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Abstract Due to the ever-growing amount of information available on Web shops, it
has become increasingly difficult to get an overview of Web-based product informa-
tion. There are clear indications that better search capabilities, such as the exploita-
tion of annotated data, are needed to keep online shopping transparent for the user.
For example, annotations can help present information from multiple sources in a
uniform manner. This paper proposes an algorithm that can autonomously map het-
erogeneous product taxonomies for Web shop data integration purposes. The pro-
posed approach uses word sense disambiguation techniques, approximate lexical
matching, and a mechanism that deals with composite categories. Our algorithm’s
performance on three real-life datasets was compared favourably against two other
state-of-the-art taxonomy mapping algorithms. The experiments show that our al-
gorithm performs at least twice as good compared to the other algorithms w.r.t.
precision and F-measure.
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1 Introduction

The interchange of information has become much easier with the advent of the Web.
This ease of sharing information has lead to a worldwide surge in activity on the
Web. According to a recent study [13], the Web is doubling in size roughly every
five years. The ever-growing amount of information stored on the Web poses sev-
eral problems. Due to the vast amount of Web sites, it is becoming increasingly
difficult to get a proper overview of all the relevant Web information. While tra-
ditional search engines help to index the Web, they do not understand the actual
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information on Web pages. This is due to the fact that most Web pages are geared
towards human-readability, rather than machine-understandability. Differently than
machines, humans are able to extract the meaning of words from the context of Web
pages, but a machine cannot do so. This is particularly a problem when searching
using words that can have multiple senses, like ‘keyboard’, which can either be a
computer device or musical instrument. The search engine will include every page
that contains the search term in the search results, regardless of whether it is actually
relevant or not.

A Web domain in which this search problem manifests itself is e-commerce.
There is virtually an endless amount of products available and just as many Web
shops from which you could order them. There are clear indications that better
search functionalities are needed in order to keep online shopping transparent for
the user. A study on online shopping in the USA, performed in [4], indicates that
more than half of the respondents had encountered difficulties while shopping on-
line. Information was often found to be lacking, contradicting, or overloading the
user. This emphasises the need for aggregating the information found in those Web
shops and presenting it in a uniform way.

While existing price comparison sites, such as [12], already show aggregated
information, they are often restricted in their use. Most price comparison sites only
include regional price information and therefore compare only a limited amount of
Web shops [14]. Furthermore, in order to take part in the comparison, Web shops
often have to take the initiative and provide their data in a specific format that is
defined by each price comparison site. This can be laborious because there is no
standardised semantic format for exchanging information. In other words, sharing
product information on the Web requires a significant amount of manual work.

A solution to the search problems encountered on the Web would be to annotate
the data found on Web pages using standardized ontologies. In this way the data
becomes fully understandable for computers as well. For e-commerce, there is al-
ready a standard ontology emerging, called GoodRelations [3]. Unfortunately, not
that many Web pages have included a semantic description for their content so far.
Furthermore, even when a semantic description is available, not every Web page
might use the same ontology. That is why there is a need for algorithms that are able
to map product ontologies to each other in a (semi-)automatic way.

In this paper we propose an algorithm for mapping product taxonomies. Tax-
onomies are the backbone of an ontology, as they contain the type-of relations. Our
algorithm is based on the approach presented by Park & Kim [11]. The proposed
algorithm can autonomously map heterogeneous product taxonomies from multiple
sources to each other. Similar to the Park & Kim algorithm, our algorithm employs
word sense disambiguation techniques to find the correct sense of a term using the
semantic lexicon WordNet [9]. Differently than the Park & Kim algorithm, our al-
gorithm considers for lexical matching various lexical similarity measures, like the
Jaccard index and the Levenshtein distance. Our proposed algorithm also exploits
the hierarchical structure of taxonomies by taking into account the distance between
each candidate path and already existing mappings. In addition, a different similarity
aggregation function is used to make the algorithm more robust against outliers.
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2 Related work

The algorithm we propose in this paper is based on the approach presented in [11],
where the focus is more on product taxonomy mapping in particular, rather than
ontology mapping. Due to this focus, it manages to achieve a higher recall than
more general approaches for ontologies when mapping product taxonomies [11].
These approaches only map the classes when the similarity between these is very
high. However, the design of product taxonomies is a subjective task, which makes
their mapping a loosely-defined domain. Furthermore, the mapping of product tax-
onomies is aimed at reducing search failures when shopping online. Thus, in order
not to lose potentially user-desired products from the Web shop presentation, it is
better to map more product classes, even when classes are not very similar.

While the algorithm presented in [11] is suited for product taxonomy mapping,
we found aspects that can be significantly improved. For instance, the algorithm
does not consider the existence of composite categories, which are categories that
consist of multiple concepts, e.g., ‘Movies, Music & Games’. Mapping these cate-
gories often fails, because the word sense disambiguation process is not applicable
for these categories. This is due to the fact that the algorithm is unable to find the
senses of the complete name in WordNet. Furthermore, the algorithm has difficul-
ties disambiguating categories with short paths to the root, because of the lack of
information content. This could be improved by also considering children and sib-
lings of a category node when disambiguating. Another drawback of the algorithm
is its bias towards mapping to short paths, which are sometimes proven to be too
general.

Another approach for taxonomy mapping is Anchor-PROMPT, available in the
PROMPT Suite [10]. This algorithm provides a (semi-) automatic ontology mapping
process. As the performance of Anchor-PROMPT largely depends on the accuracy
of the initial mappings that are provided (a requirement of the algorithm), it is not
suitable for fully automatic ontology mapping [10]. Because the algorithm uses rel-
atively simple lexical matching techniques to find the initial mappings, it would
be better to manually create the initial mappings instead. This can become an issue
when having to map many large product taxonomies. We have chosen to include this
algorithm in our evaluation in order to investigate how a general ontology mapping
algorithm performs in the context of product taxonomy mapping.

There are several other approaches that, despite the fact that their focus is on
ontology mapping in general, are interesting to mention. The authors of [8] propose
an algorithm to semi-automatically map schemas, using an iterative fixpoint com-
putation, which they dubbed similarity flooding. In [6], the authors propose a semi-
automatic ontology mapping tool, called Lexicon-based Ontology Mapping (LOM).
The Quick Ontology Mapping (QOM) approach, presented in [2], is designed as a
trade-off between the quality of a mapping and the speed with which a mapping can
be performed. In [1], the authors present a system of Combination of Matching Al-
gorithms (COMA++), capable of performing both schema and ontology mapping.
Cupid [7] is a general-purpose schema matching algorithm. It is a hybrid matcher
that exploits both lexical and semantic similarities between elements.
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3 Algorithm

Before going into the algorithm details, we first present a high level overview of
the algorithm, indicating the differences between our approach and the approach of
Park & Kim. Our algorithm requires two inputs. The first input is a category and its
path in the source taxonomy. The second input is the target taxonomy of categories
to which the source category has to be mapped. Our algorithm starts with the pre-
processing of the category name. It splits the name on ampersands, commas, and
the word ‘and’, which results in a set containing multiple terms, called the split term
set. This step is performed to enhance the word sense disambiguation process for
categories that consist of multiple concepts, which are called composite categories.

The first major process (the same as in the Park & Kim approach) is the word
sense disambiguation process. This process tries to determine the correct sense of
the term in the leaf node of the source taxonomy by finding the term in WordNet (a
semantic lexicon) [9]. The correct sense of the term can be found by comparing the
hyponyms of each sense found in WordNet with all the ancestor nodes in the path
of the source taxonomy. A path is a list of nodes from the root to the current node.
Our algorithm repeats this process for each term in the split term set. The result of
this process is the extended term set, which contains the original term and also its
synonyms (if the algorithm was able to determine the correct sense of the term).
Because our algorithm splits the original category name, we define the extended
split term set as the set of all extended term sets (one for each split term).

Using the extended split term set that is obtained from the word sense disam-
biguation process, the algorithm analyses the target taxonomy and determines which
paths are considered to be candidate paths for the mapping of the path from the
source taxonomy. It does that by searching for paths that end with leafs that contain
at least half of the terms in the extended (split) term set.

In order to determine which candidate path is the best path to map to, both algo-
rithms compute the co-occurrence and order-consistency similarities for each path.
The co-occurrence expresses the level of overlap between the source taxonomy path
and one of the candidate target paths, while disregarding the hierarchy. The order-
consistency is the ratio of common nodes (nodes that occur in both the source path
and the candidate path) that appear in the candidate path according to the hierarchi-
cal order in the source path. Our algorithm adds a third measure, the parent mapping
distance, which is the normalised distance in the target taxonomy between a candi-
date path and the path to which the parent in the source path was mapped to.

Using the similarity measures obtained in the previous step, the algorithms deter-
mine the best path to map the source path to. While Park & Kim use the arithmetic
mean of the co-occurrence and order-consistency to obtain the overall similarity,
our algorithm uses the harmonic mean (including the parent mapping distance). The
path with the highest overall similarity is selected as the path to map to, assuming
that the overall similarity is higher than a configurable threshold. If it fails to reach
this threshold, or if no candidate paths were found, the algorithm of Park & Kim will
not map the source path for a given input category. In this situation, our algorithm
will map the source path to the same path in the target taxonomy to which its parent
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is mapped. If the parent of the source path was not mapped, our algorithm will also
not map the source path.

Word Sense Disambiguation. As discussed previously, our algorithm splits
composite categories and the split term set contains the individual terms that re-
sult from this process. This means that rather than using the entire category term for
the word sense disambiguation process, like the algorithm of Park & Kim does, it
will perform this process separately for each term in the split term set. Other than
that, the implementation of this part of the algorithm does not differ from the im-
plementation used by Park & Kim. Both algorithms enhance their ability to perform
a correct mapping by first trying to determine the correct sense of a category term
from the source taxonomy. This is useful, because it helps to identify semantically
similar categories from different taxonomies, even when they are not lexically sim-
ilar. For instance, if the path from the source taxonomy is ‘Computers/Notebook’,
we can deduce that the correct sense would be a laptop in this case, rather than a
notepad. We could then include the word ‘laptop’ in the search terms that are used
for identifying candidate paths in the target taxonomy. This might yield better can-
didate paths than only searching using the term ‘notebook’.

In order to find the meaning that fits most closely to the source category that
needs to be mapped, the algorithm identifies matches between an upper category,
i.e., an ancestor of the current node from the source taxonomy, and a sense hierar-
chy obtained from WordNet. This is done by finding the set of matching lemmas
between an upper category in the source taxonomy and a sense hierarchy defined
by hypernym relations. By comparing each upper category from the source taxon-
omy with all sense hierarchy nodes that are in the set of matching lemmas, we can
measure how well each upper category of the source taxonomy fits to each sense
hierarchy. As the information content per node in a sense hierarchy increases when
a node is closer to the leaf, we aim to find the match with the shortest distance to the
sense hierarchy leaf. The similarity score increases when this distance is shorter, it
is defined as:

hyperProximity(t,S) =


1

min
x∈C

(dist(x,`)) if C 6= /0

0 if C = /0

where t is an upper category to be matched, C is the set of matching lemmas, and
` is the leaf of the sense hierarchy S. The dist() function computes the distance
between each matching lemma x (of a synonym of a hypernym) and the leaf node `
in the sense hierarchy. The distance is given by the number of edges that are being
traversed when navigating from the node with the matching lemma to the leaf node
in the sense hierarchy.

After we have determined the hyperproximity between each upper category from
a source path and a particular sense hierarchy from WordNet, we compute the over-
all similarity between an entire source category path and a sense hierarchy of the
(split) category term. This is done by computing the average hyperproximity be-
tween all upper categories of a source path and one sense hierarchy from WordNet.
Park & Kim use a different approach here, their algorithm divides the hyperprox-
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imities of each upper category by the length of the entire source category path,
including the leaf node. This does not lead to a proper average, as the Park & Kim
algorithm does not compute the hyperproximity between the leaf node and the sense
hierarchy. Once the path-proximity between the source path and each of the possible
senses of the source category term has been computed, we can determine which of
the found senses fits best. This is done by selecting the sense hierarchy that has the
highest average path proximity.

Candidate Path Identification. The resulting extended (split) term set of the
word sense disambiguation process is used to identify candidate paths in the target
taxonomy. A candidate path is a path in the target taxonomy that is marked by the
algorithm as a potential target path to map the current source category to. In order
to find the candidate paths, the algorithms compare the terms in the extended (split)
term set with the paths in the target taxonomy.

The algorithm proposed by Park & Kim first compares the root node of the target
taxonomy with the extended term set. If none of the terms in the extended term set
is a substring of the currently examined category in the target taxonomy, the algo-
rithm considers the children of the current category. Otherwise, if at least one of the
terms in the extended term set is a substring of the currently examined category, that
category is marked as a candidate path. In addition, the algorithm will no longer
consider the children of that path as a potential candidate. The algorithm of Park &
Kim assumes that if a more general category already matches the term, it is likely to
be a better candidate path than a longer (more specific) path. However, this does not
always hold true, as there are many composite categories in product taxonomies that
split the multiple concepts in subcategories one level lower. For instance, the com-
posite category ‘Music, Movies and Games’ in the Amazon.com product taxonomy
has a subcategory called ‘Music’. Therefore, differently than the algorithm of Park
& Kim, our algorithm continues to search the entire target taxonomy for candidate
paths, even when an ancestor of a path was already marked as a candidate path.

As our algorithm splits the original category name if it is a composite category, it
could occur that multiple extended term sets have to be compared with the category
names in the target taxonomy. This means that our algorithm has to perform the
matching for each extended term set in its extended split term set. This matching
process returns a true/false value for each extended term set: true if one of terms is
a substring of the currently examined category term, and false if none of the terms
is a substring. If at least half of the boolean values is true, we consider the path of
the current target category as a candidate path.

Aggregated Path Similarity Score. Once all the candidate paths in the target
taxonomy have been identified, we need to determine which one of them fits best
to the source paths. In order to calculate the measure of fit, we need to calculate an
aggregated similarity score for each candidate path. In the algorithm proposed by
Park & Kim, the aggregated score is composed of two similarity measures, the co-
occurrence and the order-consistency. Our algorithm adds an extra measure, called
the parent mapping similarity. Furthermore, it extends the co-occurrence measure
by splitting terms and using the extended (split) term set of the correct sense. The
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algorithm proposed by Park & Kim uses only the original term or the synonyms of
all the senses for the original term for calculating these similarity measures.

The co-occurrence is a similarity that measures how well each candidate path fits
to the source category path that is to be mapped. It computes the overlap between
two category paths, while disregarding the order of nodes in each path. This is done
by applying a lexical matching function that is based on the average of Levenshtein
and Jaccard similarities to each pair of categories from the source and candidate
paths. The co-occurrence is defined as:

coOccurrence(Psrc,Ptarg) =

(
∑

t∈Ptarg

maxSim(t,Psrc)

|Ptarg|

)
·

(
∑

t∈Psrc

maxSim(t,Ptarg)

|Psrc|

)

where Psrc and Ptarg are the nodes from the current source path and candidate path,
respectively. The maxSim() function computes the maximum similarity between
a single category name, either from the source or candidate path, and the entire path
from the other taxonomy. It compares the single category name with all the nodes in
the other path, using extended (split) term sets, obtained in the same way as in the
candidate path selection.

The co-occurrence is useful for computing the lexical similarity between the
source path and a candidate path from the target taxonomy. However, it disregards
the order in which these nodes occur in the path. Therefore, we need an additional
measure, which takes the order into account. Park & Kim define this measure as
the order-consistency. The measure checks whether the common nodes between the
paths appear in the same order. First of all, a list of matching nodes, called the com-
mon node list, between the two paths has to be obtained. The function common()
adds a node to the list, if it can match the category term of a node, or one of the
synonyms of the category term, with a node, or one of its synonyms, from the other
path. In this function, all found senses from WordNet for the terms are taken into
consideration. The resulting common node list is then used by precRel() to cre-
ate binary node associations. These binary node associations denote a precedence
relation between two nodes, which means that the first node occurs before the sec-
ond node in the hierarchy of the source path. For every element in the common node
list, pairs of node names from the source path are created. The consistent()
function uses the precedence relations to check whether these precedence relations
between two nodes also hold true for the candidate path, i.e., whether the two cat-
egories in the candidate path occur in the same order as the same two categories
in the source path. If a precedence relation holds true also for the candidate path,
this function returns the value 1, otherwise it returns 0. Using the aforementioned
functions, the function for the order-consistency is given by:

orderConsistency(Psrc,Ptarg) = ∑
r∈precRel(C,Psrc)

consistent(r,Ptarg)(length(C)
2

)
where Psrc and Ptarg are the nodes from the current source path and candidate path,
respectively, and C is common(Psrc,Ptarg). The denominator in the above fraction
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is the number of possible combinations of two nodes, which can be obtained from
the common nodes list. Therefore, the order-consistency is the average number of
precedence relations from the source path that are consistent with the candidate path.

The co-occurrence and the order-consistency both measure the similarity be-
tween the source path and a candidate path, computing the degree of category over-
lap and hierarchical order similarity, respectively. However, we can also exploit our
knowledge of how the parent of the source node was mapped in order to find the
best candidate path. As the current source node is obviously closely related to its
parent, there is a considerable chance that the best candidate path is closely related
to the target category to which the parent of the source node was mapped as well.
That is why we include a third measure, called the parent mapping distance, which
is the distance (difference) in the target taxonomy between a candidate path and the
path to which the parent in the source path was mapped to.

Once the various similarity scores have been calculated, we can compute the ag-
gregated similarity score for each candidate path. The algorithm proposed by Park &
Kim computes the arithmetic mean of the co-occurrence and the order-consistency.
However, the arithmetic mean is not very robust to outliers. The harmonic mean is
more appropriate for aggregating the similarities, as it has a bias towards very low
values, mitigating the impact of large outliers. Using the overall similarity measures
for each candidate path, we can determine which one of the candidates is the best.
We use a threshold to determine the minimal score needed to perform a mapping.

4 Evaluation

This section compares the performance of our algorithm against the performance of
the algorithm by [11] and Anchor-PROMPT [10]. We evaluate the performance of
the algorithms using three real-life datasets. The largest dataset, containing over
44,000 categories, was obtained from the Open Directory Project (ODP), avail-
able at http://dmoz.org. This dataset is relatively large, which makes it interesting
for evaluation purposes, as it shows how well the algorithms scale when mapping
large product taxonomies. The second dataset was obtained from Amazon.com, the
largest online retailer in the USA. We have selected over 2,500 different categories
in total with paths that have a maximum depth of five levels. The last dataset was
obtained from Overstock.com, a large online retailer from the USA. It contained
just over 1,000 categories with a maximum depth of four levels and it has a compar-
atively broad and flat taxonomy structure with many composite categories, which
makes word sense disambiguation difficult.

Table 1 shows the average results of the six mappings per algorithm. As one
can notice, our algorithm performs better on both recall and the F1-measure than
Anchor-PROMPT and the algorithm of Park & Kim. The recall has increased
from 16.69% for Anchor-PROMPT and 25.19% for Park & Kim to 83.66% for
our algorithm. Despite the clear improvement in recall, our algorithm actually per-
forms slightly worse on precision than the algorithm of Park & Kim. The precision
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dropped from 47.77% to 38.28%. The high recall of our algorithm can be attributed
to the fact that we are better able to deal with composite categories. The observed
improvement in recall is also due to the usage of an approximate lexical matching
function instead of an exact one for order consistency. As we perform more map-
pings to target categories, our precision declines slightly compared to that of the
algorithm of Park & Kim.

Table 1 Comparison of average results per algorithm

Algorithm Precision Recall F1-measure Computation time

Anchor-PROMPT 28.93% 16.69% 20.75% 0.47 s
Park & Kim 47.77% 25.19% 32.52% 4.99 s
Our algorithm 38.28% 83.66% 52.31% 20.71 s

Anchor-PROMPT maps more conservatively due to the fact that it is geared to-
wards ontology mapping in general. Making classification mistakes in product tax-
onomy mapping is less severe than in most ontology mapping problems, because
in an e-commerce domain it is considered more important to map many categories
with some imprecision rather than only mapping a few categories with high pre-
cision. This is also reflected by the fact that the optimal thresholds for both our
algorithm and the algorithm of Park & Kim were found to be very low. The av-
erage optimal similarity threshold, which determines whether a mapping is per-
formed, is 0.025 for Park & Kim and 0.183 for our algorithm. In order to obtain
the optimal thresholds, we have used a subset set for each mapping data set. We
can conclude from the results that algorithms that are specifically tailored to map-
ping product taxonomies perform better than ontology mapping algorithms (such as
Anchor-PROMPT) within this domain.

5 Conclusion

This paper proposes an algorithm suitable for automated product taxonomy map-
ping in an e-commerce environment. Our proposed algorithm takes into account the
domain-specific characteristics of product taxonomies, like the existence of com-
posite categories and the syntactical variations in category names. The algorithm
we propose is based on the algorithm of Park & Kim [11]. Similar to the Park &
Kim approach, we employ word sense disambiguation techniques in order to find
the correct sense of a term. Differently than the Park & Kim algorithm, we consider
various lexical similarity measures for lexical matching, like the Jaccard index and
the Levenshtein distance. Furthermore, our algorithm exploits the hierarchical struc-
ture of taxonomies and uses a different similarity aggregation function, in order to
make the algorithm more robust against outliers.
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We have shown that our algorithm performs better than other approaches when
mapping product taxonomies. Its performance on mapping three real-life datasets
was compared favourably with that of Anchor-PROMPT [10] and the algorithm
proposed by [11]. It manages to significantly increase both the recall and the F1-
measure of the mappings. We have also argued that recall is more important than
precision in the context of online shopping.

For future work, we would like to employ a more advanced word sense disam-
biguation technique, such as the one proposed by [5]. It would also make sense to
consider using word category disambiguation, also known as part-of-speech tag-
ging, for the words found in a category name. Often the meaning changes when the
part-of-speech is different. For example, ‘Machine Embroidery’ and ‘Embroidery
Machines’, referring to machine-made embroidery and a machine which makes em-
broidery, respectively. By differentiating between adjectives and nouns, it is possible
to identify these two meanings.
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