
Validating Multi-column Schema Matchings by
Type

Bing Tian Dai*, Nick Koudas#, Divesh Srivastavat, Anthony K. H. Tung*, Suresh Venkatasubramaniant

*National University of Singapore
Singapore 117590, Republic of Singapore

daibingt@comp.nus.edu.sg
atung@comp.nus.edu.sg

University of Toronto
Toronto, ON M5S 2E4, Canada
koudas@cs.toronto.edu

tAT&T Labs-Research
Florham Park, NJ 07932, USA
divesh@research.att.com

t University of Utah
Salt Lake City, UT 84112, USA

suresh@cs.utah.edu

Abstract- Validation of multi-column schema matchings is
essential for successful database integration. This task is espe-
cially difficult when the databases to be integrated contain little
overlapping data, as is often the case in practice (e.g., customer
bases of different companies). Based on the intuition that values
present in different columns related by a schema matching will
have similar "semantic type", and that this can be captured
using distributions over values ("statistical types"), we develop a
method for validating 1-1 and compositional schema matchings.
Our technique is based on three key technical ideas. First, we

propose a generic measure for comparing two columns matched
by a schema matching, based on a notion of information-theoretic
discrepancy that generalizes the standard geometric discrepancy;
this provides the basis for 1:1 matching. Second, we present an
algorithm for "splitting" the string values in a column to identify
substrings that are likely to match with the values in another
column; this enables (multi-column) 1:m schema matching.
Third, our technique provides an invalidation certificate if it fails
to validate a schema matching. We complement our conceptual
and algorithmic contributions with an experimental study that
demonstrates the effectiveness and efficiency of our technique on
a variety of database schemas and data sets.

I. INTRODUCTION

Schema matching is an important problem in the realm of
database integration. The basic operator is called Match [1],
and associates schema elements from one database with
schema elements from another database, as a prelude to
schema mapping and database integration. Early approaches
to schema matching were based on identification using only
schema labels. This was followed by techniques that took
into account the actual data in the columns being matched.
When schema matching is performed between databases that
are likely to contain the same data (e.g., the catalogs of
different online book sellers), the matching can check for
occurrences of the same values across the databases. To

DBI

Fig. 1. The flow of Schema Matching

allow for the possibility that schema matching is performed
between databases that contain different data (as is more
commonly the case), there has been work on describing data
in a column via aggregate distributions and using inferences
on these distributions to identify matches. Schema matching
has numerous applications, and is an area of extensive study;
surveys by Rahm and Bernstein [1] and Doan and Halevy [2]
cover the major issues and much of the relevant literature.

Essential to the success of schema matching (and hence
of database integration) is a validator that, given a candidate
match, declares it to be valid or not. As shown in Figure 1,
the match operator takes two databases, and gives a set of
candidate matches. The "match validator" then plays a role
of declaring if a given candidate match is valid. According
to the result of the match validator, humans can make a
decision to keep or discard a match. If a schema matching
is declared to be invalid, a good validator should provide a
"certificate of invalidation" to facilitate human decision. It is
harder to provide a "proof" of a valid matching, since such a
proof merely implies the lack of contradicting evidence. Every
technique for discovering schema matchings in the literature

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 120 ICDE 2008

TABLE I
americaDB AND chinaDB: SCHEMA AND SAMPLE DATA

americaDB
propld propTitle piFN piLN coPiName
05CN0734 who likes xml john pardon wei li
06CN0732 who hates xml johnny walker lei cai

chinaDB
proposallnfo piName coPiName
1136-AA-654 05 i like xml too li mingfei johnson bush
1136-B-45 06 the future of xml yu kai pitts daniel

implicitly includes a validator, possibly in conjunction with
a search strategy for identifying candidate matchings. In this
paper, we focus on the validation aspect of schema matchings
and hence our technique can be combined with any search
strategy that helps identify candidate matchings.

A. String Values and Statistical Types
Surprisingly, despite the prevalence of string values in

databases (e.g., person names, company names, building loca-
tions, email addresses), and the vast amount of work in schema
matching, little attention has been paid to validating matchings
of string-valued schema elements. Exceptions include systems
like CUPID [3] and the work by Embley et al. [4] that consider
multi-column matchings of the form "concatenate FN and LN"
(i.e., string concatenation), and the recent work by Warren and
Tompa [5] who study the discovery and validation of multi-
column substring matchings of the form "concatenate the first
7 characters of LN and the first character of FN". A limitation
of these previous techniques is that their validator can be
used only in database integration scenarios where matching
schema elements have the same values, but not in the more
common case where matching schema elements have different
string values (e.g., when two merging companies integrate
their customer databases).
A validator for such data needs to determine if the two

columns contain data of the same "semantic type". Examples
of semantic types include customer IDs, titles, names, prices,
etc. This is a classic problem in information retrieval, where
one goal is to group documents by topic; in this case, the
semantic type of a document is its topic (or set of topics), and
documents with similar semantic type are grouped together.
The central idea of this paper is based on extensive research

in information retrieval suggesting that semantic type can be
modeled by "statistical type", defined by distributions of q-
grams of strings drawn from the text.

Comparing two string-valued columns then becomes the
problem of estimating a distance between the distributions
corresponding to their (possibly many) types. Building on
these intuitions, this paper addresses the challenging problem
of validating multi-column schema matchings by examining
the statistical types defined by columns of data.

B. An Illustrative Example
Validating by type forces us to revisit some of our basic

ideas about matching schemas. Consider two databases main-

taining information about collaborative multi-national research
proposals, americaDB and chinaDB: americaDB tracks
all research proposals where the primary investigator is based
in the US, and chinaDB tracks all research proposals where
the primary investigator is based in China. Their schemas and
some sample data are given in Table I.

Note that all the data in these databases are repre-
sented as strings. This is fairly prevalent in real databases,
due to the flexibility afforded by the use of strings.
When exploring and validating schema matchings between
these two databases, possibly to create an integrated target
database chinamericaDB with the schema (propTitle,
americaPerson, chinaPerson), there are several issues
that need to be addressed.

No guarantee ofcommon data: There is no guarantee that
the principal investigators or co-principal investigators in one
database will be present in the other database. Thus validating
a candidate schema matching cannot be based on entire string
values. However, there is the possibility of using q-grams to
aid in the schema matching. Note (in the data of Table I) that
2-grams like "jo" and "on" seem to occur more commonly
in American names while 2-grams like "ai" and "ei" seem
to occur more commonly in Chinese names. By looking at
2-grams, one could invalidate a candidate matching between
americaDB. coPiName and chinaDB. coPiName.

Simple and composite matchings: This example
illustrates the presence of both simple and composite
matchings. For example, the matching between
americaDB.coPiName and chinaDB .piName is
a simple 1-1 matching, and should be validated. Since the
integrated database chinamericaDB uses single columns
to represent both American names and Chinese names, the
validator would need to be able to validate a multi-column
composite matching between concat (americaDB
.piLN, americaDB.piFN) and chinaDB.coPiName,
but invalidate a candidate multi-column composite matching
between concat (americaDB.piFN,
americaDB .coPiName) and chinaDB.coPiName.

Substring matchings: Since propId is not part of the
target schema, to populate attributes like propTitle in the
integrated database chinamericaDB, one would need to
validate a matching between americaDB.propTitle and
substring (chinaDB.proposalInfo). Note that a
candidate matching between americaDB.propTitle and
chinaDB.proposalInfo should not be validated.

C. Integratability
How then do we determine if the match between two string-

valued columns is valid? To do this, we introduce the notion of
integratability. As we discussed earlier, we can represent each
string by a distribution over q-grams, and define the statistical
types of a column as a collection of distributions, one for each
string. Then, we expect that if two such collections represent
similar statistical types, then any reasonable clustering of the
distributions will populate clusters with data from the two
collections in roughly the same ratios.

121

An example of this idea is shown in Figure 2. In both panels,
the data is depicted geometrically, with crosses representing
data from one column, and squares from the other. In the left
hand panel, the two columns exhibit similar type distributions,
and a reasonable clustering puts the same relative fractions of
data from the two columns in each cluster. Note that unless
the two columns have exactly the same number of items, these
ratios need not be balanced (i.e., 50-50). All we expect is
that the proportion is relatively constant across clusters. In the
right hand panel, the data from the two columns separate out
into different clusters, and thus there are clusters with widely
varying fractions of crosses and squares.

This notion can be made precise in an information-theoretic
manner; in a later section we will see that this idea translates
into computing a certain kind of conditional entropy. A key
aspect of this notion is that it allows us to exploit context;
since the data from both columns are clustered together, the
process discovers commonalities between the data that may not
be apparent if the two columns were clustered independently.
It also allows us to quantify the degree of integratability in a
purely generic manner, with no recourse to metric spaces and
embeddings of data.

D. Validating Substring Matches
String data may have complex internal structure, and it

is often the case that a schema match arises by splitting
a string value into substrings, and matching the substrings
with elements from another schema. Formally, this means
that we need a substring extraction oracle that, when applied
to a column of string-valued data, returns a new column on
which we can run an integratability check. However, the only
information we have regarding the location of these substrings
is the column we wish to integrate with.

Our idea is thus as follows: rather than examining strings in
the column for obvious internal delimiters that might mark the
boundaries of a relevant substring, we use the target column
to find such substrings. We use type information extracted
from this column to segment each string and return the most
promising candidate substring. We do this by evaluating the
likelihood of individual q-grams of the string appearing in
strings from the target column. If we find a set of contiguous
q-grams that have an unusually high likelihood, we have found
our desired candidate substring.

E. Validating Composite Matchings
Validating schema matchings by type allows us to capture

composite associations that would be difficult via value-based
methods. Certain composite associations reduce to a simple
match problem, that is, determining whether the concatenation
of data from two columns matches with data from another
column reduces to validating a simple match.

Consider however, the problem of determining whether one
set of columns jointly matches another set of columns. In our
example from Section I-B, this happens when matching names;
since labeling of names as first and last may be inconsistent,
especially when dealing with names from Asian countries. In

this case, any approach based on concatenation of column
values will struggle to find a match, because there may be
no consistent way of ordering data to find a match. Using our
distributional approach however, we are indifferent to the issue
of finding orderings. We can concatenate the columns and
do a type-based validation for the super-columns; the q-gram
extraction approach allows us to identify common regions
without considering their location.

F Invalidation Certificate
Recall that if a schema matching is declared to be invalid,

a good validator should provide a "certificate of invalidation".
The final component of our work is a certificate of invalidation,
presented as a "bar code", which will come from the clustering
itself. A low integratability score indicates that the data from
the two columns separate into different clusters in our soft
clustering, which can be presented to the user.

G. Our Contributions
In this work, we will present a method for validation of

multi-column schema matchings based on using statistical type
structure in the data to identify semantic types. Our specific
contributions are as follows:

. A generic type-based integratability measure based on
information-theoretic considerations, and an algorithm to
compute this measure (Section IV).

. An algorithm for validating substring matches that uses a
likelihood-based substring extraction method (Section V).

. Procedures for validating single column and multi-
column schema matchings based on the tools developed
above (Section VI).

* An invalidation certificate if the algorithm fails to validate
a schema matching (Section VII).

* An experimental study that demonstrates the effectiveness
of our technique on a variety of database schemas and
data sets (Section IX).

We discuss related work in Section 11. Technical details of
our implementation are presented in Section VIII.

II. RELATED WORK

Schema matching and schema mapping have been studied
extensively. The survey by Rahm and Bernstein [1] lays out
a general ontology of approaches, classified by the level
of granularity (schema-level, data-level), the kinds of rules
generated (1-1, 1 -m), and other factors. A later survey by Doan
and Halevy [2] covers more recent work, as well as related
research in Al and machine learning.

To the best of our knowledge, there is no prior work that
formulates the idea of matching schema based on inferred
semantic types from string data. Related work includes [6]
and [4] (which constructs types from domain knowledge rather
than from the data). There are however a number of works that
use statistical and/or machine learning methods to learn prop-
erties of an attribute from data and examples. Some notable
examples are SEMINT [7], and work by Berlin and Motro [8],
[9]. Kang and Naughton [10] use the mutual information of

122

(5 5

(a) Each cluster contains roughly the same proportion of the two
data sets.

(,1)
()4

(b) The cluster vary greatly in the relative ratios of the two data

Fig. 2. Computing integratability between two sets of data. In each case, a candidate clustering is given. The two sets are marked with crosses and squares.

two columns as a measure of how likely they are to be matched
to each other. In their scheme, the data is effectively treated
as categorical. Other related works in this area include the
work of He, Chang and Han [11] on schema matching for
the deep web and work on using distributional signatures for
value mapping by Kang et al [12] and Naumann et al [13].
For related work in the Al community, we refer the reader to
the survey by Doan and Halevy [2].

In this paper, we validate schema matchings, rather than
discovering them. Notable methods for discovering schema
matchings (and mappings) include Clio [14], which is a com-
prehensive schema mapping tool. SPIDER [15], built on top
of Clio, is a data-driven debugger for schema mappings that
uses the idea of routes to express mappings between schemas.
In terms of finding substring matches, a closely related work
is by Warren and Tompa [5], who study the discovery of
multicolumn schema mappings. In one sense, their problem
is harder than ours, because they discover potential schema
maps, while we validate such maps. However, their method
assumes explicit value mappings, and in that sense inhabits a
more restricted space than our approach.

Another related work is the paper by Dai et al [16], which
uses information-theoretic concepts to estimate the diversity or
heterogeneity of a column of data for data cleaning purposes.
Although mutual information makes an appearance in that
work as well, the measure describes a property of a single data
set, and behaves very differently to the notion of integratability
(defined on a pair of data sets) discussed here.

III. DEFINITIONS

Let X be a random variable taking on values x1,... x.
The entropy H(X) is the entropy of the distribution p,
p(xi) = p(X = xi), and is given by H(X) =-,pi log pi.
The conditional entropy of a random variable X given an-
other random variable Y is denoted by H(X Y), and is
computed by the formula H(X Y) = H(X, Y)- H(Y) =

-Ex, p(xi, yj) logp(xi|yj). The mutual information of
random variables X and Y is defined as I(X; Y) = H(X)-
H(X Y) = H(Y)- H(Y X). Intuitively, the more correlated
X and Y are, the higher their mutual information is; indepen-
dent random variables have zero mutual information.

We will represent statistical types via soft clusterings of
data. In a soft clustering, each item is associated with po-
tentially many types, and the weights of these associations
sum to one. Formally, we will denote the association weights
by the conditional probabilities p(t x), which represents the
weight with which the point x is associated with type t. Note
that Etp(t x) = 1, and that a hard clustering corresponds
to setting exactly one of the p(t x) values to one. Associated
with the clustering are the prior weights p(x).
A q-gram of a string s is any substring of s of length exactly

q. For example, the set of 1-grams of a string is the multi-set
of all the letters in the string.

IV. A MEASURE OF INTEGRATABILITY

Let C1 and C2 be two columns of data that we wish to
integrate based on their types. Consider any soft clustering of
the union of C1 U C2, with associated conditional probabilities
p(t x) for each x C C1 U C2 with each t C T, the set of types.
Considering the union of the columns to have unit probability
mass, we will denote by p(Ci) the quantity Ci / (|Ci + C2),
where Cil , the weight of Ci, is equal to its cardinality if all
items are considered equally significant. For each column Ci
and each type t compute the type distribution

OAlC) = E: p(tlS)pWz/p(ci)

By our informal definition of integratability, two columns
have the same type structure if the two type distributions are
similar. A standard measure for comparing distributions p and
q is the Jensen-Shannon distance [17], defined as

JS(p, q, a, Q) = aKL(p, m) + f3KL(q, m)
where m = ap+3q,O < a,f3 < 1, a+ = 1, and KL(p, q)

is the Kullback-Leibler distance KL(p, q), also known as the
relative entropy [18].
The distance between the two type distributions is then

JS(p(t Cl),p(t C2), p(Cl),p(C2)). Some algebra reveals this
as the mutual information I(C; T), where C {C1, C2} is
the set of columns.

123

K 58
' ll

I(C; T) is larger when the columns are less integratable,
and has a maximum value of min(H(C), H(T)). It is more
convenient for a measure of integratability to be larger when
the two columns are more integratable, and be normalized
to the range [0,1]. Therefore, using the relation I(C; T) =

H(C) -H(CQT), we define our measure of integratability as
the expression

Integratability
H(CT)
H(C)

which takes values in the range [0,1] and is maximized when
the two columns are identical.

Consider the two instances depicted in Figure 2. In both
examples, there are 15 crosses and 11 squares, and there-
fore H(C) = 0.983. For the left side, H(CT) = 0.98,
and therefore the integratability is 0.998. On the right side,
H(CQT) = 0.795, and thus the integratability is 0.81, which
is less than 0.998, as expected.

Integratability Versus Separability: One might design a
classifier-based approach to determine the integratability of
two data sets. The classifier would receive training data labeled
as being from one column or the other, and use this training
data to classify the remaining data from the two columns.
Intuitively, if the classifier is unable to identify class labels
well, the data is integratable. Unfortunately, this approach does
not work, and illustrates a key difference between the notion
of separability inherent in the use of classifiers, and the notion
of integratability. The column data is typically represented as
points in a high dimensional space. In order for a classifier
to be successful, it must be able to find a set of dimensions
in which a separating hyperplane (or more general separating
structure) can be constructed. In other words, the goal is to find
a local dissimilarity; if one exists, the data can be classified
into separate groups.

However, the goal of integratability is to capture global
similarities in the data, aggregated over the entire space. Two
columns of data might be similar in all but a few respects,
and thus are integratable; however a classifier will hone in on
the points of difference and separate the data. Consider the
example from Section I-B. Suppose we had two tables from
chinaDB and wished to validate a proposed match between
the piName columns in each table, where in one table, the
PIs listed were from mainland China and in the other table,
the PIs listed were from Hong Kong. Constructing two such
columns with 200 names each, the integratability measure
gives a score of 0.9968, which means these two columns are
perfectly integratable. We then used a Naive Bayes classifier
from the Weka toolkit [19] to build a classification of column
A and column B by supplying half of the data as training data,
labeling each item with the column it came from. We then
used the other half data to test the classifier, which correctly
classified 178 instances out of 200. In other words, although
the integratability of the two columns was high, reflecting the
global similarity in the names, the separability (as indicated
by the success of the classifier) was also high, showing that
local differences could be used to distinguish the data.

V. EXTRACTING A MATCH

A measure of integratability allows us to determine whether
two columns of data have the same type. A more general kind
of schema match occurs when a single column (which we
will call the heterogeneous column) contains parts that iden-
tify with other columns. We came across one such example
from Section I-B, when attempting to populate the attribute
propTitle. In such cases, one would not expect a simple
column-level comparison to detect type similarities; instead,
what we need is a method for determining a substring of a
column that matches types with another column.
As before, let C1 and C2 be the two columns under

consideration. Let C1 be the heterogeneous column, i.e. the
column from which we wish to extract a substring whose type
matches that of C2 (which we call the corpus). For each string
s C C1, we need to determine a substring w(s) such that the
set of strings {w(s) s C C1} integrates with C2.

Suppose we have a procedure to compute a candidate
w(s). We can then test the efficacy of this procedure by
integrating the resulting strings with C2, using the method
outlined in Section IV. A good procedure will generate a high
integratability score.
One way of generating a substring is by considering abso-

lute positions in a string. For example, the substring extraction
described by Warren and Tompa [5] calls for specific offsets
into a string to generate the target string. It is possible (al-
though inefficient) to search over all offsets to find the correct
substring. However, in general such an approach will fail to
capture many kinds of heterogeneous data, whose values may
be derived semantically from different sources. This motivates
our approach, which is based on the type of the homogeneous
column in order to extract relevant substrings.

Finding A Large Bump: We assume that a string in the
column C1 is of the form awb, where w is a string whose
type matches that of C2 and a, b are arbitrary strings. If this
is the case, then we expect that a representation of w in the
type space will match closely with a representation of strings
in C2, while the representations of a, b will not match as well.
We build a histogram on strings that characterizes the corpus

C2; in practice, we fix a parameter q and compute frequency
counts for all q-grams that occur in any string of C2.
Now for each string s C C1 we extract its q-grams and

assign to each a weight that equals the relative frequency of
this q-gram in the histogram constructed above. Let the relative
range of these frequencies (the ratio of the largest to smallest)
be denoted by r.

Treating these relative frequencies as likelihoods, we expect
that if w indeed matches strings in C2, then the likelihood of
q-grams in w should be significantly higher than that in the
remainder of the string. In other words, as we move from left
to right along s, we should see a jump in likelihood where w
starts, and a corresponding dip where it ends.
The magnitude of a jump that constitutes a significant event

is a subjective choice, depending on r. A good choice for the
jump magnitude is r/2, for reasons we shall see later.

124

Jump

I \~~~~~~~~P

Jump

____--,,-------.

Gap
- - --1-r----k-- --

I
I ~'

s c r o 5 1 2 7 7 77 s c r o 5 1 2 a r c h
(a) Jump in likelihood indicates in- (b) low, high regions indicate inter-
teresting transition esting substring

Fig. 3. A substring extraction example

Consider a scenario where the corpus consists of different
kinds of numeric sequences. A possible likelihood plot for the
string s c r o 5 1 2 7 7 7 7 might look like Figure 3 (a). Here, the
jump (the shaded region) marks the beginning of the relevant
substring.
The figure also illustrates how finding a significant transition

is not sufficient. In the above example, there is no way to
determine which of the strings 512, 5127, 51277 etc. are
the appropriate strings to return, without making some kind
of ad hoc choice.

Therefore, rather than defining a transition as a sufficiently
large jump from one q-gram to the succeeding one, we define a
transition as a separation of likelihoods into two sets, low and
high, such that the smallest likelihood in high is significantly
larger than the highest likelihood in low.

If such a separation exists, then it is easy to identify the
corresponding substring: we label all q-grams as being either
high or low, and take the longest substring consisting of high
q-grams.

Figure 3(b) depicts how this works, with the string
scro512arch. Here, we can identify a clear gap of size r/2
that separates the q-grams into regions. The resulting substring
that the algorithm returns is shaded in the figure.
The choice of r/2 as the gap width guarantees that we find

at most one high substring. If we find no region, we deem the
whole string to be high and return it as is.

VI. (IN)VALIDATING SCHEMA MATCHINGS

Having developed tools for comparing and extracting types,
we now apply them to different validation scenarios.

1-1 schema matching: The first scenario is a match
between two columns, under the assumption that data in the
first matches the type of data in the second, for example, the
matching between americaDB.coPiName and chinaDB
.piName. We compute integratability as described in Sec-
tion IV. We have observed that integratability values close
to 1.0 are reliable indicators of a valid match; in any case,
comparing integratability values is a reliable way of deciding
which matches are more accurate than others.

Compositional matchings: Compositional matchings can
be validated by using a simple concatenation strategy as
described in Section I; the use of distributions over q-grams
allows us to use the above method for validation.

Substring Matches: Another kind of matching that has
no analogue in the value-based world is a substring matching.
In this scenario, a schema matcher proposes a match between
two columns of a table, but the actual matching types are
parts of the values. Again, using the multinational research
proposal example, we need to use substring matching to
populate attributes like prop it 1 e in the integrated database
chinamericaDB from americaDB.propTitle and
substring (chinaDB.proposalInfo).

In general, the match might occur between substrings of
both columns. We use the procedure of Section V to in-
dependently extract substrings from each column using the
other column as the corpus, and then check the integratability
between the sets of extracted substrings from the two columns.

VII. AN INVALIDATION CERTIFICATE

The type-based validation methods described above all end
with an integratability calculation. The score is larger when the
two matching schema elements are believed to be more similar
in type. If they are believed to be dissimilar in type, besides
the integratability score, we should also provide a "certificate
of invalidation".
A hard clustering is easy to represent by listing the parti-

tions. A soft clustering is harder to visualize as points spread
their mass across many clusters. Moreover, as pointed out
in [16], even the notion of a cluster is not well-defined.
Two distinct clusters are not really distinct if the membership
probabilities p(t x) are identical for both of them.
We will visualize integratability using the idea of a "bar-

code"'. Consider an image with one row for each item in
either of the two columns, grouped so that rows for items in
Ci appear above rows for items in C2. Each column of this
image corresponds to a cluster t, and has a variable width
proportional to p(t). The content of a column is the value
p(t x), represented in logscale with darker shades signifying
higher probabilities.

Since a soft clustering might spread mass between essen-
tially identical clusters, we need to group the columns for
such clusters together, to make the representation meaningful.
Two clusters are similar if their cluster membership vectors
p(t x) are similar. With this observation, we can group clusters
together, and reorder the clusters by their groups.

An Example: We illustrate the idea of a bar code with
three simple examples, drawn from name databases (see
Section IX for the details on the data). One of the integrata-
bility tests described in Section I was a test to see whether
two columns of names corresponded to the same nationality.
Suppose we were to compare lists of American and German
names. Figure 4 illustrates what the barcode looks like. As
described above, rows are indexed by the data, and columns
are indexed by clusters. Each entry of the barcode represents a
particular cluster membership probability p(t x), with a darker

'The idea of using a bitmap to visualize a soft clustering was used in [16].
However in that work, the only goal of the visualization was to check that a
data set was clustered.

125

10

A

Fig. 4. Integratability of US and DE names = 0.99

Fig. 5. Integratability of CN and DE names = 0.24

color representing a higher value (in logscale). All entries of
the first data source appear above those of the second.
The integratability of these two sources is very high; notice

that in the bar code, the two horizontal strips look almost
identical. This means that each cluster contains the same mass
from both data sets, implying high integratability. Note that
given the Germanic roots of many American names, this result
is not particularly surprising.

At the other extreme, consider doing the same with Chinese
and German names. The integratability score is as low as 0.24,
and predicts that the data sets should separate out into separate
clusters. As Figure 5 shows, this is exactly the case. The top
and bottom strips are almost complementary to each other,
indicating that most clusters contain mostly one kind or the
other, and rarely both. The shades are also deep, indicating
not only a difference, but a strong difference.
An intermediate example can be seen by integrating Amer-

ican and Russian names, which bear some, but not significant
resemblance. The integratability score here is 0.61, and as
Figure 6 shows, the top and bottom strips are not as distinct as
in the Chinese-German case, and neither are they as identical
as in the American-German case. Remember that the intensity
of the shading indicates probability mass, and in this case the
shading is weaker, indicating that even when there appears to
be differences, it is not as significant.

VIII. METHODOLOGY
The previous section discussed our main type-checking tools

and how they may be applied for schema match validation. In
this section we now discuss the details of our implementation.

A. Preparing The Data
We treat all data as strings, regardless of content. We

represent strings using q-gram distributions. For each string,
we extract all its q-grams, and construct a histogram, with the
entry for each q-gram recording its frequency. Using a large

Fig. 6. Integratability of US and RU names = 0.61

value of q seemingly allows us to capture more sophisticated
patterns in the data; however, since the number of potential
q-grams (the number of "dimensions") grows exponentially
with q, the effect of these (fewer number of) q-grams is
muted. Algorithms that manipulate these representations will
also perform much worse as q increases. We have found in
our experiments that setting q < 2 provides a good balance
between the efficiency of the computation and the accuracy of
the results. Thus, we use q-grams of length one and two.

Weighting the q-grams: In information retrieval, where
q-gram representations are most prevalent, individual terms
are weighted based on measures like term frequency (t.f) and
inverse document frequency (i.d.f). The primary purpose of
information retrieval systems is search, and so rare terms (with
large i.d.f) are important to reduce the size of search results.

In our setting, weighting schemes like i.d.f are not appro-
priate. Our goal is to determine whether two columns of data
can be integrated; therefore, q-grams that distinguish one set
of data from another are more important than q-grams that are
either rare or frequent.

To clarify this, consider integrating two columns of data
with the same number of items. A q-gram with no distinguish-
ing power will appear in roughly the same number of items in
each column. A q-gram with high distinguishing power will
occur mostly in one column or the other.

There are different ways of constructing a measure that
captures this idea. The approach we will use is as follows.
For a q-gram q, we compute the number of strings it appears
in within each column; call these frequencies fl, f2. Taking
the difference and normalizing by n, the number of items
in each column, we get the quantity p' = (f -f2)/n that
ranges between -1 and 1 (if the cardinalities are different,
we compute fl/n -f2/n2 instead). It will be convenient to
work with the range [0,1], so we shift and scale p', obtaining
p = (l + p')/2.

This new variable has a range of [0,1], and is 0 or 1
when the q-gram appears exclusively in every string in one
or the other columns. It takes the value 0.5 when the q-gram
appears equally often in both. We desire a function that is
symmetric around 0.5 and is maximized at the boundaries.
Any appropriately chosen convex function suffices; we will
use shifted negative entropy W(p) = 1 -H(p), where
H(p) = -p log p -(1 -p) log(- p). Once the frequency
counts are weighted using the above method, we normalize
the histograms, yielding a distribution for each string.

B. Computing Integratability

Once we have a collection of distributions, we employ
the soft clustering method first developed in [16]. In brief,
the algorithm fixes a quality-compression tradeoff parameter
3, augments the data with a background, and then runs the
iib algorithm developed by Tishby, Pereira and Bialek [20],
[21]. The method then removes the background, yielding a
soft clustering of the data. Computing integratability is now
straightforward; we apply the formula 1 from Section IV.

126

C. Substring Extraction

We first compute the relative frequencies (likelihoods) of
q-grams using the target column. Once this is done, substring
extraction from a string s proceeds in two steps. First, we must
determine the threshold that separates high q-grams from low,
and then we must find the longest substring consisting of high
q-grams alone.
We first sort the q-grams of s by their log-likelihood,

and compute the gap parameter g = 0.5(max -min) where
max, min are the maximum and minimum log-likelihood
values respectively. Then, we find a pair of consecutive q-

grams in the sorted order such that the difference between
their log likelihood is at least g. If such a pair exists, then the
lower likelihood marks the threshold between low and high.
We can now tag each position of s with a mark that indicates
whether the q-gram starting at this position is high or low,
and find the longest high substring. If no such pair exists, the
entire string is returned.

IX. EXPERIMENTS

We now present detailed experiments of our integratability
measure and its application on schema matching validation.
We will first describe the platform and the data sets, followed
by the experiments on our integratability measure. Lastly, we

will look at the effectiveness of this measure for validating
schema matchings.

A. Platform and Datasets

The machine we run our experiments on has a Intel(R)
Pentium(R) 4 2.40GHz CPU and 2GB of RAM. It runs Fedora
Core 5 with kernel version 2.6 and gcc version 4.1.1. In our

experiments, we have utilized three datasets:
Contact Data: This is the data set used in [16]. This

data set contains five columns identifying information with
different semantic type: email, id, ip, circuit-id and phone
number. Each individual column has a single type, i.e., the
email column is a set of email addresses.
Name Data: This data is drawn from a rank list at

acm. uva. es. People are associated with their country. We
selected some real names from this list, and grouped them
by their regions.
Book Data: This data set consists of book catalogs with

different schema [22]. Example attributes are title and price.

B. Validation of Integratability Measure

In this section, we will focus on validating our integratabil-
ity measure. We will provide examples whose semantic type
can be understood intuitively, and show that our measure in
fact matches with the intuition. We will first consider the
simplest case: both columns are simple (not compositional)
fields.

1) Integratability between two columns: First, we apply the
integratability measure on the contact dataset. Results are

shown in Table II.

First it is evident that the measure satisfies reflexivity;
every column is integratable with itself. The columns are

TABLE II

INTEGRATABILITY OF CO DATA

Column A
Column B Email ID ip circuitID phone
Email 1.00
ID 2.10e-09 1.00
ip 8.07e-10 1.17e-3 1.00

circuitID 8.23e- 10 7.66e-9 5.55e-8 1.00
phone 1.48e-09 0.222 0.152 1.23e-5 1.00

TABLE III
INTEGRATABILITY OF NAMES BETWEEN DIFFERENT GROUPS OF PEOPLE

quite distinct from each other, so this is reflected in the low
integratability scores for pairs. Notice that ID and phone have
a low integratability with each other, but it is not as low as the
other pairs. This is likely because many of the IDs are seven

digit numbers, similar to phone numbers.
In the name dataset, we grouped names from the same

region as a single column. For example, mainland Chinese
usually use the romanization of their Chinese names as their
names in the Latin system. Chinese people from Hong Kong or

Singapore will probably use the anglicization of their Chinese
names, with another English name as a prefix or suffix, like
Simon Cheung.
From Table III, we discovered that although Hong Kong

names are very integratable with mainland Chinese names

(and vice versa), Western names are more likely to integrate
with names from Hong Kong rather than names from mainland
China. This matches with our intuition that Hong Kong names

are a combination of Chinese names and English names, and
it is noteworthy that a purely information-theoretic approach
is able to capture this.

Investigating further the properties of this measure, the
example shown in Figure 7 is instructive. In this example, we

showed the barcodes obtained for the integratability of pairs
of name sets between Chinese, Hong Kong and American
names. Note that transitivity does not hold; although names

from China and America both integrate well with names from
Hong Kong, they do not integrate well with each other.

2) Validation of Substring Extraction: In this section, we

will validate our method of substring extraction by concatenat-
ing two columns and testing this heterogeneous column against
one of the two original columns (the corpus).

In the first example, given a heterogeneous column con-

taining concatenations of circuitID, ip address, email address
and phone number, e.g., "age c. 8 4 0 9 4 8. . at i 1 7 2 . 3 0.

127

Names from Integratability Integratability
Different Region LL with CN Names with HK Names
CN Names 1.00 0.997
HK Names 0.998 1.00
US Names 0.202 0.441
DE Names 0.212 0.480
RU Names 0.0922 0.264
ES Names 0.175 0.341

TABLE V

INTEGRATABILITY OF SUBSTRINGS BETWEEN TWO VERTICALLY

HETEROGENEOUS COLUMNS

(a) Mainland Chinese Names v.s. Hong Kong Names

(b) Mainland Chinese Name v.s. American Names

(c) Hong Kong Names v.s. American Names

Fig. 7. Barcodes for 3 Pairs of name data

TABLE IV
CN NAMES EXTRACTION FROM A HETEROGENEOUS COLUMN OF CN

AND US NAMES

136.3atzeni@dia.uniroma3.it913 780-3664",
"agec.681001..atil35.184.182.165hirata@cc
rl.sj.nec.com713-805-4233" and a set of email
addresses as the corpus, substrings like "atzeni@dia.
uniroma3.it", "hirata@ccrl.sj.nec.com" are

extracted, which shows our scheme correctly identified the
email addresses from the heterogeneous column.

In the second, and harder, scenario, we attempt to extract
Chinese names from strings concatenated from Chinese names

and western names. The result is shown in Table IV, and
the right column contains substrings extracted from the left
column. The text in italics in the left column of Table IV
is the original Chinese names which we used to construct the
concatenated string. We underline the incorrect portions of the
string extracted.

Firstly, notice that the string extracted is almost exactly
the same as the concatenated string, and in few incorrect
situations, only a few extra characters are extracted. It is
also worth noting that the purpose of substring extraction is
a subroutine to check integratability, so a perfect extraction
procedure, although desirable, is not critical for the entire
procedure to work correctly. Indeed, the integratability of the
extracted strings with the corpus is 0.92.

Column A Column B Integratability
CN Name US Name 0.241

CN Name-Email US Name-Email 0.850
CN Name-ID ID-US Name 0.716

TABLE VI
PAIR WISE INTEGRATABILITY OF TABLE B 1.KS C SV AND TABLE

BOOKs2.CSV

Title Author Listprice Price
Title 1.00 0.431 2.94e-12 3.14e-14

Author 0.446 1.00 5.17e-10 1.61e-11
Listprice 1.45e- 12 3.25e- 10 0.956 0.272
Price 3.34e-14 3.59e-11 0.313 0.910

3) Integrating two heterogeneous columns: An interesting
question that we did not fully address was how extraction of
substrings will work if both columns under consideration were

heterogeneous themselves. For example, we could concatenate
our "email" and "id" columns to create a new column "email-
id", which consists of strings concatenated from "email"
followed by "id". The columns obtained by such concatenation
are vertically heterogeneous.
One approach to deal with this case is to run two instances

of substring extraction. We first use the first column as a corpus

to extract the substrings from the second column. This will
give us a set of substrings which are most similar to the first
column. We then do the same thing again, but using the second
column as corpus to extract substrings from the first column.
Lastly, we put the two sets of substrings together and compute
their integrability.

Table V shows the integratability between two pairs of
columns: CN Name-Email against US Name-Email and CN
Name-ID against ID-US Name. The first row, the integrata-
bility between CN Name and US Name, provides a reference
point for the latter rows.

We see that in both cases, substring extraction from both
columns is moderately successful at extracting the relevant
common portions from both strings; the integratability scores

are much higher than the scores for the base (non-integratable)
pair of Chinese and American Names.

C. Schema Validation

Book data contains two tables with the same schema,
"booksl" and "books2". We list a pair-wise column integrata-
bility result in Table VI.
An interesting discovery we make from Table VI is that the

fields Price and ListPrice do not integrate.
Looking closer at some of the sample values for these

two entries, the last two digits of ListPrice are always
of the form .00 or . 95, e.g. 14.00, 15.95, 29.95,

128

Concatenated String | Substring Extracted
mingfei lichristopher johnston mingfei li

guo cegregory lee guo ce
shen yithomas grindinger shen yit

kai yudaniel pitts kai yu
wenyuan daijohny walker wenyuan daij

xin yangfengphoenix gabriel xin yanfeng
liu sunathan backman liu sun

Fig. 8. Barcodes for booksl.csv.Price vs

books2 .csv.Listprice

TABLE VII

PERFORMANCE: ALL TIME IN SECONDS

12 00, whereas the last two digits of P ri ce are more

varied, e.g. 107.10, 12.89, 15.63, 68.39. The two
attributes are listed differently, and therefore it is correct to
treat them as distinct, which our integratability measure allows
us to do. However, treating these fields as numeric fields, and
using (for example) distributions on the numerical values to
distinguish them is unlikely to work since the distribution on

prices is very similar to the distribution on list prices. We
note that when the Price field in one table is integrated
with its corresponding field in the other table, we get the high
integratability scores that we expect.

Figure 8 illustrates the bar code obtained when attempting
to integrate Price and ListPrice.

D. Performance

In this section, we evaluate the performance of the algorithm
by providing a detailed break down of the time required.
The running time is recorded while doing column matching
validation for the book data, listed in Table VII. We note that
in general, our algorithm scales linearly with the number of
individual matches to be validated; this should be contrasted
with the discovery problem, where one has to deal with a

combinatorial explosion of candidate matches.
Each experiment is run with 200 sampled rows of data from

each column. The main bottleneck is the time taken to perform
the soft clustering. This is an iterative algorithm that typically
runs for between 10-20 iterations. The field #q-grams in-
dicates the dimension of the resulting histograms once data
preparation is complete. Note that the histograms are usually
extremely sparse.

generic; however, it is also effective at capturing detailed
semantic structure in data.

Concrete domain-specific knowledge can help validation of
schema matchings greatly, and one interesting line of future
work would be to explore ways in which context can be
given to our generic method to exploit domain knowledge.
One example of this could be the use of more specific priors.
Integrating our approach into a larger schema identification
system like Clio [14] would also be quite interesting.

REFERENCES

[1] E. Rahm and P. A. Bernstein, "A survey of approaches to automatic
schema matching," VLDB Journal, vol. V10, pp. 334-350, 2001.

[2] A. Doan and A. Y. Halevy, "Semantic-integration research in the
database community," AI Mag., vol. 26, no. 1, pp. 83-94, 2005.

[3] J. Madhavan, P. A. Bernstein, and E. Rahm, "Generic schema matching
with cupid," in Proc. VLDB, 2001, pp. 49-58.

[4] D. W. Embley, L. Xu, and Y. Ding, "Automatic direct and indirect
schema mapping: experiences and lessons learned," SIGMOD Rec.,
vol. 33, no. 4, pp. 14-19, 2004.

[5] R. H. Warren and F. W. Tompa, "Multi-column substring matching for
database schema translation." in Proc. VLDB, 2006, pp. 331-342.

[6] A. Doan, P. Domingos, and A. Y. Halevy, "Reconciling schemas of
disparate data sources: a machine-learning approach," in Proc. SIGMOD,
2001, pp. 509-520.

[7] W.-S. Li and C. Clifton, "Semint: a tool for identifying attribute
correspondences in heterogeneous databases using neural networks,"
Data Knowl. Eng., vol. 33, no. 1, pp. 49-84, 2000.

[8] J. Berlin and A. Motro, "Autoplex: Automated discovery of content for
virtual databases," in Proc. CoopIS, 2001, pp. 108-122.

[9] J. Berlin and A. Motro, "Database schema matching using machine
learning with feature selection," in Proc. CAiSE, 2002.

[10] J. Kang and J. F. Naughton, "On schema matching with opaque column
names and data values," in Proc. SIGMOD, 2003, pp. 205-216.

[11] B. He, K. C.-C. Chang, and J. Han, "Discovering complex matchings
across web query interfaces: a correlation mining approach," in Proc.
KDD, 2004, pp. 148-157.

[12] J. Kang, D. Lee, and P. Mitra, "Identifying Value Mappings for Data
Integration: An Unsupervised Approach," in Proc. WISE, 2005.

[13] F. Naumann, C.-T. Ho, X. Tian, L. M. Haas, and N. Megiddo, "Attribute
classification using feature analysis." in Proc. ICDE, 2002, p. 271.

[14] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, "Data-driven
understanding and refinement of schema mappings," in Proc. SIGMOD,
2001, pp. 485-496.

[15] L. Chiticariu and W. C. Tan, "Debugging schema mappings with routes."
in Proc. VLDB, 2006, pp. 79-90.

[16] B. T. Dai, N. Koudas, B. C. Ooi, D. Srivastava, and S. Venkatasubra-
manian, "Rapid identification of column heterogenity," in Proc. IEEE
Intnl. Conf Data Mining, 2006.

[17] J. Lin, "Divergence measures based on the shannon entropy," IEEE
Trans. on Information Theory, vol. 37, no. 1, pp. 145-151, 1991.

[18] T. M. Cover and J. A. Thomas, Elements of information theory. New
York, NY, USA: Wiley-Interscience, 1991.

[19] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. Morgan Kaufmann, 2005.

[20] N. Tishby, F. Pereira, and W. Bialek, "The information bottleneck
method," in Proc. 37-th Annual Allerton Conference on Communication,
Control and Computing, 1999, pp. 368-377.

[21] N. Slonim, "The information bottleneck: Theory and applications," Ph.D.
dissertation, The Hebrew University, 2003.

[22] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster, "Putting context
into schema matching." in VLDB, 2006, pp. 307-318.

X. CONCLUSIONS

In this paper, we introduced the idea of validating schema
matchings by type, and developed a set of tools for validating
different types of schema matchings using type information.
Our method uses information-theoretic methods and is thus

129

Data Preparation #q-grams Clustering Time
Columns per iteration

Title-Author 0.61 722 0.143
Publisher-Author 0.32 584 0.160

Price-ISBN 0.08 140 0.0266
Category-Quantity 0.19 474 0.192
Rating-Listprice 0.05 62 0.0446

