
A Flexible System for Ontology Matching

Ngo DuyHoa, Zohra Bellahsene, Remi Coletta

LIRMM, Univ. Montpellier 2
34392 Montpellier, France
�rstname.name@lirmm.fr

Abstract. Most of solutions provided by current ontology matching
tools lack �exibility and extensibility namely for adding new matchers
and dealing with users' requirements. In this paper, we present a system
YAM++, which supports self-con�guration, �exibility and extensibility
in combining individual matchers. Moreover, it is more human-centered
approach since it allows users to express their preference between pre-
cision and recall. A set of experiments over OAEI benchmark dataset
demonstrate its e�ectiveness and e�ciency in terms of quality of match-
ing and �exibility of the system.
Keywords: Ontology matching, data mining, �exibility, self-con�guration,

cost-sensitive classi�cation.

1 Introduction

Ontology matching is needed in many application domains. For example, the
possibility of content-based query of the semantic Web depends only on the
capacity of the system to �nd correspondences (mappings) between ontologies
of the related information sources. Many diverse solutions of matching have been
proposed so far; however, there is no integrated solution that is a clear success,
which is robust enough to and �exible be the basis for future development, and
which is usable by non expert users.

In this paper, we present our system YAM++, which supports self-con�guration,
�exibility and extensibility in combining individual matchers. To demonstrate
the important of the �exibility in terms of system extensibility and user pref-
erence, let's us introduce two scenarios that frequently arise when people study
schema and ontology matching.

In the �rst scenario, researchers and developers of a matching system usually
have to supplement new invented similarity metrics or update existing metrics
with the new ones. According to [10], similarity metrics are also known as in-
dividual matchers. In both situations, developers must estimate the degree of
contribution of these metrics and then �nd a suitable model to combine them.
The estimation and combination models are normally tested carefully on exist-
ing �gold standard� datasets �rst, before applying them to real scenarios. In that
case, a �exible system will help them to automatically deal with new metrics.

In the second scenario, imagine that users run a matching system to �nd all
mapping pairs of entities between two ontologies. A matching system, generally,

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1

Author manuscript, published in "CAISE'11: International Conference on Advanced Information Systems Engineering, London : United
Kingdom (2011)"

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00639705/fr/
http://hal.archives-ouvertes.fr


outputs a list of candidate mappings and corresponding con�dent values. Users
then must verify these mappings in order to remove incorrect ones. This process
will not take much time because number of the suspect mappings is limited. Next,
users need to �nd missing mappings which matching system did not discover.
This process is very time consuming because it will be done manually on a huge
number of candidate mappings. The manual e�ort of this phase is called post-
match e�ort. Users may spend many hours or even few days to �nish this work.
Therefore, users desire to have a way to improve number of correct mappings in
order to reduce post-match e�ort.

Based on these scenarios, the motivation of our system can be described
as follows: Giving two ontologies represented in some ontology languages (N3,
RDF, OWL, etc.), �nd a �exible approach to combine individual matchers with
the following features: (i) achieving high matching quality result (precision, re-
call and f-measure), (ii) system's self-con�guration, (iii) system's extensibility,
(iv) generating a dedicated matcher according to the user's preference between
precision and recall.

The remainder of this paper is organized as follows: In section 2, we describe
our ontology matching system in detail. In Section 3, we present the results of
experiments performed to highlight the main interesting features of our ontology
matching tool. Section 4 contains the related work. Finally, Section 5 contains
concluding remark about our system.

2 YAM++ Ontology Matching System

Our approach has been implemented in YAM++ - (not) Yet Another Matcher
system for ontology matching. It follows the same approach used in YAM schema
matching system [2]. However, the YAM++ aims to work with ontology match-
ing, which is semantically richer than XML schema. For this purpose, we added
new features such as:

� New similarity metrics working with di�erent features (e.g. name, label, com-
ments, relations) of ontologies' entities.

� New dictionary metrics based on di�erent algorithms.
� New metrics based on information retrieval technique calculate similarity
score between context and descriptive information of entities.

� Graphical user interface for setting parameters, displaying and verifying dis-
covered mappings returned from system.

The main components of YAM++ system are depicted in Figure 1. It only
requires as input, the set of ontologies to be matched. However, the user can also
provide additional inputs, i.e., some preferences between precision and recall.

The Knowledge Base is a system repository, containing library of similar-
ity metrics and library of learning models. It also stores list of gold standard
datasets, which is a pair of ontologies with expert mappings between some of
their entities built by domain experts.

74 Pre-proceedings of CAISE'11 Forum

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



Fig. 1. YAM++ system architecture

The Data Generation module transforms gold standard datasets and in-
put ontologies to learning (including training and testing) and unclassi�ed data
respectively. The idea is that each pair of entities (ei, ej) becomes a machine
learning instance, which its features are the similarity score calculated by sim-
ilarity metrics on (ei, ej). In training and testing data, the class of instances is
determined by the con�dence value of the corresponding pair (ei, ej) in the ex-
pert mappings set. For unclassi�ed data, the class of instances is set to unknown
value.

TheTrainingmodule �nds the optimal con�guration for each learning model
according to training data passed from Data Generation module. Besides, it
can also take a user preference for either Precision or Recall in training process
to generate classi�cation models that favor this preference. The con�guration
process is automatic and transparent to users. The average performances (Pre-
cision, Recall, F-Measure) of all learning models achieved from running 10-fold
cross validation and di�erent testing data are temporarily saved for comparison
purpose.

The Selection module by default will select a classi�cation model, whose
the obtained average F-Measure is highest. If user provides a preference between
Precision and Recall, a classi�cation model, which obtains the best result corre-
sponding to this preference, is selected for next stage. In this paper, we call it
dedicated matcher or dedicated model.

In the Classi�cation module, a dedicated matcher predicts each instance
in unclassi�ed data by a predicted value. If the classi�cation model is nominal,
the predicted value is TRUE or FALSE, which means two entities corresponding
with classi�ed instance are matched or not.

Finally, these mappings are displayed in graphical user interface. Users can
judge a mapping whether it is correct or not by their knowledge of ontologies'

A Flexible System for Ontology Matching 75

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



domain. Users also can modify, remove incorrect mappings or add new mappings
with the help of command operations appeared in system's menu (see Figure 2).

Fig. 2. User interface for mappings visualization

3 Experiments

In this section, we present the capabilities of our system using two experiments:

1. We show the �exibility and extensibility of our system in term of integrating
new similarity metrics automatically and transparently to users.

2. We show another ability of generating a dedicated matcher based on the
user's preference (promoting recall).

3.1 Experiment 1: Flexibility and Extensibility

For demonstration purpose, we run two scenarios and compare their performance
quality.

� In the �rst scenario, we use a set of string metrics as individual matchers
to calculate similarity value between entities based on entities' names and
labels. These metrics are taken from open source code library SecondString1,
SimMetric2. These metrics are Levenstein, SmithWaterman, JaroWikler, Stoi-
los, QgramDistance, MongeEklan and Level2 metrics.

1 http://secondstring.sourceforge.net/
2 http://sourceforge.net/projects/simmetrics/

76 Pre-proceedings of CAISE'11 Forum

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



� In the second scenario, we add metrics working with dictionary WordNet3

to exploit semantic features and metrics working with entities' description.
We have implemented Lin and WuPalmer[7] algorithm for dictionary met-
rics. For comparing descriptive information, we construct a text corpus for
each entity. Entity's corpus consists of its meta-data (name, labels, com-
ments), meta-data of its related entities (sub-concepts, sub-properties, re-
stricted properties, range). A Vector Space Model is constructed from these
copora [8]. By using TF*IDF algorithm for term weighting, each corpus is
transformed to a feature vector. The similarity score of two entities is calcu-
lated by cosine similarity of their feature vectors.

� In both scenarios we train di�erent learning models such as: tree-based
(J48, CART, ADTree, NBTree), probability-based (NaiveBayes, BayesNet),
function-based (SMO, LibSVM, Logistic, MultiLayerPerceptron), instance-
based (IBk, NNge, VFI). These models are taken from open source Weka4

library. The gold standard datasets are taken from OAEI5 and I3CON6

repositories. In both scenarios, we do not set preference between Precision
and Recall, so the criterion for selection is maximum F-Measure. The win-
ner model after running selection process in both cases is DecisionTree J48
model. It means that the dedicated models used in Classi�cation module are
a trained J48 in both the scenarios.

� For comparison purpose, we run matching on set of datasets of OAEI 2009:
{#104, #203, #204, #205, #206, #201, #201-2, #201-4, #201-6,

#201-8}.

The observations from Figure 3 are:

� On datasets #104, #203 and #204, both scenarios have the same F-
Measure (≈ 1.0). This is because the linguistic information of these test
ontologies is highly similar to with that of the reference ontology. In fact,
entities' names of these ontologies are identical or are modi�ed by some nam-
ing conventions. Therefore, adding the new metrics do not have a signi�cant
impact on the result.

� On datasets #205 and #206 entities' names in test ontologies are re-
placed by synonym words or are translated in another language. Thank to
using metrics based on dictionary and descriptive information, the achieved
average F-Measure is increased 159% from the �rst (0.36) to the second
scenario (0.93).

� On datasets #201, #201-2, #201-4, #201-6 and #201-8, entities'
names in test ontologies are replaced by random sequence symbols with
100%, 20%, 40%, 60% and 80% respectively. However, entities are also
described by labels and comments, so the achieved average F-Measure is
increased 86% from the �rst (0.52) to the second scenario (0.97).

3 http://wordnet.princeton.edu
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://oaei.ontologymatching.org/2009/
6 http://www.atl.lmco.com/projects/ontology/i3con.html

A Flexible System for Ontology Matching 77

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



Fig. 3. Comparison on F-Measure of all datasets in the �rst and the second scenarios

The most interesting feature to note is that the process of recon�guration system
with new metrics is totally automatic and transparent to the users.

3.2 Experiment 2: Promoting Recall

Traditionally, the measure used to compute performance quality of matching
tools, is the F-Measure: a combination of Precision (the ratio of correctly found
correspondences (a.k.a true positive) over the total number of returned corre-
spondences [5]) and Recall (the ratio of correctly found correspondences over
the total number of expected correspondences [5]), in which precision and re-
call have the same weight. F-Measure makes sense when using matching tool as
black box, without any user validation. But, most of the time, the user have to
perform some post-match e�ort in order to discard some irrelevant and discover
the missing mappings. In this experiment, we demonstrate the impact of user
preference between Precision and Recall on post-match e�ort.

Technically, most classi�cation models su�er from two errors during classi-
fying: i) discovering an irrelevant correspondence (a.k.a. false positive) and ii)
missing a relevant correspondence (a.k.a. false negative). The �rst error decreases
precision while the second one decreases recall. In order to get better result in
term of recall, we need to set the cost on false negative error higher than that
on false positive error. This is a well-known issue called Cost-Sensitive Learning
in Data Mining [4].

In order to deal with cost-sensitive learning, we use MetaCost and Cost-
SensitiveClassi�cation algorithms [11]. These algorithms belong to meta-learner
class. They make a wrapper on base learning models in such a way that learning
models e�ectively minimize cost . The preference between Precision and Recall
is expressed by a proportion of the cost on false negative and the cost on false
positive.

78 Pre-proceedings of CAISE'11 Forum

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



We perform our experiments with di�erent proportion values, on the real
datasets in OAEI 2009: {#301, #302, #303, #304}. The base learning mod-
els, the list of similarity metrics and training data are the same as described in
the second scenario in the �rst experiment.

proportion = 1 proportion = 5 proportion = 10 proportion ≥ 15

Total True Positive 122 127 133 133

Total False Positive 40 61 83 97

Total Undiscovered 19 14 8 8

Table 1. The e�ect of promoting Recall

For each proportion value, one dedicated matcher is generated. The observa-
tions from Table 1 are:

� By increasing the proportion value, the total of candidate mappings discov-
ered as True Positive is increased. This advantage helps users to reduce time
for discovering missing mappings.

� When the proportion is equal to 10, the total number of true positive map-
pings is maximum. After that, only the total number of false positive in-
creases. This is a disadvantage, because users must to remove more irrelevant
mappings.

� Notice that whatever the value we set for proportion, it always remains some
matches we are not able to discover automatically.

As an example, when proportion is set to 10, the dedicated matcher discovers 11
(133 - 122) additional true positives, but 43 (83 - 40) additional false positives in
comparison with the default matcher. In fact, the e�ort for manually removing
an incorrect mapping is much less than the one for discovering a new correct
mapping among 9949 pairs (total candidate mappings of 4 datasets). Therefore,
by promoting recall, our system reduces user's post-match e�ort during the
validation phase.

4 Related work

There are many studies on Ontology Matching [6],[5]. In this section, we only
mention the closest ones that are based on machine learning approaches.

GLUE [1] is a well-known of learning-based ontology mapping system. GLUE
uses a set of base learners to exploit di�erent type of information from instances
and taxonomy structures. Then, it uses a meta-learner to combine these base
learners to achieve higher classi�cation accuracy than any single base learner
alone. The drawback of GLUE is that it requires a large number of instances
associated with the nodes in taxonomies, whereas most ontologies do not contain
these information. YAM++ is di�erent with GLUE in that YAM++ uses ma-
chine learning approach to combine di�erent individual matchers which exploit

A Flexible System for Ontology Matching 79

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1



di�erent features of entities such as name, description and structure information.
YAM++ does not exploit information of instance associated with entities.

Another systems using machine learning approach for ontology mapping such
as APFEL [3] and [9]. Our approach and these systems are quite similar in the
way of using machine learning approach to combine di�erent similarity metrics.
However, in YAM++, we use some other data mining techniques to help users
reduce the post-match e�ort.

5 Conclusion

In this paper, we present a �exible system for ontology matching task that proves
the following interesting features:

� Flexibility and extensibility in terms of combining individual matchers.
� Generating a dedicated matcher according to the user's preference.

We have developed a prototype which has been tested with the datasets of OAEI
2009 benchmark. Through these experiments, we have validated the features
listed above.

References

1. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Ontology
matching: A machine learning approach. In Handbook on Ontologies, pages 385�
404. 2004.

2. Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller. Yam: a
schema matcher factory. In CIKM, pages 2079�2080, 2009.

3. Marc Ehrig, Ste�en Staab, and York Sure. Bootstrapping ontology alignment
methods with apfel. In Special interest tracks and posters of the 14th international

conference on World Wide Web, WWW '05, pages 1148�1149, New York, NY,
USA, 2005. ACM.

4. Charles Elkan. The foundations of cost-sensitive learning. In In Proceedings of the

Seventeenth International Joint Conference on Arti�cial Intelligence, pages 973�
978, 2001.

5. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidel-
berg (DE), 2007.

6. Yannis Kalfoglou and W. Marco Schorlemmer. Ontology mapping: The state of
the art. In Semantic Interoperability and Integration, 2005.

7. Feiyu Lin and Kurt Sandkuhl. A survey of exploiting wordnet in ontology matching.
In IFIP AI, pages 341�350, 2008.

8. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, New York, 2008.

9. Ming Mao, Yefei Peng, and Michael Spring. Ontology mapping: As a binary clas-
si�cation problem. Semantics, Knowledge and Grid, International Conference on,
0:20�25, 2008.

10. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334�350, 2001.

11. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann, October 1999.

80 Pre-proceedings of CAISE'11 Forum

lir
m

m
-0

06
39

70
5,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
1


