
Unsupervised Link Discovery Through Knowledge Base
Repair

Axel-Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, and Klaus Lyko

Department of Computer Science
University of Leipzig

Augustusplatz 10, 04109 Leipzig
{ngonga|sherif|lyko}@informatik.uni-leipzig.de

Abstract. The Linked Data Web has developed into a compendium of partly
very large datasets. Devising efficient approaches to compute links between these
datasets is thus central to achieve the vision behind the Data Web. Unsupervised
approaches to achieve this goal have emerged over the last few years. Yet, so far,
none of these unsupervised approaches makes use of the replication of resources
across several knowledge bases to improve the accuracy it achieves while linking.
In this paper, we present COLIBRI, an iterative unsupervised approach for link
discovery. COLIBRI allows the discovery of links between n datasets (n ≥ 2)
while improving the quality of the instance data in these datasets. To this end,
COLIBRI combines error detection and correction with unsupervised link discov-
ery. We evaluate our approach on five benchmark datasets with respect to the
F-score it achieves. Our results suggest that COLIBRI can significantly improve
the results of unsupervised machine-learning approaches for link discovery while
correctly detecting erroneous resources.

Keywords: #eswc2014Ngomo

1 Introduction

Over the last years, the Linked Open Data cloud has evolved from a mere 12 to more
than 300 knowledge bases [1]. The basic architectural principles behind this data com-
pendium are akin to those of the document Web and thus decentralized in nature.1 This
architectural choice has led to knowledge pertaining to the same domain being pub-
lished by independent entities in the Linked Open Data cloud. For example, informa-
tion on drugs can be found in Diseasome2 as well as DBpedia3 and Drugbank.4 More-
over, certain datasets such as DBLP have been published by several bodies,5 leading
to duplicated content in the Data Web. With the growth of the number of indepen-
dent data providers, the concurrent publication of datasets containing related informa-
tion promises to become a phenomenon of increasing importance. Enabling the joint

1 See http://www.w3.org/DesignIssues/LinkedData.html.
2 http://wifo5-03.informatik.uni-mannheim.de/diseasome/
3 http://dbpedia.org
4 http://wifo5-03.informatik.uni-mannheim.de/drugbank/
5 http://dblp.l3s.de/, http://datahub.io/dataset/fu-berlin-dblp and http://dblp.rkbexplorer.com/.

use of these datasets for tasks such as federated queries, cross-ontology question an-
swering and data integration is most commonly tackled by creating links between the
resources described in the datasets. Devising accurate link specifications (also called
linkage rules [11]) to compute these links has yet been shown to be a difficult and time-
consuming problem in previous works [11, 10, 19, 21].

The insight behind this work is that declarative link specifications (e.g., SILK and
LIMES specifications) compare the property values of resources by using similarity
functions to determine whether they should be linked. For example, imagine being given
three knowledge bases K1 that contains cities, K2 that contains provinces and K3 that
contains countries as well as the dbo:locatedIn predicate6 as relation. The spec-
ification that links K1 to K2 might compare province labels while the specifications
that link K1 and K2 to K3 might compare country labels. Imagine the city Leipzig
in K1 were linked to Saxony in K2 and to Germany in K3. In addition, imagine
that Saxony were erroneously linked to Prussia. If we assume the first Linked Data
principle (i.e., “Use URIs as names for things”)7, then the following holds: By virtue
of the transitivity of dbo:locatedIn and of knowing that it is a many-to-1 rela-
tion,8 we can deduce that one of the links in this constellation must be wrong. Note that
this inference would hold both under open- and closed-world assumptions. Thus, if we
knew the links between Leipzig and Germany as well as Leipzig and Saxony
to be right, we could then repair the value of the properties of Saxony that led it to be
linked to Prussia instead of Germany and therewith ensure that is linked correctly
in subsequent link discovery processes.

We implement this intuition by presenting COLIBRI, a novel iterative and unsuper-
vised approach for LD. COLIBRI uses link discovery results for transitive many-to-1
relations (e.g., locatedIn and descendantSpeciesOf) and transitive 1-to-1 re-
lations (e.g., owl:sameAs) between instances in knowledge bases for the sake fo
attempting to repair the instance knowledge in these knowledge bases and improve the
overall quality of the links. In contrast to most of the current unsupervised LD ap-
proaches, COLIBRI takes an n-set9 of set of resources K1, . . . ,Kn with n ≥ 2 as input.
In a first step, our approach applies an unsupervised machine-learning approach to each
pair (Ki,Kj) of sets of resources (with i 6= j). By these means, COLIBRI generates
n(n−1) mappings. Current unsupervised approaches for LD would terminate after this
step and would not make use of the information contained in some mappings to im-
prove other mappings. The intuition behind COLIBRI is that using such information can
help improve the overall accuracy of a link discovery process if the links are many-to-1
and transitive or 1-to-1 and transitive. To implement this insight, all mappings resulting
from the first step are forwarded to a voting approach in a second step. The goal of the
voting approach is to detect possible errors within the mappings that were computed in
the previous step (e.g., missing links). This information is subsequently used in the third

6 The prefix dbo: stands for http://dbpedia.org/ontology/.
7 http://www.w3.org/DesignIssues/LinkedData.html
8 From this characteristic, we can infer that (1) a city cannot be located in two different

provinces, (2) a city cannot be located in two different countries and (3) a province cannot
be located in two different countries.

9 An n-set is a set of magnitude n.

step of COLIBRI, which is the repair step. Here, COLIBRI first detects the sources of
errors in the mappings. These sources of errors can be wrong or missing property values
of the instances. Once these sources of errors have been eliminated, a new iteration is
started. COLIBRI iterates until a termination condition (e.g., a fixpoint of its objective
function) is met.

Overall, the main contributions of this work are as follows:

– We present the (to the best of our knowledge) the first unsupervised LD approach
that attempts to repair instance data for improving the link discovery process.

– Our approach is the first unsupervised LD approach that can be applied to n ≥ 2
knowledge bases and which makes use of the intrinsic topology of the Web of Data.

– We evaluate our approach on six datasets. Our evaluation shows that we can im-
prove the results of state-of-the-art approaches w.r.t. the F-measure while reliably
detecting and correcting errors in instance data.

We rely on EUCLID [18] as machine-learning approach and thus provide a fully deter-
ministic approach. We chose EUCLID because it performs as well as non-deterministic
approaches on the datasets used in our evaluation [18] while presenting the obvious
advantage of always returning the same result for a given input and a given setting.
Moreover, it is not tuned towards discovery exclusively owl:sameAs links [23]. Still,
COLIBRI is independent of EUCLID and can be combined with any link specification
learning approach. The approaches presented herein were implemented in LIMES.10

2 Preliminaries

In this section, we present some of the notation and concepts necessary to understand
the rest of the paper. We use Figure 1 to exemplify our notation. The formalization of
LD provided below is an extension of the formalization for 2 input knowledge bases
presented in [17]. Given n knowledge bases K1 . . .Kn, LD aims to discover pairs
(si, sj) ∈ Ki × Kj that are such that a given relation R holds between si and sj .
The direct computation of the pairs for which R holds is commonly very tedious if at
all possible. Thus, most frameworks for LD resort to approximating the set of pairs for
which R holds by using link specifications (LS). A LS can be regarded as a classifier
Cij that maps each element of the Cartesian product Ki × Kj to one of the classes
of Y = {+1,−1}, where Ki is called the set of source instances while Kj is the set
of target instances. (s, t) ∈ Ki × Kj is considered by Cij to be a correct link when
Cij(s, t) = +1. Otherwise, (s, t) is considered not to be a potential link. In our exam-
ple, C12 returns +1 for s = ex1:JohnDoe and t = ex2:JD.

We will assume that the classifier Cij relies on comparing the value of complex
similarity function σij : Ki ×Kj → [0, 1] with a threshold θij . If σij(s, t) ≥ θij , then
the classifier returns +1 for the pair (s, t). In all other cases, it returns−1. The complex
similarity function σij consists of a combination of atomic similarity measures πlij :
Ki ×Kj → [0, 1]. These atomic measures compare the value of a particular property
of s ∈ Ki (for example its rdfs:label) with the value of a particular property of

10 http://limes.sf.net

t ∈ Kj (for example its :name) and return a similarity score between 0 and 1. In our
example, σ12 relies on the single atomic similarity function trigrams(:ssn,:ssn),
which compares the social security number attributed to resources of K1 and K2.

We call the set of all pairs (s, t) ∈ Ki × Kj that are considered to be valid
links by Cij a mapping . We will assume that the resources in each of the knowl-
edge bases K1, . . . ,Kn can be ordered (e.g., by using the lexical ordering of their URI)
and thus assigned an index. Then, a mapping between the knowledge bases Ki and
Kj can be represented as a matrix Mij of dimensions |Ki| × |Kj |, where the entry
in the xth row and yth column is denoted Mij(x, y). If the classifier maps (s, t) to
-1, then Mij(x, y) = 0 (where x is the index of s and y is the index of t). In all
other cases, Mij(x, y) = σ(s, t). For the sake of understandability, we will some-
times write Mij(sx, ty) to signify Mij(x, y). In our example, C34 is a linear classi-
fier, σ34 = trigrams(:id,:id) and θ34 = 1. Thus, (ex3:J36, ex4:Cat40 1) is
considered a link.

ex1:JohnDoe“John Doe”@en

12345678

ABCD123

rdfs:label

:ssn

:id

ex2:JD “Jon Doe”@en

12345678

:name

:ssn

ex3:J36 “John Doe”@en

36

12345678

:name

:age

:id

ex4:Cat40 1“John Doe”@en

Under40

ABCD123

:name

:category

:id

σ12, 1

σ13, 1

σ14, 1 σ23, 0.5

σ24, 0.5

σ34, 1

Fig. 1. Example of four linked resources from four different knowledge bases. The white nodes
are resources or literals. Properties are represented by dashed labelled arrows. Links are repre-
sented by plain arrows. The grey boxes on the links show the names of the similarity measures
used to link the resources they connect as well as the similarity value for each of these resource
pairs. σ12 = trigrams(:ssn,:ssn), σ13 = σ14 = trigrams(:id,:id), σ23 = σ24 =
σ34 = dice(:name,:name), σij = σji.

Supervised approaches to the computation of link specifications use labelled train-
ing data L ⊆ Ki × Kj × Y to minimize the error rate of Cij . COLIBRI relies on an
unsupervised approach. The idea behind unsupervised approaches to learning link spec-
ifications is to refrain from using any training data (i.e., L = ∅). Instead, unsupervised
approaches aim to optimize an objective function. The objective functions we consider
herein approximate the value of the F-measure achieved by a specification and are thus
dubbed pseudo-F-measures (short: PFMs) [21].

In this work, we extend the PFM definition presented in [18]. Like in [21, 23, 9], the
basic assumption behind this PFM is that one-to-one links exist between the resources
in S and T . We chose to extend this measure to ensure that it is symmetrical w.r.t. to the

source and target datasets, i.e., PFM(S, T) = PFM(T , S). Our pseudo-precision P com-
putes the fraction of links that stand for one-to-one links and is equivalent to the strength
function presented in [9]. Let links(Ki,Mij) be the subset of Ki whose elements are
linked to at least one element of Kj . Then, P(Mij) =

|links(Ki,Mij)|+|links(Kj ,Mij)|
2|Mij | .

The pseudo-recallR computed the fraction of the total number of resources (i.e., |Ki|+
|Kj |) from that are involved in at least one link:R(Mij) =

|links(Ki,Mij)|+|links(Kj ,Mij)|
|Ki|+|Kj | .

Finally, the PFM Fβ , is defined as Fβ = (1 + β2) PR
β2P+R .

ex1:1 ex1:2 ex1:3

ex2:1

ex2:2

ex2:3

ex3:1

ex3:2

ex3:3

1

1

1

1

0.5

0.5

1

0.5

0.5

K3

K1

K2

Fig. 2. Example of mappings between 3 sets of resources. K1 has the namespace ex1, K2 the
namespace ex2 and K3 the namespace ex3. Thick lines stand for links with the similarity value
1 while thin lines stand for links with the similarity value 0.5.

For the example in Figure 2, P(M12) = 1, R(M12) = 2
3 and F1 = 4

5 . Our PFM
works best if S and T are of comparable size and one-to-one links are to be detected.
For example, EUCLID achieves 99.7% F-measure on the OAEI Persons1 dataset.11 It
even reaches 97.7% F-measure on the DBLP-ACM dataset, therewith outperforming
the best supervised approach (FEBRL) reported in [15]. Yet, EUCLID achieves worse
results compared to FEBRL on the Amazon-Google Products dataset with an F-measure
of 43% against 53.8%, where |T | ≈ 3|S|.

3 The COLIBRI Approach

In this section, we present the COLIBRI approach and its components in detail. We begin
by giving an overview of the approach. Then, for the sake of completeness, we briefly
present EUCLID, the unsupervised LD approach currently underlying COLIBRI. For
more information about EUCLID, please see [18]. Note that COLIBRI can be combined
with any unsupervised LD approach. After the overview of EUCLID, we present the

11 http://oaei.ontologymatching.org/

voting approach with which COLIBRI attempts to detect erroneous or missing links. In
a final step, we present how COLIBRI attempts to repair these sources of error.

3.1 Overview

Most of the state-of-the-art approaches to LD assume scenarios where two sets of re-
sources are to be linked. COLIBRI assumes that it is given n sets of resourcesK1, . . . ,Kn.
The approach begins by computing mappings Mij between resources of pairs of sets
of resources (Ki,Kj). To achieve this goal, it employs the EUCLID algorithm [18] de-
scribed in the subsequent section. The approach then makes use of the transitivity of
R by computing voting matrices Vij that allow detecting erroneous as well as missing
links. This information is finally used to detect resources that should be repaired. An
overview of COLIBRI is given in Algorithm 1. In the following sections, we explain
each step of the approach.

Algorithm 1 The COLIBRI approach.M stands for the set of all Mij while Ṽ stands
for the set of all Ṽij . The maxIterations parameter ensures that the approach termi-
nates.
1: Fnew := 0, Fold := 0, iterations = 0
2: while Fnew − Fold > 0 do
3: Fold := Fnew

4: Fnew := 0
5: for i ∈ {1, . . . , n} do
6: for j ∈ {1, . . . , n}, j 6= i do
7: Mij = EUCLID (Ki, Kj)

8: Fnew := Fnew+PSEUDOF(Mij)

9: end for
10: end for
11: Fnew := Fnew/(n(n− 1))
12: if Fnew − Fold > 0 then
13: for i ∈ {1, . . . , n} do
14: for j ∈ {1, . . . , n}, j 6= i do
15: Vij =COMPUTEVOTING(Mij ,M)

16: Ṽij =POSTPROCESS(Vij)

17: end for
18: end for
19: for (a, b) ∈ GETWORSTLINKS(Ṽ) do
20: (rs, rt) =GETREASON(a, b)
21: REPAIR(rs,rt)
22: end for
23: end if
24: end while

3.2 EUCLID

Over the last years, non-deterministic approaches have been commonly used to de-
tect highly accurate link specifications (see, e.g., [19, 21]). EUCLID (Line 8 of Algo-
rithm 1) is a deterministic unsupervised approach for learning link specifications. The
core idea underlying the approach is that link specifications of a given type (linear, con-
junctive, disjunctive) can be regarded as points in a link specification space. Finding

an accurate link specification is thus equivalent to searching through portions of this
specification space. In the following, we will assume that EUCLID tries to learn a con-
junctive classifier, i.e., a classifier which returns +1 for a pair (s, t) ∈ Ki ×Kj when
m∧
l=1

(πlij(s, t) ≥ θlij) holds. The same approach can be used to detect disjunctive and

linear classifiers. EUCLID assumes that it is given a set ofm atomic similarity functions
πlij with which it can compare (s, t) ∈ Ki × Kj . The atomic functions πlij build the
basis of an m-dimensional space where each of the dimensions corresponds to exactly

one of the πlij . In this space, the specification
m∧
l=1

(πlij(s, t) ≥ θlij) has the coordinates

(θ1ij , . . . , θ
m
ij). The core of EUCLID consists of a hierarchical grid search approach that

aims to detect a link specification within a hypercube (short: cube) which maximizes
the value of a given objective function F . The hypercubes considered by EUCLID are
such that their sides are all orthogonal to the axes of the space . Note that such a hyper-
cube can be described entirely by two points b = (b1, . . . , bm) and B = (B1, . . . , Bm)
with ∀i ∈ {1, . . . ,m}(bi ≤ Bi).

EUCLID begins by searching through the cube defined by b = (0, . . . , 0)︸ ︷︷ ︸
m times

and

B = (1, . . . , 1)︸ ︷︷ ︸
m times

(i.e., the whole of the similarity space). A point w with coordinates

(w1, . . . , wm) corresponds to the classifier with the specific function
∧m
l=1(πlij(si, sj) ≥

wl). Let α ∈ N, α ≥ 2 be the granularity parameter of EUCLID. The search is carried
out by generating a grid of (α+1)m points g whose coordinates gi =

(
bi + ki

(Bi−bi)
α

)
,

where ki ∈ {0, . . . , α}. We call ∆i = (Bi−bi)
α the width of the grid in the ith dimen-

sion. EUCLID now computes the pseudo-F-measure F of the specification correspond-
ing to each point on the grid. Let gmax be a point that maximizes F . Then, EUCLID
updates the search cube by updating the coordinates of the points b and B as follows:
bi = (max {0, gmax

i −∆i}) and Bi = (min {1, gmax
i +∆i}) . Therewith, EUCLID

defines a new and smaller search cube. The search is iterated until a stopping condition
such as a given number of iterations is met.

3.3 Voting
The result of EUCLID is a set of n(n − 1) mappings Mij which link the resource set
Ki with the resource set Kj . The goal of the second step of a COLIBRI iteration is to
determine the set of resources that might contain incomplete or erroneous information
based on these mappings. The basic intuition behind the approach is to exploit the
transitivity of the relation R is as follows: If the link (s, t) ∈ Ki × Kj is correct,
then for all k with 1 ≤ k ≤ n with k 6= i, j, there should exist pairs of links (s, z) and
(z, t) with Mik(s, z) > 0 and Mkj(z, t) > 0. Should such pairs not exist or be weakly
connected, then we can assume that some form of error was discovered.

Formally, we go about implementing this intuition as follows: We first define the

voting matrices Vij as Vij = 1
n

(
Mij +

n∑
k=0,k 6=i,j

MikMkj

)
(Line 15 of Algorithm 1).

In the example shown in Figure 2, the mappings are

M12 =

1 0 0
0 1 0
0 0 0

, M13 =

1 0 1
0 0.5 0
0 0 0.5

 and M23 =

1 0 0
0 0.5 0
0 0 0.5

.

The corresponding voting matrices are thus

V12 =

1 0 0.25
0 0.625 0
0 0 0.125

, V13 =

1 0 0.5
0 0.5 0
0 0 0.25

 and V23 =

1 0 0
0 0.5 0
0 0 0.25

.

Each voting matrix Vij encompasses the cumulative results of the linking between
all pairs of resource sets with respect to the resources in (Ki,Kj). Computing Vij as
given above can lead to an explosion in the number of resources associated to si. In our
example, the erroneous link between ex1:1 and ex3:3 leads to ex1:1 being linked
not only to ex2:1 but also to ex2:3 in V12. We thus post-process each Vij by only
considering the best match for each s ∈ Ki within Vij , i.e., by removing each non-
maximal entry from each row of Vij (Line 16 of Algorithm 1). We label the resulting
matrix Ṽij . For our example, we get the following matrices:

Ṽ12 =

1 0 0
0 0.625 0
0 0 0.125

, Ṽ13 =

1 0 0
0 0.5 0
0 0 0.25

 and Ṽ23 =

1 0 0
0 0.5 0
0 0 0.25

.

COLIBRI now assumes that the links encoded in Ṽij are most probably correct. All
entries of Ṽij being 1 are thus interpreted as all matrices agreeing on how to link the re-
sources in (Ki,Kj). In the example in Figure 2, this is the case for Ṽ12(ex1:1,ex2:1).
Should this not be the case, then the disagreement between the matrices can result from
the following reasons:

1. Missing links: This is the case in our example for the link (ex1:3,ex2:3) which
is not contained in M12. For this reason, Ṽ12(ex1:3,ex2:3) is minimal.

2. Weak links: This is the case for the second-lowest entry in Ṽ12, where the entry
for (ex1:2,ex2:2) is due to M13(ex1:2,ex3:2) and M32(ex3:2,ex2:2)
being 0.5.

COLIBRI now makes use of such disagreements to repair the entries in the knowl-
edge bases with the aim of achieving a better linking. To this end, it selects a predeter-
mined number of links (a, b) over all Ṽij whose weight is minimal and smaller than 1
(GETWORSTLINKS in Algorithm 1). These links are forwarded to the instance repair.

3.4 Instance repair

For each of the links (a, b) selected by the voting approach, the instance repair routine
of COLIBRI begins by computing why Ṽij(a, b) < 1. To achieve this goal, it computes

the reason (rs, rt) ∈

(
Ki ×

n⋃
k=1,k 6=i

Kk

)
∪

(
n⋃

k=1,k 6=j
Kk ×Kj

)
by detecting the

smallest entry that went into computing Ṽij(a, b). Three possibilities occur:

1. (rs, rt) ∈ Ki × Kj : In this case, the weak or missing link is due to the initial
mapping Mij .

2. (rs, rt) ∈ Ki ×Kk with k 6= i ∧ k 6= j: In this case, the weak or missing link is
due to the in-between mapping Mik.

3. (rs, rt) ∈ Kk ×Kj with k 6= i ∧ k 6= j: Similarly to the second case, the weak or
missing link is due to the in-between mapping Mkj .

In all three cases, the repair approach now aims to improve the link by repairing the
resource rs or rt that most probably contains erroneous or missing information. To
achieve this goal, it makes use of the similarity measure σ used to generate (rs, rt). The
value of this measure being low suggests that the property values pl and ql used across
the similarity measures πl are dissimilar. The idea of the repair is then to overwrite
exclusively the values of pl(rs) with those of ql(rt) or vice-versa. The intuition behind
deciding upon whether to update rs or rt is based on the average similarity σ̄(rs) resp.
σ̄(rt) of the resources rs and rt to other resources. For a resource s ∈ Ki, this value is
given by

σ̄(s) =
1

n− 1

 n∑
k=1,k 6=i

max
t∈Kk

σik(s, t)

 . (1)

Here, the assumption is that the higher the value of σ̄ for a given resource, the higher
the probability that it does not contain erroneous information.

Let us consider anew the example given in Figure 2 and assume that the link that is
to be repaired is (ex1:2,ex2:2). One reason for this link would be rs = ex1:2 and
rt = ex3:2. Now σ̄(ex1:2) = 0.75 while σ̄(ex3:2) = 0.5. COLIBRI would thus
choose to overwrite the values of ex3:2 with those of ex1:2.

The overwriting in itself is carried out by overwriting the values of ql(rt) with
those of pl(rs) if σ̄(rs) ≥ σ̄(rt) and vice-versa. This step terminates an iteration of
COLIBRI, which iterates until a termination condition is reached, such as the average
value of F for the mappings generated by EUCLID declining or a maximal number of
iterations. The overall complexity of each iteration of COLIBRI is O(n2 × E), where
E is the complexity of the unsupervised learning algorithm employed to generate the
mappings. Thank to the algorithms implemented in LIMES which have a complexity
close toO(m) wherem = max{|S|, |T |} for each predicate, EUCLID has a complexity
of O(pm), where p is the number of predicates used to compare entities. Consequently,
the overall complexity of each iteration of COLIBRI is O(pmn2) when it relies on
EUCLID. While we observed a quick converge of the approach on real and synthetic
datasets within our evaluation (maximally 10 iterations), the convergence speed of the
approach may vary on the datasets used.

4 Evaluation

The aim of our evaluation was to measure whether COLIBRI can improve the F-measure
of mappings generated by unsupervised link discovery approaches. To this end, we mea-
sured the increase in F-measure achieved by COLIBRI w.r.t to the number of iterations
it carried out on a synthetic dataset generated out of both synthetic and real data. To the
best of our knowledge, no benchmark dataset is currently available for link discovery
across n > 2 knowledge bases. We thus followed the benchmark generation approach
for instance matching presented in [6] to generate the evaluation data for COLIBRI.

4.1 Experimental Setup

We performed controlled experiments on data generated automatically from two syn-
thetic and three real datasets. The synthetic datasets consisted of the Persons1 and
Restaurant datasets from the OAEI2010 benchmark data sets.12 The real datasets con-
sisted of the ACM-DBLP, Amazon-Google and Abt-Buy datasets.13 We ran all exper-
iments in this section on the source dataset of each of these benchmark datasets (e.g.,
ACM for ACM-DBLP). We omitted OAEI2010’s Person2 because its source dataset
is similar to Person1’s. Given the lack of benchmark data for link discovery over sev-
eral sources, we generated a synthetic benchmark as follows: Given the initial source
dataset K1, we first generated n − 1 copies of K1. Each copy was altered by using a
subset of the operators suggested in [6]. The alteration strategy consisted of randomly
choosing a property of a randomly chosen resource and altering it. We implemented
three syntactic operators to alter property values, i.e., misspellings, abbreviations and
word permutations. The syntactic operator used for altering a resource was chosen ran-
domly. We call the probability of a resource being chosen for alteration the alteration
probability (ap). The goal of this series of experiments was to quantify (1) the gain in
F-measure achieved by COLIBRI over EUCLID and (2) the influence of ap and of the
number n of knowledge bases on COLIBRI’s F-measure.

The F-measure of EUCLID and COLIBRI was the average F-measure they achieved
over all pair (Ki,Kj) with i 6= j. To quantify the amount of resources that were altered
by COLIBRI in the knowledge bases K1, . . . ,Kn, we computed the average error rate
in the knowledge bases after each iteration as follows:

errorrate = 1− 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

2|Ki ∩Kj |
|Ki|+ |Kj |

. (2)

The maximal number of COLIBRI iterations was set to 10. We present the average
results but omit the standard deviations for the sake of legibility. For precision, the
standard deviation was maximally 4%. The recall’s standard deviation never exceeded
1% while it reached 2% for the F-measure.

4.2 Experimental Results

We varied the number of knowledge bases between 3 and 5. Moreover, we varied the
alteration probability between 10% and 50% with 10% increments. We then measured
the precision, recall, F-measure, runtime and number of repairs achieved by the batch
version of COLIBRI over several iterations. Due to lack of space, we present portions
of the results we obtained in Figure 3 and Table 1.14 Table 1 shows an overview of the
results we obtained across the different datasets. Our results show clearly that COL-
IBRI can improve the results of EUCLID significantly on all datasets. On the Restaurant

12 Available online at http://oaei.ontologymatching.org/2010/.
13 Available online at http://dbs.uni-leipzig.de/en/research/projects/object matching/

fever/benchmark datasets for entity resolution.
14 See http://limes.sf.net for more results.

dataset for example, COLIBRI is 6% better than EUCLID on average. On ACM, the aver-
age value lies by 4.8%. In the best case, COLIBRI improves the results of EUCLID from
0.85 to 0.99 (Amazon, ap = 50%, KBs = 4). Moreover, COLIBRI never worsens the
results of EUCLID. This result is of central importance as it suggests that our approach
can be used across the Linked Data Web for any combination of number of knowledge
and error rates within the knowledge bases.

The results achieved on the Restaurant dataset are presented in more detail in Fig-
ure 3. Our results on this dataset (which were corroborated by the results we achieved
on the other datasets) show that the results achieved by EUCLID alone depend directly
on the probability of errors being introduced into the data sets. For example, EUCLID is
able to achieve an F-measure of 0.94 when provided with data sets with an error rate of
30%. Yet, this F-measure sinks to 0.88 when the error rate is set to 50%. These results
do suggest that EUCLID is robust against errors. This is due to the approach being able
to give properties that contain a small error percentage a higher weight. Still, the COL-
IBRI results show clearly that COLIBRI can accurately repair the knowledge bases and
thus achieve even better F-measures. On this particular data, the approach achieves an
F-measure very close to 1 in most cases. Note that the number of iterations required to
achieve this score depends directly on the number of knowledge bases and on the error
probability.

One interesting observation is that the average F-measure achieved by EUCLID de-
creases with the number of knowledge bases used for linking. This is simply due to the
overall larger number of errors generated by our evaluation framework when the num-
ber of knowledge bases is increased. While larger number also make the detection of
errors more tedious, COLIBRI achieves significant increase of F-measure in this setting.
In particular, the F-measure of EUCLID is improved upon by up to 12% absolute on the
Restaurant dataset (ap = 50%) as well as 7% absolute on Persons1 (ap = 50%).

As expected, the runtime of our approach grows quadratically with the number of
knowledge bases. This is simply due to EUCLID being run for each pair of knowledge
bases.The runtimes achieved suggest that COLIBRI can be used in practical settings and
on large datasets as long as the number of dimensions in EUCLID’s search space remains
small. In particular, one iteration of the approach on the DBLP data sets required less
than 2 minutes per iteration for 3 knowledge bases, which corresponds to 3 EUCLID
runs of which each checked 3125 link specifications. The worst runtimes were achieved
on the Persons1 dataset, where COLIBRI required up to 11min/iteration. This was due
to the large number of properties associated with each resource in the dataset, which
forced EUCLID to evaluate more than 78,000 specifications per iteration.

5 Related Work

Most LD approaches for learning link specifications developed so far abide by the
paradigm of supervised machine learning. One of the first approaches to target this
goal was presented in [11]. While this approach achieves high F-measures, it also re-
quires large amounts of training data. However, creating training data for link discovery
is a very expensive process, especially given the size of current knowledge bases. Su-
pervised LD approaches which try to reduce the amount training data required are most

Table 1. Average F-measure of EUCLID (FE) and COLIBRI (FC) after 10 iterations, runtime (R,
in seconds) and number of repaired links L achieved across all experiments. KBs stands for the
number of knowledge bases used in our experiments.

ap 10% 30% 50%

Measures FE FC R L FE FC R L FE FC R L

KBs Restaurant

3 0.98 1.00 0.6 4 0.94 0.99 0.5 17 0.89 0.98 0.4 43
4 0.99 1.00 1.2 8 0.93 1.00 1.0 33 0.90 1.00 0.9 35
5 0.98 1.00 1.8 20 0.93 1.00 1.5 30 0.88 1.00 1.3 34

KBs Persons1

3 0.99 1.00 225.6 11 0.96 1.00 206.2 38 0.94 1.00 190.4 57
4 0.98 1.00 494.3 23 0.96 1.00 422.1 47 0.93 1.00 349.9 77
5 0.98 1.00 819.4 20 0.95 1.00 747.6 75 0.93 1.00 656.2 110

KBs ACM

3 0.95 0.96 85.7 220 0.89 0.96 69.3 301 0.84 0.95 66.5 484
4 0.94 0.94 168 12 0.88 0.88 140.4 36 0.83 0.96 131.1 261
5 0.94 0.94 271.7 30 0.87 0.94 240.9 821 0.82 0.84 202.8 348

KBs DBLP

3 0.94 0.98 135 220 0.85 0.97 117.2 828 0.77 0.82 111 2686
4 0.93 0.98 268.8 312 0.83 0.90 234.7 306 0.76 0.81 201.1 350
5 0.93 0.98 334.9 517 0.82 0.84 395.9 182 0.76 0.77 338.1 156

KBs Amazon

3 0.97 0.99 90.4 60 0.92 0.99 85.2 177 0.86 0.98 81.8 300
4 0.97 0.99 187.5 98 0.91 0.98 172.6 185 0.85 0.99 160.4 150
5 0.96 0.99 301.8 131 0.90 0.99 278.7 369 0.84 0.88 246.8 60

commonly based on active learning (see, e.g., [12, 19]). Still, these approaches are not
guaranteed to require a small amount of training data to converge. In newer works, un-
supervised techniques for learning LD specifications were developed [21, 18]. The main
advantage of unsupervised learning techniques is that they do not require any training
data to discover mappings. Moreover, the classifiers they generate can be used as initial
classifiers for supervised LD approaches. In general, unsupervised approaches assume
some knowledge about the type of links that are to be discovered. For example, unsu-
pervised approaches for ontology alignment such as PARIS [23] aim to discover exclu-
sively owl:sameAs links. To this end, PARIS relies on a probabilistic model and maps
instances, properties and ontology elements. Similarly, the approach presented in [21]
assumes that a 1-to-1 mapping is to be discovered. Here, the mappings are discovered
by using a genetic programming approach whose fitness function is set to a PFM. The
main inconvenient of this approach is that it is not deterministic. Thus, it provides no
guarantee of finding a good specification. This problem was addressed by EUCLID [18].

While ontology-matching approaches that rely on more than 2 ontologies have ex-
isted for almost a decade [16, 5], LD approaches that aim to discover between n datasets
have only started to emerge in newer literature. For instance, the approach proposed
by [8] suggests a composition method for link discovery between n datasets. The ap-
proach is based on strategies for combining and filtering mappings between resources
to generate links between knowledge bases. The framework introduced by [13] aims
to predict links in multi-relational graph. To this end, it models the relations of the
knowledge bases using set of description matrices and combines them using an additive
model. The Multi-Core Assignment Algorithm presented by [3] automated the creation
of owl:sameAs links across multiple knowledge bases in a globally consistent man-
ner. The only drawback of this approach is that it requires a large amount of processing
power. This problem was addressed in [3].

Approaches related to COLIBRI also include link predication approaches based on
statistical relational learning (SRL). Examples of SRL approaches that can be used for
predicate detection include CP and Tucker [14] as well as RESCAL [20], which all rely
on tensor factorization. In general, approaches which rely on tensor factorization have
a higher complexity that EUCLID. For example, CP’s complexity is quadratic in the
number of predicates. Related approaches that have been employed on Semantic Web
data and ontologies include approaches related to Bayesian networks, inductive learning
and kernel learning [4, 24, 2, 20, 22]. Due to the complexity of the models they rely on,
most of these approaches are likely not to scale to very large datasets. LIMES (in which
EUCLID is implemented) has yet been shown to scale well on large datasets [17]. An
exact evaluation of the complexity and runtime of a combination of COLIBRI and SRL-
based approaches remains future work. More details on SRL can be found in [7].

6 Conclusion and Future Work

We presented COLIBRI, the first unsupervised LD approach which attempts to repair
instance knowledge in n knowledge bases (n ≥ 2) to improve its linking accuracy.
Our evaluation suggests that our approach is robust and can be used by error rates up
to 50% when provided with at least 3 knowledge bases. In addition, our results show
that COLIBRI can improve the results of EUCLID by up to 14% F-measure. In future
work, we plan to extend our evaluation further and analyse our performance on real
data as well as on knowledge bases of different size. We plan to deploy our approach in
interactive scenarios within which users are consulted before the knowledge bases are
updated. The voting procedure implemented by COLIBRI can be used to provide users
with a measure for the degree of confidence in a predicted link and in the need for a
repair within an interactive learning scenario.

Acknowledgement

The work presented in this paper was partly financed by the FP7 project GeoKnow, GA
318159 and the DFG project LinkingLOD.

iterationNr 1 2 3
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(a) ap=10%, KBs = 3

iterationNr 2 4
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(b) ap=10%, KBs = 4

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(c) ap=10%, KBs = 5

iterationNr 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Precision
Recall
F-Measure
Error rate

(d) ap=20%, KBs = 3

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(e) ap=20%, KBs = 4

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(f) ap=20%, KBs = 5

iterationNr 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Precision
Recall
F-Measure
Error rate

(g) ap=30%, KBs = 3

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(h) ap=30%, KBs = 4

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(i) ap=30%, KBs = 5

iterationNr 1 2 3
0

10
20
30
40
50
60
70
80
90

100

Precision
Recall
F-Measure
Error rate

(j) ap=40%, KBs = 3

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(k) ap=40%, KBs = 4

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(l) ap=40%, KBs = 5

iterationNr 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Precision
Recall
F-Measure
Error rate

(m) ap=50%, KBs = 3

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(n) ap=50%, KBs = 4

iterationNr 2 4 6
0

20

40

60

80

100

Precision
Recall
F-Measure
Error rate

(o) ap=50%, KBs = 5

Fig. 3. Overview of the results on the Restaurants dataset.

References
1. Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Introduction to linked data

and its lifecycle on the web. In Reasoning Web, pages 1–75, 2011.
2. Stephan Bloehdorn and York Sure. Kernel methods for mining instance data in ontologies.

In ASWC, pages 58–71. Springer, 2007.
3. Christoph Böhm, Gerard de Melo, Felix Naumann, and Gerhard Weikum. Linda: distributed

web-of-data-scale entity matching. In CIKM, pages 2104–2108, 2012.
4. Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. Non-parametric statistical learning

methods for inductive classifiers in semantic knowledge bases. In ICSC, pages 291–298,
2008.

5. Jérôme Euzenat. Algebras of ontology alignment relations. In ISWC, pages 387–402, 2008.
6. A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt. Benchmarking Matching

Applications on the Semantic Web. In ESWC, 2011.
7. Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning (Adaptive Com-

putation and Machine Learning). The MIT Press, 2007.
8. Michael Hartung, Anika Groß, and Erhard Rahm. Composition methods for link discovery.

In BTW, pages 261–277, 2013.
9. Oktie Hassanzadeh, Ken Q. Pu, Soheil Hassas Yeganeh, Renée J. Miller, Lucian Popa, Mauri-

cio A. Hernández, and Howard Ho. Discovering linkage points over web data. VLDB Endow.,
6(6):445–456, April 2013.

10. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link Discovery
without losing Recall. In WebDB, 2011.

11. Robert Isele and Christian Bizer. Learning linkage rules using genetic programming. In OM
Workshop, 2011.

12. Robert Isele, Anja Jentzsch, and Christian Bizer. Active learning of expressive linkage rules
for the web of data. In ICWE, pages 411–418, 2012.

13. Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. Link prediction in multi-
relational graphs using additive models. In SeRSy, pages 1–12, 2012.

14. Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, August 2009.

15. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution approaches
on real-world match problems. VLDB Endow., 3(1-2):484–493, 2010.

16. Jayant Madhavan and Alon Y. Halevy. Composing mappings among data sources. In VLDB,
pages 572–583, 2003.

17. Axel-Cyrille Ngonga Ngomo. On link discovery using a hybrid approach. Journal on Data
Semantics, 1:203 – 217, 2012.

18. Axel-Cyrille Ngonga Ngomo and Klaus Lyko. Unsupervised learning of link specifications:
deterministic vs. non-deterministic. In OM Workshop, 2013.

19. Axel-Cyrille Ngonga Ngomo, Klaus Lyko, and Victor Christen. COALA - Correlation-
Aware Active Learning of Link Specifications. In Proceedings of ESWC, 2013.

20. Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: Scalable ma-
chine learning for linked data. In WWW, pages 271–280, New York, NY, USA, 2012. ACM.

21. Andriy Nikolov, Mathieu D’Aquin, and Enrico Motta. Unsupervised learning of data linking
configuration. In Proceedings of ESWC, 2012.

22. Cristina Prez-Sol and Jordi Herrera-Joancomart. Improving relational classification using
link prediction techniques. In ECML/PKDD (1), volume 8188, pages 590–605, 2013.

23. Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: Probabilistic Alignment
of Relations, Instances, and Schema. PVLDB, 5(3):157–168, 2011.

24. Ilya Sutskever, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Modelling relational data
using bayesian clustered tensor factorization. In NIPS, pages 1821–1828, 2009.

