
Overcoming schema heterogeneity between
linked semantic repositories to improve

coreference resolution

Andriy Nikolov, Victoria Uren, Enrico Motta and Anne de Roeck

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov, v.s.uren, e.motta, a.deroeck}@open.ac.uk

Abstract. Schema heterogeneity issues often represent an obstacle for
discovering coreference links between individuals in semantic data repos-
itories. In this paper we present an approach, which performs ontology
schema matching in order to improve instance coreference resolution per-
formance. A novel feature of the approach is its use of existing instance-
level coreference links defined in third-party repositories as background
knowledge for schema matching techniques. In our tests of this approach
we obtained encouraging results, in particular, a substantial increase in
recall in comparison with existing sets of coreference links.

1 Introduction

With the emergence of the Linking Open Data initiative1 the amount of semantic
data available on the Web is constantly growing. New datasets are being pub-
lished and connected to existing ones according to the Linked Data principles.
Coreference links between entities (RDF individuals) in different datasets con-
stitute a major added value: these links allow combining data about the same
individuals stored in different locations. Due to large volumes of data, which
have to be processed, these links cannot be produced manually, so automatic
techniques are usually employed. However, discovering these links and querying
data distributed over different repositories is often problematic due to the se-
mantic heterogeneity problem: datasets often use different ontological schemas
to describe data from the same domain.

In particular, ontological heterogeneity represents an obstacle for automatic
coreference resolution tools, which discover links between individuals: it is not
clear which classes represent overlapping sets of individuals that should be com-
pared and which of their properties are relevant for similarity computation. For
example, if a newly published dataset contains information about computer sci-
entists, the tool needs to know which other datasets potentially contain co-
referring individuals and to which classes they belong. Although the use of com-
mon schema ontologies such as FOAF, SKOS or Dublin Core is encouraged [1],
existing datasets often employ their own schemas or, in other cases, terms of

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

common ontologies do not provide full information about the data they describe
and many important usage patterns remain implicit: e.g., in DBLP2 a generic
foaf:Person class in fact refers only to people related to computer science. Be-
cause of these issues, coreference resolution algorithms must be specially tuned
for each pair of datasets to be linked. As a result, when a new repository is
integrated into the the Linked Data cloud it is often hard for the publisher to
connect it to all relevant datasets, which contain co-referring individuals, and
many coreference links can remain undiscovered.

Thus, schema-level matching and instance-level coreference resolution con-
stitute two stages of the process needed to discover coreference links between
individuals stored in different repositories. Our data fusion tool KnoFuss [2] was
originally developed to perform the second stage of the task. In this paper we
extend its workflow and focus on resolving the first part of the problem (schema-
level) in order to improve the performance at the second stage (instance-level).

Our approach focuses on inferring schema-level mappings between ontologies
employed in Linked Data repositories. It implements the following novel features,
which we consider our contribution:

– Use of instance-level coreference links to and from individuals defined in
third-party repositories as background knowledge for schema-level ontology
matching.

– Generating schema-level mappings suited for the needs of the instance coref-
erence resolution process. In particular, our algorithm produces fuzzy map-
pings representing degree of overlap between classes of different ontologies
rather than strict equivalence or subsumption relations.

The primary effect of the approach for the instance-level coreference resolution
stage is the increase in recall because of newly discovered coreference links,
which were initially missed because relevant subsets of individuals in two datasets
were not directly compared. We obtained promising results in our test scenarios:
coreference resolution recall increased (by 15% in the worst case and by 75% in
the best case) in comparison with existing publicly available sets of links without
substantial loss of precision.

The rest of the paper is organized as follows: in the section 2 we briefly
discuss the most relevant existing approaches. Section 3 gives a general idea of
our approach, provides illustrative example scenarios and outlines the overall
workflow of the system. Sections 4 and 5 focus on the schema-level and data-
level stages of the approach respectively. In the section 6 we present the results
of our experiments performed with test datasets. Finally, section 7 summarizes
our contribution and outlines directions for future work.

2 Related Work

This paper is related to both schema-level and data-level aspects of data in-
tegration. Both these aspects were originally studied in the database research
2 http://www4.wiwiss.fu-berlin.de/dblp/

community where many of the solutions, which were later extended and adapted
in the Semantic Web domain, were originally proposed.

Considering the schema matching problem, two classes of techniques emerged:
schema-level and instance-level approaches [3], which respectively rely on evi-
dence defined in database schemas and in the data itself. With the emergence of
ontological languages for the Semantic Web, which had different expressive capa-
bilities from relational database schemas, specific solutions for ontology matching
were developed [4]. The features of the Linked Data environment are the presence
of large volumes of data and the availability of many interconnected information
sources, which can be used as background knowledge. Therefore, two types of
approaches are particularly relevant for this environment.

First, instance-level techniques for schema matching can be utilized. The ad-
vantage of instance-level methods is their ability to provide valuable insights
into the contents and meaning of schema entities from the way they are used.
This makes them suitable for the Linked Data environment for two reasons: (i)
the need to capture the actual use pattern of an ontological term rather than
how it was intended to be used by an ontology designer and (ii) the availability
of large volumes of evidence data. In several approaches instances of classes and
relations are considered as features when computing similarity between schema-
level entities: e.g., CIDER [5] and RiMOM [6]. One particularly interesting ap-
proach, which uses schema alignment and coreference resolution in combination,
was introduced in the ILIADS system [7]. ILIADS focuses on the traditional
ontology matching scenario, where two schemas have to be integrated, and per-
forms schema-level and instance-level matching in a loop, where newly obtained
instance-level mappings are used to improve schema-level alignment and vice
versa. This is similar to our approach where schema-level matching is performed
to enhance the instance coreferencing process. However, unlike ILIADS, our ap-
proach was primarily motivated by the instance-level integration scenario and
exploits information from many sources rather than only two.

The second relevant category of schema-matching techniques are those which
utilize external sources as background knowledge. An approach proposed in [8]
performs matching of two ontologies by linking them to an external third one and
then using semantic relations defined in the external ontology to infer mappings
between entities of two original ontologies. The SCARLET tool [9] employs a set
of external ontologies, which it searches and selects using the Watson ontology
search server3. These approaches, however, only consider schema-level evidence
from third-party sources, while our approach relies on instance-level information.

Existing ontology matching tools usually produce as their output strict map-
pings such as equivalence and subsumption. In the Linked Data environment
such mappings in many cases are impossible to derive: sometimes even strong
semantic similarity between concepts does not imply strict equivalence. For in-
stance, the concept dbpedia:Actor denotes professional actors (both cinema and
stage), while the concept movie:actor in LinkedMDB refers to any person who
played a role in a movie, including participants in documentaries, but excluding

3 http://watson.kmi.open.ac.uk/WatsonWUI/

stage actors. Since our goal is to discover pairs of classes, which are likely to
contain equivalent individuals, in our approach we produce mappings of a more
generic type, which would reflect the fact that there is a significant degree of
overlap between classes.

The problem of coreference resolution between instances (also called record
linkage [10]) also has been studied for a long time in the database domain. In
the classical model proposed in [10] by Fellegi and Sunter the decision regarding
whether two individuals (records) describe the same entity was taken based on
calculating an aggregated similarity between their field values. This model served
as the base for the majority of algorithms developed in the domain (see [11]
for a survey). Other proposed approaches exploit additional kinds of available
information. For example, the algorithms described in [12] and [13] analyse links
between instances and consider graphs instead of atomic data individuals, in
[14] ontological schema restrictions are used as evidence and in [15] provenance
information about data sources is exploited.

While originally in the Semantic Web domain the research primarily focused
on the schema-level ontology matching, with the emergence of the Linked Data
the problem of instance-level integration also gained importance. Popular ex-
isting tools were created and applied to discovery of the owl:sameAs corefer-
ence links for Linked Data. These follow the classical Fellegi-Sunter model: e.g.,
SILK [16] and ODDLinker (the latter used to create links from the LinkedMDB
dataset [17]). However, given the decentralized character of data and the need to
deal with large numbers of connections between entities in different repositories,
the problem of managing and maintaining these connections received special
attention in the Semantic Web community along with the problem of creating
them (e.g., OKKAM [18] and CRS [19]). A particularly interesting approach is
idMesh [20], where maintenance of links constitutes a complementary stage of
the link discovery process: the system combines coreference links into graphs
and considers their impact on each other to reason about their correctness and
reliability of their sources. While these solutions focused on instance-level links,
the UMBEL ontology4 was developed to connect schemas used by Linked Data
repositories. It provides an important “common denominator” for different on-
tologies, but, in our view, it does not always capture the actual usage patterns of
ontological terms, but provides instead its own view on data, which often differs
from other ontologies (e.g., the class umbel:Dragon contains such instances as
dbpedia:Azure Dragon describing the creature from the Chinese mythology and
dbpedia:Bernard Guasch referring to a CEO of the French rugby team “Catalans
Dragons”). The VoiD ontology5 provides meta-level descriptions of repositories
including their main topic. However, these descriptions do not go into detail
about the sets of individuals, which a dataset contains.

These approaches, however, focus either on the schema or the data level and
do not consider them in combination, in particular, how mappings between enti-
ties at both levels influence each other. Our approach can be seen as complemen-

4 http://www.umbel.org/
5 http://rdfs.org/ns/void/html

tary to these methods as it takes into account which schema-level mappings are
needed to discover coreference links between instances and which schema-level
relations are implied by available instance-level correspondences.

3 Overview: example scenarios and the overall workflow

As was said before, the focus of our approach was to produce schema-level map-
pings to assist instance-level coreference resolution. These mappings are primar-
ily needed to identify, which subsets of two data repositories are likely to contain
co-referring individuals, so that such subsets can be processed by a link discov-
ery algorithm afterwards. Let us consider an example scenario, where deriving
such mappings is problematic and hampers coreference resolution (Fig. 1). Both

Fig. 1. DBPedia and DBLP: exploiting schema-level links with third-party datasets.
Solid arrows show existing owl:sameAs (=) and rdf:type links. Dashed arrows repre-
sent discovered schema relations. The system identifies the subset of dbpedia:Person
instances, which overlaps with DBLP foaf:Person instances, as a union of classes de-
fined in YAGO.

DBPedia and DBLP datasets contain individuals representing computer scien-
tists. In many cases the same person is described in both repositories, but under
different URIs. However, only a small proportion of possible coreference links be-
tween them is available6. More links can be discovered by performing automatic
coreference resolution, but this task is complicated by two issues:

– Datasets do not contain overlapping properties for their individuals apart
from personal names.

6 196 links in total in DBPedia 3.2 on 13/06/2009

– Individuals which belong to overlapping subsets are not distinguished from
others: in DBLP all paper authors belong to the foaf:Person class, while in
DBPedia the majority of computer scientists is assigned to a generic class
dbpedia:Person and not distinguished from other people. As a result, it be-
comes complicated to extract the subset of computer scientists from DBPedia
which can be also represented in DBLP.

Applying name comparison for all foaf:Person and dbpedia:Person individuals
is likely to produce many false positive results because of ambiguity of personal
names. Before performing instance matching we need to narrow the context
and exclude from comparison individuals which are unlikely to appear in both
datasets. Since the actual schema ontologies used by repositories, which have to
be connected, are not sufficiently detailed, then evidence data defined in other
data sources should be utilized.

For the reasons outlined in section 2, instance-based ontology matching tech-
niques are particularly suitable to infer schema-level mappings in the Linked
Data environment. These techniques operate on ontologies, which share the same
sets of individuals. Sometimes this scenario is present in Linked Data reposito-
ries directly: for instance, in the example shown in Fig. 1, DBPedia individuals
are structured by the DBPedia own ontology, but also have rdf:type links to the
classes defined in the YAGO7 and Umbel ontologies. However, more often such
sets can be constructed by clustering together individuals connected via exist-
ing owl:sameAs coreference links. Such sets are likely to be incomplete because
intermediate datasets may not contain all individuals represented in their neigh-
bour repositories or because some links on the path are not discovered, but they
can still be used to derive relations between classes.

A crucial difference between the Linked Data environment and the traditional
ontology matching scenario, which focuses on matching two ontologies, is the
possibility of using individuals and concepts defined in other repositories and
links between them as background knowledge. In our approach we exploit two
types of background knowledge:

– Schema-level evidence from third-party repositories.
– Data-level evidence from third-party repositories.

In the following subsections 3.1 and 3.2 we will describe these types of evidence
and briefly outline how they are used to produce schema-level mappings. Then,
in the subsection 3.3 we will briefly describe the overall workflow of our KnoFuss
system, which employs these mappings to discover new coreference links between
individuals.

3.1 Schema-level evidence

In the example shown in Fig. 1 the problem is caused by insufficiently detailed
classification of individuals provided by the repositories’ ontologies. In this sit-
uation additional schema-level information has to be introduced from external
sources.
7 http://www.mpi-inf.mpg.de/yago-naga/yago/

Individuals in DBPedia are connected by rdf:type links to classes defined in
the YAGO repository. The YAGO ontology is based on Wikipedia categories and
provides a more detailed hierarchy of classes than the DBPedia ontology. Our
algorithm uses this external ontology to identify the subset of DBPedia which
overlaps with the DBLP repository. The procedure involves the following steps:

1. Construct clusters of identical individuals from DBPedia and DBLP using
existing owl:sameAs mappings. In this scenario each cluster corresponds to
one owl:sameAs link and contains two individuals: one from DBLP and one
from DBPedia.

2. Connect these clusters to classes in the YAGO and DBLP ontologies respec-
tively. In the later case only the class foaf:Person is involved. For example,
the cluster containing the individual dbpedia:Andrew Herbert is connected
to several YAGO classes (e.g., yago:MicrosoftEmployees, yago: BritishCom-
puterScientists and yago:LivingPeople) and to foaf:Person.

3. Infer mappings between YAGO classes and the foaf:Person class used in
DBLP using instance-based matching (see section 4). A set of overlapping
YAGO classes is produced as a result: e.g., mappings between foaf:Person
and yago:MicrosoftEmployees and between foaf:Person and yago: British-
ComputerScientists.

4. Run instance-level coreference resolution for individuals belonging to mapped
classes to discover more coreference resolution links. For example, at this
stage we discover the link between the individual dbpedia:Charles P. Thacker
belonging to the class yago:MicrosoftEmployees and its DBLP counterpart,
which did not exist in the original link set.

3.2 Data-level evidence

Data-level evidence includes individuals defined in third-party repositories and
coreference links to and from them. The scenario shown in Fig. 2 illustrates the
use of this type of evidence. The LinkedMDB repository8 contains data about
movies structured using a special Movie ontology. Many of its individuals are
also mentioned in DBPedia under different URIs. Some of these coreferent indi-
viduals, in particular, those belonging to classes movie:film and movie:actor, are
explicitly linked to their counterparts in DBPedia by automatically produced
owl:sameAs relations. However, for individuals of some classes, direct links are
not available. For instance, there are no direct links between individuals of the
class movie:music contributor representing composers, whose music was used in
movies, and corresponding DBPedia resources. Then, there are relations of the
type movie:relatedBook from movies to related books in RDF Book Mashup
but not to books mentioned in DBPedia. Partially, such mappings can be ob-
tained by computing a transitive closure for individuals connected by coreference
links. However, many links are missed in this way because of the omission of
an intermediate link in a chain (e.g., 32% of movie:music contributor instances

8 http://data.linkedmdb.org/

Fig. 2. LinkedMDB and DBPedia: exploiting instance-level coreference links with
third-party datasets. Solid arrows show existing owl:sameAs (=) and movie:relatedBook
links. Dashed arrows connect sets containing potentially omitted links.

were not connected to corresponding DBPedia instances). Again, such links can
be discovered by comparing corresponding subsets of LinkedMDB and DBPe-
dia directly. To discover these subsets our approach computes a transitive clo-
sure over existing mappings and combines co-referring individuals into clusters.
These clusters are used as evidence for the schema matching procedure to derive
schema-level mappings: in our example, we derive the correspondence between
movie:music contributor and dbpedia:Artist and the rdfs:range relation between
the property movie:relatedBook and the class dbpedia:Book. These mappings are
used afterwards to perform coreference resolution over related subsets.

3.3 KnoFuss architecture and the fusion workflow

Performing integration at the data level constitutes the main focus of our data
fusion tool called KnoFuss [2], originally implemented to merge datasets (knowl-
edge bases) structured according to the same ontology. The KnoFuss architecture
implements a modular framework for semantic data fusion. The fusion process is
divided into subtasks as shown in the Fig. 3 and the original architecture focuses
on its second stage: knowledge base integration. The first subtask is coreference
resolution: finding potentially coreferent instances based on their attributes. The
next stage, knowledge base updating, refines coreferencing results taking into ac-
count ontological constraints, data conflicts and links between individuals (algo-
rithms of this stage were not employed in the tests described in this paper). The

Fig. 3. Fusion task decomposition incorporating schema matching.

tool uses SPARQL queries both to select subsets of data for processing and to
select the most appropriate processing techniques depending on the type of data.
In order to make the tool applicable to datasets, which use different ontologies,
it was extended with the ontology integration stage. This stage consists of two
subtasks: ontology matching, which produces mappings between schema-level
concepts, and instance transformation, which uses these mappings to translate
SPARQL queries into different ontologies, so that the following stages can oper-
ate in the same way as in the single-ontology scenario. In the workflow described
in this paper the ontology integration stage is performed in a “bottom-up” way
exploiting links defined at the data level while the knowledge base integration
stage uses them in a “top-down” way. In sections 4 and 5 we will describe these
two main stages of the workflow in more detail.

4 Inferring schema mappings: the “bottom-up” stage

The process of inferring schema mappings starts by composing clusters of indi-
viduals from different repositories. At this stage pairs of connected individuals
belonging to different datasets are retrieved. Then the system forms clusters of
coreferent individuals by computing transitive closures over available links.

These clusters represent the basic evidence, which we use to infer schema-
level mappings. For each individual in a cluster we extract its class assertions. We
consider that a cluster belongs to a certain class if at least one individual from
this cluster belongs to a class. At this stage classes which are used in different
datasets are always treated as different classes, even if they have the same URI.
For instance, in our example, the Movie ontology used in LinkedMDB and the
Music ontology used in Musicbrainz both extend the standard FOAF ontology.
But we treat the class foaf:Person in both these ontologies as two distinct classes:
foaf:Person@Movie and foaf:Person@Music. This is done in order to discover the
actual usage pattern for each class, which may implicitly extend its ontological
definition, as was pointed out before.

At the next step we construct mappings between classes. As we said be-
fore, instead of equivalence and subsumption the algorithm produces a special
type of relation, which we called #overlapsWith. Formally this relation is similar
to the umbel:isAligned property9 and states that two classes share a subset of
their individuals. However, in our case, a quantitative assessment of the rela-
tion is necessary to distinguish between strongly correlated classes (like dbpe-
dia:Actor and movie:actor) and merely non-disjoint ones (like movie:actor and
dbpedia:FootballPlayer, which share several instances such as “Vinnie Jones”).
This relation has a quantitative measure varying between 0 (meaning the same
as owl:disjointWith) and 1 (meaning that there is a rdfs:subClassOf relation in
one direction or both). We calculate similarities between classes based on the
sets of clusters assigned to them. Two criteria are used to produce the output
set of #overlapsWith relations between classes:

1. The value of the overlap coefficient compared to a threshold.

sim(A,B) = overlap(c(A), c(B)) =
|c(A) ∩ c(B)|

min(c(A), c(B))
≥ toverlap,

where c(A) and c(B) are sets of instance clusters assigned to classes A and
B respectively. The overlap coefficient was chosen as a similarity metric to
reduce the impact of dataset population sizes. If the first dataset is populated
to a lesser degree than the second one, then for most classes |c(A)| << |c(B)|.
In this case relatively small changes in |c(B)| would have a big impact on
such distance metrics as Jaccard score or Dice coefficient, while different
values of |c(A)| would not change the value significantly.

2. Choosing the “best match” mapping among several options. It is possible
that for the same class, A, several relations are produced, which connect
it to classes at different levels of the hierarchy. For instance, we can have
both overlapsWith(A, B) and overlapsWith(A, C), where B v C. In our
scenario the relation with a more generic class will always override the more
specific one: it will mean that individuals of A will have to be compared to
individuals of C. Only one such relation should be chosen, and the original
overlap coefficient value cannot be used as a criterion: if |c(A)| ≤ |c(B)|, then
the relation sim(A,B) ≤ sim(A,C) always holds. Selecting the relation with
the more generic class will mean that possibly more coreference resolution
links will be discovered between individuals of A and C \ B. On the other
hand, if the overlap between A and C \ B is small and |C \ B| is big, then
more erroneous mappings can be produced and the damage to results quality
due to the loss of precision will be higher than a possible gain from recall
increase. To make this decision we use the following criterion:

(|A ∩ C| − |A ∩B|)/|A ∩ C|
(|C| − |B|)/|C|

≥ λ,

where λ reflects both the expected ratio of errors for the instance corefer-
ence resolution algorithm and relative importance of precision comparing to

9 http://www.umbel.org/technical documentation.html

recall. If the inequality holds, then overlapsWith(A, C) is chosen, otherwise
overlapsWith(A, B) is preferred.

In our tests we used an additional restriction: pairs of classes (A,B) where
either |A| = 1, |B| = 1 or |A ∩ B| = 1 were ignored. This was done to filter
out weak overlap mappings such as the one between foaf:Person@DBLP and
yago:PeopleFromRuralAlberta, which led to noise at the instance-level matching
stage.

In general, schema-level mappings obtained by the system in this way can
be saved and used on its own in any scenario where individuals stored in several
datasets have to be queried by class. As was said before, in our approach we
focus on one specific use case scenario where these mappings are reused at the
“top-down” stage of the KnoFuss workflow to produce coreference resolution
links between individuals and improve the recall in comparison with existing
relations.

5 Exploiting inferred schema mappings for coreference
resolution: the “top-down” stage

The schema-level mappings obtained at the previous stage are used to identify
sets of individuals in different repositories, which are likely to contain equivalent
individuals not discovered before. These sets of relevant schema-level mappings
are provided as input to the instance transformation stage of the KnoFuss tool
(Fig. 3). It uses schema mappings to translate SPARQL queries, which select
sets of individuals to be compared, from the vocabulary of one ontology into the
terms of another one. It is possible that a class in one ontology is found to be
connected to several classes in another ontology (not related via a rdfs:subClassOf
relation). Such mappings are aggregated into a single ClassUnion mapping. For
instance, in our DBLP example to select individuals from the DBLP dataset we
use the following query:

SELECT ?uri WHERE
{ ?uri rdf:type foaf:Person}

To select potentially comparable individuals from the DBPedia repository this
query is translated into:

SELECT ?uri WHERE
{ {?uri rdf:type yago:AmericanComputerScientists}
UNION { ?uri rdf:type yago:GermanComputerScientists}
UNION { ?uri rdf:type yago:GoogleEmployees}
UNION... }

Using these translated queries individuals from both repositories are processed in
the same way as if they shared the same schema. The system can employ several
basic matching techniques, which can be selected and configured depending on
the type of data as described in [2].

To avoid redundancy and potential errors, individuals, which were already
connected either directly or indirectly via a third-party dataset, are excluded

from analysis. The final set of instance-level mappings produced by the tool
then can be added to existing ones.

A decision, which has to be taken at this stage, concerns the choice, whether
two subsets of individuals should be compared at all: it is possible that all rel-
evant links between individuals were already discovered and the algorithm can
only produce errors. A naive way to decide it could be to use an upper thresh-
old on the overlap degree between classes assuming that many existing links
between individuals can mean that all possible ones were already discovered.
However, this misses important information regarding how existing mappings
were produced. Using a coreference resolution system in combination with a link
maintenance and trust computation system such as idMesh [20] can be interest-
ing.

6 Evaluation

For our initial experiments we used three scenarios mentioned before:

1. Finding equivalence links between individuals representing people in DBPe-
dia and DBLP (auxiliary dataset: YAGO, gold standard size 1229).

2. Finding equivalence links between movie:music contributor individuals in
LinkedMDB and corresponding individuals in DBPedia (auxiliary dataset:
Musicbrainz, gold standard size 942).

3. Finding movie:relatedBook links between movie:film individuals in Linked-
MDB and books mentioned in DBPedia (auxiliary dataset: RDF Book Mashup,
gold standard size 419).

Our goal was to check the applicability of our approach in general and, in par-
ticular, the possibility to improve coreference resolution recall in comparison
with already existing links. Thus, all three scenarios were of relatively small
scale so that both precision and recall could be checked manually and the actual
coreference resolution was performed using simple label-based similarity (Jaro
metric10). Test results (precision, recall and F1 measure) are given in the Table
6. For each scenario three sets of results are provided:

– Baseline, which involves computing the transitive closure of already existing
links.

– Results obtained by the algorithm when applied to all comparable individu-
als.

– Combined set of existing results and new results obtained by the algorithm.

As was expected, in all cases applying instance-level coreference resolution using
automatically produced class-level mappings led to improvement in recall due to
the discovery of previously missed mappings, and to a better overall performance,
as measured by the F1-measure. In all cases, the best performance and F1-
measure was achieved by combining newly produced mappings with existing
10 In the first two scenarios the metric was adapted for personal names, e.g., to match

complete name with initials

Table 1. Test results

Dataset Test Precision Recall F1

DBPedia vs DBLP
Baseline 0.90 0.14 0.25
All individuals 0.95 0.88 0.91
Combined set 0.93 0.89 0.91

LinkedMDB vs DBPedia Baseline 0.99 0.68 0.81
(music contributors) All individuals 0.98 0.91 0.94

Combined set 0.98 0.97 0.98

LinkedMDB vs DBPedia Baseline 0.97 0.82 0.89
(books) All individuals 0.98 0.90 0.93

Combined set 0.96 0.97 0.96

ones. It means that the algorithms, which produced these sets of links, could
generate complementary results and no set of links was redundant.

Obviously, the precision of the combined set of links was lower than the
precision of the best algorithm in all three tests. In our tests this decrease was
relatively small and was compensated by the increase in recall. However, in cases
where the same data were already processed by algorithms of higher quality, the
situation can be different. It makes the issue of tracing provenance of existing
links important, as mentioned in section 5.

Considering the schema matching stage we found two factors which were po-
tential causes of errors. The first factor was insufficient evidence. When only a
small number of existing coreference links are available as evidence, distinguish-
ing between “weakly overlapped” and “strongly overlapped” classes is problem-
atic. For example, in the DBPedia-DBLP scenario the class yago: FellowsOfWolf-
sonCollege,Cambridge received a higher overlap score with foaf: Person@DBLP
than the class yago:IsraeliComputerScientists, which in fact was strongly over-
lapped. This happened because for both of these classes there were only 2 ev-
idence links available and the class yago: FellowsOfWolfsonCollege,Cambridge
contained fewer instances. At the coreference resolution stage instances of such
weakly overlapped classes caused the majority of false positive mappings because
of name ambiguity.

The second factor concerned the quality of the ontologies themselves and of
the class assertion statements. For instance, in the DBPedia dataset many musi-
cians were not assigned to an appropriate class dbpedia:MusicalArtist but instead
were assigned to more general classes dbpedia:Artist or even dbpedia:Person. As
a result the “best fit” mappings produced by the algorithm did not correspond
to the originally intended meaning of classes, because this originally intended
meaning was not followed in the dataset (e.g., based on instance data the class
movie:music contributor was mapped to the class dbpedia:Artist instead of db-
pedia:MusicalArtist). More serious issues involved instances being assigned to
classes, which were actually disjoint (e.g., the individual dbpedia:Jesse Ventura
was classified as both a dbpedia:Person and a dbpedia:TelevisionShow). While
in our scenarios spurious schema mappings caused by these errors were filtered

out by the threshold, in other cases their impact can be significant. Explicit
specification of ontological constraints can help to deal with such situations.

7 Conclusion and future work

In this paper we presented an approach which uses existing links between in-
dividuals stored in different repositories as evidence to generate schema-level
mappings between classes. A distinctive feature of our approach is the use of in-
formation defined in third-party datasets as background knowledge to enhance
instance-based ontology matching techniques. These mappings are then used to
discover new coreference links between individuals, which were missed before.
Our initial experiments have shown an improvement in resulting coreference res-
olution performance in comparison with existing sets of links. However, there
are still issues, which have to be resolved in the future work.

First, we plan to continue our experiments with instance-based schema align-
ment algorithms over different public datasets in order to evaluate their capabil-
ities when applied to large networks of connected datasets and determine factors
and conditions in real-world datasets, which influence their performance, in or-
der to improve the reusability of the approach. In particular, one such factor is
the presence of subsets of individuals, for which there are few or no connections
available to infer any schema-level patterns.

In the test scenarios described in this paper there was no need for matching
properties in addition to classes: only data described by standard attributes such
as rdfs:label, foaf:name and dc:title was available. In the future inferring schema
mappings between properties and reuse of axioms should be elaborated.

Considering the data-level integration stage, as mentioned in the section 5,
there is an issue of automatic assessment of datasets and distinguishing the cases
when new coreference links can be discovered with a sufficient precision.

Finally, there are infrastructural issues, which have to be taken into account
to make the approach reusable. In particular, this concerns storing, publishing
and maintaining both schema-level and instance-level links. There are several in-
teresting directions to follow, such as applying the coreference bundles approach
[19] instead of maintaining sets of pairwise owl:sameAs links and integrating
with the idMesh approach [20], which reasons about sets of coreference links
and their reliability.

8 Acknowledgements

This work was funded by the X-Media project (www.x-media-project.org) spon-
sored by the European Commission as part of the Information Society Technolo-
gies (IST) programme under EC grant number IST-FP6-026978.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) (to appear)

2. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Integration of semantically anno-
tated data by the KnoFuss architecture. In: EKAW 2008, Acitrezza, Italy (2008)

3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4) (2001) 334–350

4. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (2007)
5. Gracia, J., Mena, E.: Matching with CIDER: Evaluation report for the OAEI 2008.

In: 3rd Ontology Matching Workshop (OM’08), Karlsruhe, Germany (2008)
6. Zhang, X., Zhong, Q., Li, J., Tang, J., Xie, G., Li, H.: RiMOM results for OAEI

2008. In: 3rd Ontology Matching Workshop (OM’08), Karlsruhe, Germany (2008)
7. Udrea, O., Getoor, L., Miller, R.J.: Leveraging data and structure in ontology

integration. In: SIGMOD’07, Beijing, China (2007) 449–460
8. Aleksovski, Z., Klein, M.C.A., ten Kate, W., van Harmelen, F.: Matching unstruc-

tured vocabularies using a background ontology. In: EKAW 2006. (2006) 182–197
9. Sabou, M., d’Aquin, M., Motta, E.: Exploring the Semantic Web as background

knowledge for ontology matching. Journal of Data Semantics XI (2008) 156–190
10. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American

Statistical Association 64(328) (1969) 1183–1210
11. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering 19(1) (2007) 1–16
12. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-

tion spaces. In: SIGMOD’05, New York, NY, USA, ACM (2005) 85–96
13. Kalashnikov, D.V., Mehrotra, S.: Domain-independent data cleaning via analysis

of entity-relationship graph. ACM Transactions on Database Systems 31(2) (2006)
716–767

14. Säıs, F., Pernelle, N., Rousset, M.C.: L2R: a logical method for reference reconcil-
iation. In: AAAI-07, Vancouver, BC, Canada (2007) 329–334

15. Shen, W., DeRose, P., Vu, L., Doan, A., Ramakrishnan, R.: Source-aware entity
matching: A compositional approach. In: ICDE 2007, Istanbul, Turkey (2007)

16. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework
for the web of data. In: Workshop on Linked Data on the Web (LDOW 2009),
Madrid, Spain (2009)

17. Hassanzadeh, O., Consens, M.: Linked movie data base. In: Workshop on Linked
Data on the Web (LDOW 2009), Madrid, Spain (2009)

18. Bouquet, P., Stoermer, H., Bazzanella, B.: An Entity Name System (ENS) for the
Semantic Web. In: ESWC 2008. (2008) 258–272

19. Glaser, H., Jaffri, A., Millard, I.: Managing co-reference on the semantic web. In:
Workshop on Linked Data on the Web (LDOW 2009), Madrid, Spain (2009)

20. Cudré-Mauroux, P., Haghani, P., Jost, M., Aberer, K., de Meer, H.: idMesh: Graph-
based disambiguation of linked data. In: WWW 2009, Madrid, Spain, ACM (2009)
591–600

