when exactly one element from the source
and exactly one element from the target can be selected at a time to be mapped.
We plan to also address transformation functions from the perspective of our
model. Such transformation functions (e.g. string concatenation) would allow
the creation of new target data based on a combination of given source data.

References

1. J. de Bruijn, D. Foxvog, and K. Zimmerman. Ontology mediation patterns library.
SEKT Project Deliverable D4.3.1, Digital Enterprise Research Institute, University
of Innsbruck, 2004.

2. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with
APFEL. Fourth International Semantic Web Conference (ISWC-2005), 2005.

3. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, and D. Fensel. To-
wards intelligent web services: The web service modeling ontology (WSMO). In-
ternational Conference on Intelligent Computing (ICIC), 2005.

4. M. R. Genesereth and N. J. Nilson. Logical Foundations of Artificial Inteligence.
Morgan-Kaufmann, 1988.

5. A. Polleres H. Lausen, J. de Bruijn and D. Fensel. WSML - A Language Framework
for Semantic Web Services. W3C Workshop on Rule Languages for Interoperability,
April 2005.

6. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic
Service-Oriented Architecture. International Conference on Web Services (ICWS
2005), July 2005.

7. M. Kerrigan. WSMOViz: An Ontology Visualization Approach for WSMO. 10th
International Conference on Information Visualization, 2006.

8. A. Mocan and E. Cimpian. Mapping creation using a view based approach. 1st
International Workshop on Mediation in Semantic Web Services (Mediate 2005),
December 2005.

9. N.F. Noy and M. A. Munsen. The PROMPT suite: Interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies, 6(59),
2003.

10. N. Silva and J. Rocha. Semantic web complex ontology mapping. Proceedings of
the IEEE Web Intelligence (WI2003), page 82, 2003.


