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Abstract 

Complex metamodels are often decomposed into several 
views, in particular for architecture framework metamodels 
such as DoDAF (Department of Defense Architecture 
Framework). Designing models that conform to this kind of 
metamodels implies data integration problems between the 
different views. Usually, different views from a same 
metamodel share a common core. This is the reason why 
those views are interrelated. The common core is identified 
with the creation of mapping links.. Within MDE (Model 
Driven Engineering) approaches, these links may be 
captured by weaving models. Using MDE principles, we 
automate this data integration process by generating 
transformations between these views. For this, we generate 
weaving models between different views using matching 
heuristics and then we produce model transformations from 
this weaving model. We have applied this method to 
DoDAF metamodels. In this architecture framework, SV-5 
(a system view) relates to OV-5 (an operational view) and 
SV-4 (another system view) with the aim to provide a 
traceability matrix about system architectures. 

1 Introduction 

System Architecture (SA) is becoming an important 
concern in the management of complex computer systems. 
A general definition of SA may be found in [1]. Many 
frameworks have been proposed for dealing with SA. One 
of them is DoDAF (Department of Defense Architecture 
Framework) [2] [3]: DoDAF is a framework for the 
development of system architectures for military or 
enterprise organizations. This framework enables to specify 
these architectures following three different views, called 
Operational Views (OV), System View (SV), and Technical 
Standards View (TV). There are different relationships 

between the concepts of these views. For example, the 
Traceability Matrix in SV-5 (a subset of SV) is used to 
capture the relationships between the Operation Activities 
contained in OV-5 (a subset of OV) and System Functions 
in SV-4 (another subset of SV). Each one of these views is 
constructed conforming to a common set of architecture 
data entities and relationships between these entities. This 
data model is called DoD Core Architecture Data Model 
(CADM). Since they are created using similar data entities 
(concepts), there are many common entities between these 
different views. 

In this paper, we study how to generate the traceability 
matrix that contains the overlapping concepts between these 
different views, most particularly from OV-5 and SV-4 
views into SV-5 view. All these views come from 
architecture descriptions defined within DoDAF. This 
traceability matrix can be generated by manually coding 
model transformations. However, the OV-5 and SV-4 
metamodels contain several elements and this task may be 
quite complex. It should be possible to automate this 
process as much as possible. 

We propose a model driven engineering (MDE) 
approach that automates the process of defining the 
traceability matrix. We concentrate on the automation of 
the data integration from a model to another one. This 
process concerns the entities that are the same and also their 
common properties and relationships in the different 
metamodels. 

Our solution is divided into different steps. First, we 
propose to represent the different views (OV-5, SV-4 and 
SV-5) in KM3 metametamodel [4]. Second, we capture the 
relationships (i.e., mapping links) between these views 
using a weaving model [5]. A weaving model is a model 
that specifies different kinds of mappings between 
metamodel elements. The weaving model is created by a set 
of transformations that are executed sequentially. Each 
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transformation calculates similarity values between the 
concepts of the views, based on different matching 
heuristics. Last, we intend to implement an ATL [6] 
transformation from SV-5 to itself, to calculate the 
traceability matrix. This is a future work. 

This paper is organized as follows. Section 2 describes 
our case study. Section 3 presents our solution to automate 
the data integration process. Section 4 concludes the paper. 

2 Case Study 

In our case study, we choose views OV-5 and SV-5, SV-
4 and SV-5 in the DoDAF context. DoDAF [3] is an 
architecture framework designed by the United States 
Department of Defense. DoDAF framework supersedes the 
C4ISR (Command, Control, Communications, Computers, 
Intelligence, Surveillance and Reconnaissance) 
Architecture Framework. There are existing derivative 
frameworks based on DoDAF like MoDAF (United 
Kingdom Ministry of Defense) or NATO-AF (North 
Atlantic Treaty Organization). First, we introduce the 
possible solutions and then we explain the intersection 
between DoDAF views. 

2.1 Possible solutions 
We have distinguished two choices to generate a 

traceability matrix in a SV-5 view for DoDAF architecture 
descriptions. The first possibility is to implement a 
transformation from the OV-5 and SV-4 metamodels to the 
SV-5 metamodel. This transformation translates the data 
from the input models (OV-5 and SV-4 views) into the 
output model that conforms to SV-5 metamodel and that 
calculates the traceability matrix. In this case, we must code 
the transformation manually. However, creating this 
transformation by hand is a complex process that should be 
automated. 

The second possibility is to automate the data integration 
from the input to the output metamodels. In this case, we 
propose to create a model that captures mapping links 
between OV-5 and SV-5, SV-4 and SV-5. From there, we 
are able to generate the two transformations that translate 
the necessary data into a model that conforms to SV-5. 
Finally, we implement a transformation from SV-5 to itself 
with the aim to create the traceability matrix. 

2.2 Overlapping parts between DoDAF views 
To build the SV-5 traceability matrix for a given 

architecture description, we need views OV-5 and SV-4. 
The reason is because the Operational Activity to Systems 
Function Traceability Matrix (SV-5) contains the 
relationships between the Operational Activities from the 
Operational Activity Model (OV-5) and the System 
Functions from the Systems Functionality Description (SV-

4). Figure 1 illustrates the relationships between DoDAF 
views. In this class diagram, System Function elements 
inherit from Process Activity; Task is another term for 
Operational Capability. 
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Figure 1: Relationships between DoDAF views 

Due to the fact that SV-5 view for an architecture 
description must be able to capture many parts of the OV-5 
and the SV-4 views, we found several common entities and 
common relationships between these entities. Moreover, 
according to the inheritance tree, in the three views we 
found common parent entities, such as Document, because 
all the views on DoDAF metamodel are based on the same 
core. Another example is the set of elements and their 
relationships composed of Activity Model, Activity Model 
Process Activity, and Process Activity. These elements exist 
in the three DoDAF views. 

The three views have an average of 100 entities, and 
approximately thirty percent of common entities between 
OV-5 and SV-5, SV-4 and SV-5. The majority of the 
properties from the common entities are the same, in all the 
views. This is the reason why we propose to partially 
automate the data integration of OV-5 and SV-4 into a SV-
5 model. After the integration is done, we are able to 
calculate the traceability matrix into the SV-5 view. 

3 Model Integration 

We present in more details the steps to automate the 
integration of DoDAF views. First, we show how to 
represent DoDAF views with MDE practices. Second, we 
define the process that creates a weaving model between 
both metamodels. This process is called matching. Last, we 
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describe how to use the weaving model to generate the 
transformation that executes the data integration. 

3.1 Representing DoDAF views in MDE 
 We translate OV-5, SV-4, and SV-5 as metamodels for 

DoDAF architecture descriptions. In MDE practices, a 
metamodel is a formal definition of a model. A model 
conforms to a metamodel. With aim to use the AMMA 
platform [7] [8] to implement weaving models and 
transformation, we define OV-5, SV-4, and SV-5 view 
metamodels in KM3 (Kernel MetaMetaModel). 

We first define the CADM (Core Architecture Data 
Model) for each DoDAF view. The CADM defines 
structured representations of the architecture data elements 
using the IDEF1X notation [9]. This representation is the 
data model for DoDAF views with entity relation diagram 
without composition relationships between data entities. 
With the aim to give more expressivity for metamodel 
views, we translate some relationships between the data 
entities as composition relationships between classes of the 
KM3 metamodels. For example, we translate the 
relationship includes between an Activity Model and its 
Process Activities as a composition relationship. This 
situation occurs in the three views. 

3.2 Matching 
The process that defines the mappings between two 

different metamodels is called matching. The matching 
process is encapsulated in a model management operation 
called Match [10]. A Match operation takes two models Ma 
and Mb as input and produces a mapping Map between the 
elements of both models as output:  

Map = Match (Ma, Mb). 
Usually, with the Match operation, it is not possible to 

automatically define exact mappings for every model 
elements. In this case study, we want to define only 
equivalence links between entities of both metamodels. Our 
goal is to generate, as much as possible, the exact mapping 
between the entities of OV-5 and SV-5, SV-4 and SV-5 
metamodels. This mapping is a representation of the 
intersection between the models. 

The matching process produces a weaving model that 
captures a set of mapping links. A mapping link is defined 
by the element references in their respectively models and a 
similarity value that characterizes the equivalence between 
them. To define the exact similarities between entities, we 
assign a similarity value using a matching technique that 
sets a similarity value to one (1) if the entities or the 
structural features in the two metamodels are exactly the 
same. The default similarity value is zero (0). Finally, we 
choose all links with a similarity value equal to one. These 
mappings with exact equivalence are saved in a weaving 
model. The weaving model conforms to a weaving 

metamodel that is an extension of a core weaving 
metamodel [5]. We describe the different steps of the 
matching operation in the following sections. 

3.2.1 Creating weaving models 
A weaving model supporting different kind of mappings 

is created by a model management operation called 
CreateWeaving, which is defined below: 

Mw = CreateWeaving (Ma, Mb). 
The operation takes the two models as input (Ma and 

Mb) and it produces a weaving model as output (Mw). We 
propose to implement this operation using model 
transformations. Consequently, we may say that the two 
input models are transformed into one output model that 
contains the mappings between them. 

At this stage, the transformation does not create the 
exact mappings between the elements of models Ma and 
Mb, but it matches all the elements of Ma and Mb (the 
Cartesian product Ma × Mb), and it creates equality 
mappings for every pair of elements.  

The transformation creates a weaving model that 
conforms to an extension with equality mappings, as 
illustrated in Figure 2 (in KM3 [4]). 
class Equal extends Equivalent { 

   attribute similarity : Double; 

} 

 

class Equivalent extends WLink { 

   reference left container subsets end: Element; 

   reference right container subsets end: Element; 

} 

 

class Element extends WLinkEnd {} 

Figure 2: Weaving metamodel extension 

We show in Figure 3 how a transformation rule written 
in ATL [6] matches all the classes from a left and a right 
model (conforming to KM3) and produces an equality 
mapping between a left and a right element. The from part 
indicates that the transformation matches all the classes of a 
left model with all the classes of a right model. The to part 
creates the output element, which is an equality mapping 
conforming to the metamodel extension of Figure 2. 
   rule EqualityMapping { 

      from 

          left : KM3L!Class, right : KM3R!Class 

      to 

          anode : AMW!Equal ( 

            left <- <the left element> 

            right <- <the right element> 

         ) 

   } 

Figure 3: Matching rule in ATL 
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We use an ATL transformation to create the weaving 
model between the two models. In this transformation, we 
first generate the Cartesian product between all entities of 
both models and then we assign the similarity value with 
the previous algorithm. The Cartesian product contains 
several imprecise relationships. To refine the Cartesian 
product, we filter the relationships based on the entities 
types. In fact, the Cartesian product is done only between 
elements of the same type (i.e., Class-to-Class, Attribute-to-
Attribute, and Reference-to-Reference). This prevents from 
creating a large model with unnecessary relationships, for 
example Class-to-Attribute relationships. This 
transformation takes as input the left and the right models, 
and the weaving model. 

The rule that creates the Cartesian product is illustrated 
in Figure 4. This rule applies three actions: it creates a new 
node in the mapping model defined by the concatenation of 
the left and the right entity names; it saves the concerned 
entity references from the both input model; and, it sets the 
similarity value between the left and the right elements. 
rule PairWise { 
   from 
      left : KM3L!ModelElement, 
      right : KM3R!ModelElement  
      ( 
        (left.oclIsTypeOf(KM3L!Class) and  
         right.oclIsTypeOf(KM3R!Class))  
       or 
        (left.oclIsTypeOf(KM3L!Attribute) and 
         right.oclIsTypeOf(KM3R!Attribute)) 
       or 
        (left.oclIsTypeOf(KM3L!Reference) and 
         right.oclIsTypeOf(KM3R!Reference)) 
      ) 
   to 
      anode : prop_g!Node ( 
         name <- left.name+'_'+right.name, 
         model <- thisModule.aModel, 
         leftRef <- left, 
         rightRef <- right, 
         similarity <- left.similarity(right), 
      ) 
} 

Figure 4: ATL Rule for Cartesian product 

3.2.2 Calculating Equivalence 
To create the weaving model that captures all the 

equivalence links between elements, we must calculate the 
similarity value between each entity of both models. In our 
case, we have only two values for the similarity. In fact, the 
similarity is set to one if both elements are the same 
according to different criteria (explained later). Otherwise, 
the similarity is set to zero (i.e., default value). We illustrate 
the similarity algorithm in Figure 5. This algorithm is 
implemented for all existing types of metamodel elements: 
Class, Attribute, and Reference. 

helper context KM3L!ModelElement  
   def:similarity(right:KM3R!ModelElement): 
   Integer=  
   if self.similarityName(right) 
   and self.similarityType(right) 
   then 
      if (self.oclIsTypeOf(KM3L!Attribute) and 
          right.oclIsTypeOf(KM3R!Attribute)) 
      or (self.oclIsTypeOf(KM3L!Reference) and 
          right.oclIsTypeOf(KM3R!Reference)) 
      then 
         if self.owner.similarity(right.owner)=1 
         and self.similarityUpper(right) 
         and self.similarityLower(right) 
         then 
            1 
         else 
            0 
         endif 
      else 
         1 
      endif 
   else 
      0 
   endif; 

Figure 5: Similarity algorithm 

In the following section, we explain in more details the 
similarity algorithm for Class-to-Class and Structural 
Feature-to-Structural Feature mapping. In particular, we 
define characteristics to specify the equivalence link for 
each entity type. 

3.2.2.1 Class-to-Class equivalence 
According to the similarity algorithm (Figure 5), Class-

to-Class similarities are calculated taking one element from 
the left metamodel and one element from the right 
metamodel and analyzing their internal features. We apply 
two methods to calculate the similarities: 
• String similarity: the names of the model elements are 
considered as Strings. The names are compared using 
normal string comparison. This is implemented in 
similarityName helper. 
• Type similarity: the types of the model elements are 
extracted with the OCL function oclType and are compared. 
This is implemented in similarityType helper. 

There are other methods that can be used to calculate the 
similarities. For example, it is possible to check if the 
containing elements of the classes from the left and the 
right models are equivalent. This way, the children 
elements are also equivalent. Another possible method is to 
compare the similarity of the inheritance trees of these 
elements. 

The heuristics described determine the strength of the 
equivalence concept that we want to apply (it ranges from 
zero to one [0-1]). The mapping link is considered as 
equivalent only if all conditions are satisfied. In this case 
the similarity value is set to one. 
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3.2.2.2 StructuralFeature-to-StructuralFeature 
equivalence 

A structural feature is an internal feature of a class. It 
can be an attribute or a reference. Structural Feature-to-
Structural Feature similarities are calculated taking one 
structural feature from the left metamodel and another one 
from the right metamodel. In fact, we treat only Attribute-
to-Attribute and Reference-to-Reference elements because 
we choose not to calculate equivalence value for elements 
with different types. To calculate the equivalence between 
two structural features, we reuse the similarity algorithm 
(Figure 5) and we add three specific methods: 
• Owner Entity similarity: owner classes of the given 
structural features are compared using the similarity 
algorithm. 
• Structural Feature Type similarity: the types of the 
model elements given by the structural features are 
compared using the similarity algorithm. 
• Cardinality similarity: the upper and the lower 
cardinality of the structural features are compared. 
Cardinalities are the same only if the upper and the lower 
cardinalities are the same in both structural features. This is 
implemented in similarityUpper and similarityLower 
function. 

To calculate Structural Feature-to-Structural Feature 
similarities, we take advantage of the knowledge about the 
KM3 metametamodel [4]. For instance, we take into 
account the cardinalities and the referenced types. 

3.2.3 Filtering the result 
The weaving model contains a set of links with many 

similarity values. However, this is not the final weaving 
model. It is necessary to select only the links with the 
highest similarity values. We filter the weaving model 
using another transformation that chooses the equivalence 
mappings. In this operation, we are only interested in the 
mappings with a similarity value equal to one. This 
transformation takes as input the previous weaving model 
and produces another weaving model without the links with 
lower similarity values. This allows to keep only the 
relevant mapping links. 

3.3 Generating transformations 
In this step, we use the weaving model to generate the 

transformations that implement the data integration 
between metamodels. According to our motivating 
example, we produce the transformations from OV-5 to 
SV-5 and from SV-4 to SV-5. 

We have implemented an ATL transformation to 
generate these transformation models. This transformation 
takes as input the following models: the left model, the 
right model, and the weaving model created by the filtering 
process. This transformation produces as output a 

transformation model that conforms to the ATL metamodel. 
Finally, the transformation model is extracted into an ATL 
file. 

In the following schema (Figure 6), we show that 
AMW2ATL transformation produces MML2MMR 
transformation from the left metamodel MML, the right 
metamodel MMR and the weaving model MW. AMW2ATL 
is a Higher Order Transformation (HOT). A HOT is a 
transformation that takes transformations as input and/or 
produces transformations. 

KM3

MML

MMW MMATL ATLgrammar

EBNF

MML2MMRMML2MMR

in in in

outAMW2ATL_HOT

MMRMW

MDE technical space Grammar technical space

conformsTo

ATL transformation

projector  
Figure 6: Producing MML2MMR Transformation 

In our case, MML is OV-5 or SV-4 metamodels and 
MMR is the SV-5 metamodel. From this, we generate OV-5 
to SV-5 and SV-4 to SV-5 transformations, which are 
implementations of data integration from OV-5 and SV-4 to 
SV-5 metamodels. To reverse the data integration process, 
it is necessary to invert MML and MMR metamodels. 
According to our example, we can also produce SV-5 to 
OV-5 and SV-5 to SV-4 data integration.  

4 Conclusions 

In this paper, we have presented a practical MDE-based 
solution to automate the integration of different models. We 
used DoDAF as case study. In our solution, we produced a 
weaving model between metamodels using ATL 
transformations. This weaving model represents 
equivalence mapping links between the metamodels’ 
elements. The similarity algorithm that calculates the 
equivalence mappings can be improved by using other 
criteria or can be made more permissive. From this step, we 
are able to produce the transformation model that 
implements the data integration from the left to the right 
metamodels. This transformation is generated based on a 
weaving model. In the last step, we can export the 
transformation model into an ATL code source. 

This process is particularly adapted for complex 
metamodels composed of several views which are based on 
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a same core. In fact, it is possible to exchange data between 
models that conforms to two different parts with a 
generated transformation between them. This exchange 
concerns only the exactly common part, in other words the 
metamodels intersection. 

As future work, we plan to implement a transformation 
that produces the traceability matrix from a SV-5 view. 
After the data integration, this SV-5 model about an 
architecture description contains all the Operational 
Activities of the OV-5 model and all the System Functions 
data of the SV-4 model. The re-factoring transformation 
will refine the SV-5 model to obtain the same model with 
the calculated traceability matrix. 
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