
sPLMap: A probabilistic approach to schema matching

Henrik Nottelmann1 and Umberto Straccia2

1 Institute of Informatics and Interactive Systems, University of Duisburg-Essen,
47048 Duisburg, Germany,nottelmann@uni-duisburg.de

2 ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy,straccia@isti.cnr.it

Abstract. This paper introduces the first formal framework for learning map-
pings between heterogeneous schemas which is based on logics and probability
theory. This task, also called “schema matching”, is a crucial step in integrating
heterogeneous collections. As schemas may have different granularities, and as
schema attributes do not always match precisely, a general-purpose schema map-
ping approach requires support for uncertain mappings, and mappings have to be
learned automatically. The framework combines different classifiers for finding
suitable mapping candidates (together with their weights), and selects that set of
mapping rules which is the most likely one. Finally, the framework with different
variants has been evaluated on two different data sets.

1 Introduction

Federated digital libraries integrate a large number of legacy libraries and give users the
impression of one coherent, homogeneous library. These libraries use different schemas
(called source schemas). As users cannot deal efficiently with this semantic heterogene-
ity, they only see one system-wide or personalized target (or global) schema, which is
defined ontologically and independent from the libraries. Then, queries are transformed
from the target (global) schema into the source schemas, and documents vice versa
(which is out of the scope of this paper).

Our framework sPLMap (probabilistic, logic-based mapping between schemas) com-
bines logics with probability theory describing schema mappings. In contrast to most
of the approaches available so far, this allows dealing with schemas of different gran-
ularity. If the target schema contains the two attributes “author” and “editor”, and the
source schema only the more general attribute “creator”, this source attribute cannot
be mapped onto “author” precisely but only with a specific probability. Systems with
purely deterministic mappings fail in such settings.

Here, we focus on learning these schemas using documents in both schemas, but
not necessarily the same documents. As a by-product, we also compute a theoretically
founded measurement for the quality of a mapping.

For schemas, we adopt the document model presented in [7] with only slight modi-
fications. Like in database systems, data types with comparison operators are explicitly
modelled. However, vagueness of query formulations is one of the key concepts of
Information Retrieval. Thus, it is crucial that comparison operators have a probabilis-
tic interpretation. Vagueness is required e.g. when a user is uncertain about the exact
publication year of a document or the spelling of an author name. These comparison



operators are often called “vague predicates”, we will use the term “operator” later to
avoid confusion with logical predicates. For a specific attribute value the vague predi-
cate yields an estimate of the probability that the condition is fulfilled from the user’s
point of view — instead of a Boolean value as in DB systems. The schema mapping
rules also cover the problem of converting one query condition, a triple of attribute
name, operator and comparison value, in another schema, where potentially also the
operator or the comparison value has to be modified.

The paper is structured as follows: The next section introduces a formal framework
for schema mapping, based on a special probabilistic logic. Section 3 presents a the-
oretically founded approach for learning these schema mappings which combines the
results of different classifiers. This approach is evaluated on two different test beds in
section 4. Then, section 5 describes how this work is related to other approaches. The
last section summarizes this paper and gives an outlook over future work.

2 Formal framework for schema mapping

This section introduces sPLMap, a formal, logics-based framework for schema map-
ping. It shares a lot of ideas from other approaches, e.g. [5], but is different as it is the
first one which also takes data types, predicates and query mapping into consideration.
It is also the first framework which is able to cope with the intrinsic uncertainty of the
mapping process. The framework is based on probabilistic Datalog [8].

2.1 Probabilistic Datalog

Probabilistic Datalog (pDatalog for short) is an extension to Datalog, a variant of predi-
cate logic based on function-free Horn clauses. Negation is allowed, but its use is limited
to achieve a correct and complete model (negation is not required in this paper anyway).
In pDatalog every fact or rule has a probabilistic weight 0< α≤ 1 attached, prefixed to
the fact or rule:

α A← B1, . . . ,Bn .

Here,A denotes an atom (in the rule head), andB1, . . . ,Bn (n≥ 0) are atoms (the sub
goals of the rule body). A weightα = 1 can be omitted. Each fact and rule can only
appear once in the program, to avoid inconsistencies. The intended meaning of a rule
αr is that “the probability that any instantiation of ruler is true isα”. The following
example pDatalog program expresses the fact that a person is with probability of 50%
male:

person(mary) ←
0.8 person(ed) ←

0.5 male(X) ← person(X)

Thus,Pr(male(mary)) = 0.5, andPr(male(ed)) = 0.8×0.5 = 0.4. Formally, an in-
terpretation structure (w. r. t. the Herbrand universe) in pDatalog is a tupleI = (W ,µ).
Here,W denotes a possible world (the instantiation of a the deterministic part of a
pDatalog program plus a subset of the probabilistic part, where all probabilities are re-
moved in the latter), andµ is a probability distribution overW . An interpretation is a



tuple I = (I ,w) such thatw ∈W . The notion if truth w. r. t. an interpretation and a
possible world can be defined recursively:

(I ,w) |= A iff A∈ w ,

(I ,w) |= A← B1, . . . ,Bn iff (I ,w)|= B1, . . . ,Bn⇒ (I ,w)|= A ,

(I ,w) |= αr iff µ({w′ ∈W : (I ,w′)|= r}) = α .

An interpretation is a model of a pDatalog program iff it entails every fact and rule.
Given ann-ary atomA for predicateĀ and an interpretationI = (I ,w), the instantiation
AI of A w. r. t. the interpretationA is defined by allαĀ(c1, ...,cn) with I |= αĀ(c1, ...,cn).
With abuse of notation, we typically consider a relation instance as a set of proba-
bilistically weighted tuples (the arguments of the ground facts), and do not distinguish
between a relationR (ann-ary predicate) and the relation instanceRI .

2.2 Data types

We first assume a finite setD of elementary data types. The domaindom(d) for a data
typed∈D defines the set of possible values ford. Examples areText (for English text),
Name (person names, e.g. “John Doe”),Year (four digit year numbers, e.g. “2004”) or
DateISO8601 for the ISO 8601 format of dates (e.g. “2004-12-31”). We further use a
setO of operators (sometimes also called “data type predicates”). An operator is a bi-
nary relationo⊆ dom(d1(o))×dom(d2(o)) defined on two data typesd1(o),d2(o)∈D,
e.g.contains for text (searching for stemmed terms),> or = for years, orsounds-like
for names. The operator relations have a probabilistic interpretation (which is the prob-
ability that the first value matches the second one) for supporting vague queries. In our
scenario,D contains the data typeDOCID (the set of all document ids); only the identity
operatoridDOCID is defined on it.

As we want to use variables for operators, we use a bijective mapping between
operatorso∈O and new constants ˆo∈ Ô for a set of constantŝO. Then, these operators
are combined in a ternary predicateop:

op =
⋃

o∈O

{ô}×o .

Again, we do not explicitly distinguish between the operatorso and their constants ˆo,
and use the former notation for both of them. In addition, we use a predicateconv for
value conversion between operators:

convI ⊆
⋃

o1,o2∈O {ô1}×dom(d1(o1))×dom(d2(o1))×
{ô2}×dom(d1(o2))×dom(d2(o2)) .

The informal meaning ofconv(O,X,Y,O′,X′,Y′) is that op(O,X,Y) can be trans-
formed intoop(O′,X′,Y′). Also conv can be uncertain, where the weight denotes the
probability that this is a correct conversion. For example,conv may contain the tu-
ples for the data typesYear2 (2-digit year numbers),Year4 (4-digit year numbers),
FirstName(only first names) andName (complete names):

(idYear2, “04′′, “04′′,idYear4, “2004′′, “2004′′) ,

(≥Year2, “04′′, “06′′,>Year4, “2005′′, “2005′′) ,

(idFirstName, “John′′, “John′′,idName, “John Doe′′, “John Doe′′) with probability < 1.



2.3 Schemas and schema mappings

A schemaR = 〈R1, . . . ,Rn〉 consists of a non-empty finite tuple of binary relation sym-
bols. Each relation symbolRi has a data typedRi ∈ D. Then, for a (potentially uncer-
tain) interpretationI , a schema instance is a tupleRI = 〈RI

1, . . . ,R
I
n〉, where each relation

symbolRi is mapped onto a relation instance with the correct data types:

Ri ⊆ DOCID×dom(dRi ) .

Informally, this is the relational model of linear schemas with multi-valued schema
attributes. Each attribute is modelled as a binary relation, which stores pairs of a docu-
ment id and a value for that attribute.

We use the following two schemas throughout this presentation:

T = 〈creator,date〉 , dcreator = Name , ddate = DateISO8601 ,

S = 〈author,editor,created〉 , dauthor = deditor = Name , ddate = DateEnglish .

The following example documents are used for explaining the schema matching algo-
rithm:

TJ := {creator(d, ′′Miller′′), creator(d, ′′Smith′′), date(d, ′′2004−12−31′′)},
SI := {author(d, ′′Miller′′), editor(d, ′′Smith′′), date(d, ′′Dec31,2004′′)}.

Schema mappings follow the GLaV approach [6]: A mapping is a tupleM =
(T,S,Σ), whereT denotes the target (global) schema andS the source (local) schema
with no relation symbol in common, andΣ is a finite set of mapping constraints (pDat-
alog rules) of one of the forms (Tj andSi are target and source attributes, respectively):

α j,i Tj (D,X) ← Si(D,X1),conv(iddTj
,X,X, iddSi

,X1,X1)

op(O,X,V) ← conv(O,X,V,O1,X1,V1),op(O1,X1,V1) .

For simplicity of representation, we drop theconv literal in the remainder of this paper.
In our example,creator subsumes both authors and editors, thus we have these

mapping rules:

creator(D,V) ← author(D,V) ,

creator(D,V) ← editor(D,V) ,

date(D,V) ← date(D,V) .

For a schema mapping instance of a mappingM = (T,S,Σ) and a fixed interpretation
I for S, an interpretationJ for T is a solution forI underM if and only if 〈J, I〉 (the
combined interpretation overT andS) satisfiesΣ. The minimum solution is denoted
by J(I ,Σ), the corresponding relation instance withT(I ,Σ) (which is also called a mini-
mum solution). Using pDatalog rules, the minimum solutionT(I ,Σ) is exactly the result
of applying the rulesΣ onto the instanceSI . In our example, we haveTJ = T(I ,Σ).



3 Learning schema mappings

This paper only deals with learning schema mappings, i.e. finding associations between
attributes. The assumption is that a set of data typesD and a set of operatorsO with the
corresponding relationsop andconv are both already given. Learning schema mapping
in sPLMap consists of four steps:(i) we guess a potential schema mapping, i.e. a set
of rulesΣk of the formTj(x)← Si(x) (rules without weights yet);(ii) we estimate the
quality of the mappingΣk; (iii ) among all possible setsΣk, we select the “best” schema
mapping according to our quality measure; and finally(iv) the weightsα for rules in
the selected schema mapping have to be estimated.

3.1 Estimating the quality of a schema mapping

For two schemasT = 〈T1, . . . ,Tt〉 andS= 〈S1, . . . ,Ss〉 and two interpretationsI for Sand
J for T, the goal is to find a suitable setΣ of mapping constraints. In many cases, there is
no correspondence between the tuples in both instances, so that no non-trivial mapping
Σ ⊃ /0 exists. Thus, the goal is to find the “best” set of mapping constraintsΣ which
maximizes the probabilityPr(Σ,J, I) that the tuples in the minimum solutionT(I ,Σ)
underM = (T,S,Σ) and the tuples inT are plausible. Here,T(I ,Σ) denotes a schema
instance, andTj(I ,Σ) the instance of relationTj formed by the minimum solution. The
setΣ can be partitioned into setsΣ j with common headTj , whose minimum solutions
Tj(I ,Σ j) only contain tuples forTj :

Σ1 = {creator(D,V)← author(D,V) ,creator(D,V)← editor(D,V)} ,

T1(I ,Σ1) = {creator(d, ′′Miller′′), creator(d, ′′Smith′′)} ,

Σ2 = {date(D,V)← date(D,V)} ,

T2(I ,Σ2) = {date(d, ′′2004−12−31′′)} .

As a consequence, each target relation can be considered independently:

Pr(Σ,J, I) =
t

∏
j=1

Pr(Σ j ,J, I) .

The instancesTj(I ,Σ j) andTj are plausible if the tuples inTj(I ,Σ j) are plausible values
for Tj , and vice versa. Using Bayes’ theory,Pr(Σ j ,J, I) can be computed as:

Pr(Σ j ,J, I) = Pr(Tj |Tj (I ,Σ j )) ·Pr(Tj (I ,Σ j )|Tj )

= Pr(Tj (I ,Σ j )|Tj )2 ·
Pr(Tj )

Pr(Tj (I ,Σ j ))

= Pr(Tj (I ,Σ j )|Tj )2 ·
|Tj |

|Tj (I ,Σ j )|
.

As building blocks ofΣ j , we use the setsΣ j,i containing only one candidate rule
α j,i Tj(D,X)← Si(D,X):

Σ1,1 = {creator(D,V))← author(D,V))} Σ2,1 = {date(D,V))← author(D,V))}
Σ1,2 = {creator(D,V))← editor(D,V))} Σ2,2 = {date(D,V))← editor(D,V))}

Σ1,3 = {creator(D,V))← date(D,V))} Σ2,3 = {date(D,V))← date(D,V))} .



For s source relations and a fixedj, there are alsos possible setsΣ j,i , and 2s−1 non-
empty combinations (unions) of them, forming all possible non-trivial setsΣ j . To sim-
plify the notation, we setSi := Tj(I ,Σ j,i) for the instance derived by applying a single
rule. For computational simplification, we assume thatSi1 andSi2 are disjoint fori1 6= i2.
If Σ j is formed by ther single rule setsΣ j,i1, . . . ,Σ j,ir , then we obtain:

Pr(Tj (I ,Σ j )|Tj ) =
r

∑
k=1

Pr(Sik |Tj ) .

Thus, the probabilityPr(Σ,J, I) can be derived from theO(s· t) probabilitiesPr(Si |Tj).
Note, however, that this is only a trick for estimating the former probability. The final
output, the rule weights, use the “inverse direction”, i.e.α = Pr(Tj |Si). Section 3.4
shows how this rule probability is computed.

3.2 Estimating the probability that a mapping rule is plausible

Similar to LSD [3], the probabilityPr(Si |Tj) is estimated by combining different clas-
sifiersCL1, . . .CLn. Each classifierCLk computes a weightw(Si ,Tj ,CLk), which has to
be normalized and transformed intoPr(Si |Tj ,CLk) = f (w(Si ,Tj ,CLk)), the classifier’s
approximation ofPr(Si |Tj). We employ different normalization functionsf :

w(Si ,Tj ,CLk) 7→ Pr(Si |Tj ) ,

fid(x) := x ,

fsum(x) :=
x

∑i′ w(Si′ ,Tj ,Ck)
,

flin(x) := c0 +c1 ·x ,

flog(x) :=
exp(b0 +b1 ·x)

1+exp(b0 +b1 ·x)
.

The functionsfid, fsum and the logistic functionflog return values in[0,1]. For the
linear function, results below zero have to mapped onto zero, and results above one
have to be mapped onto one. The functionfsumensures that each value is in[0,1], and
that the sum equals 1. Its biggest advantage is that is does not use external parameters.
In contrast, the parameters of the linear and logistic function have to be learned by
regression in a system-training phase. This phase is only required once, and their results
can be used for learning arbitrary many schema mappings. Of course, normalization
functions can be combined. Often it is useful to bring the classifier weights in the same
range (usingfsum), and then to apply another normalization function with parameters
(e.g. the logistic function).

For the final probabilityPr(Si |Tj ,CLk), we have the constraint

0≤ Pr(Si |Tj ,CLk)≤
min(|Si |, |Tj |)

|Tj |
= min(

|Si |
|Tj |

,1) . (1)

Thus, the normalized value (which is in[0,1]) is multiplied with min(|Si |/|Tj |,1) in a
second normalization step.



The final predictionsPr(Si |Tj ,CLk) are then combined using the Total Probability
Theorem, which results in a weighted sum:

Pr(Si |Tj )≈
n

∑
k=1

Pr(Si |Tj ,CLk) ·Pr(CLk) . (2)

The probabilityPr(CLk) describes the probability that we rely on the judgment of
classifierCLk, which can for example be expressed by the confidence we have in that
classifier. We simply usePr(CLk) = 1

n for 1≤ k≤ n, i.e. the predictions are averaged.

3.3 Classifiers

Most classifiers require instances of both schemas. However, these instances do not
need to describe the same objects. The instances should either be a complete collection,
or a representative sample of it, e.g. acquired by query-based sampling [1]. Below, see
a list of classifiers we considered.

Same attribute names.This binary classifierCLN returns a weight of 1 if and only if
the two attributes have the same name, and 0 otherwise:

w(Si ,Tj ,CLN) :=
{ 1 , Si = Tj ,

0 , otherwise

Exact tuples. This classifierCLE (for testing and evaluation) measures the fraction of
the tuples inTj which also occur inSi = Tj(I ,Σ j,i):

w(Si ,Tj ,CLE) :=
|Si ∩Tj |
|Tj |

.

Correct literals. This classifierCLL (suitable in particular for numbers, URLs and
other facts) measures the fraction of the tuples inTj where the data value (the second
argument, without the document id) also occurs in any tuple inSi :

w(Si ,Tj ,CLL) :=
|{Tj (t1, t2) : Tj (t1, t2) ∈ Tj ,∃Tj (s1,s2) ∈ Si = Tj (I ,Σ j,i).s2 = t2}|

|Tj |
.

kNN classifier. A popular classifier for text and facts is kNN [15]. ForCLkNN, each
attribute acts as a category, and training sets are formed for every tuple inSl :

Train =
s⋃

l=1

{(Sl , t
′) : t ′ ∈ Sl} .

A probabilistic variant of the scalar product is used for computing the similarity values.
The valuest and t ′ are considered as bags of words, andPr(w|Si) andPr(w|Tj) are
computed as the normalized frequencies of the words in the instances:

RSV(t, t ′) = ∑
w∈t∩t ′

Pr(w|Si) ·Pr(w|Tj ) .



Naive Bayes text classifier.The classifierCLB uses a naive Bayes text classifier [15] for
text content. Again, each attribute acts as a category, and attribute values are considered
as bags of words (with normalized word frequencies as probability estimations). The
final formula is:

w(Si ,Tj ,CLB) = Pr(Si) · ∑
x∈Tj

∏
w∈x

Pr(w|Si) .

3.4 Estimating the weight of a rule

After a schema mapping (a set of rules) is learned, the weightsPr(Tj |Si) for these
rules have to be computed. The probabilityPr(Si |Tj) has already been computed for the
quality estimation and, thus, can easily be transformed in the rule weight using Bayes
theory:

Pr(Tj |Si) = Pr(Si |Tj ) ·
Pr(Tj )
Pr(Si)

= Pr(Si |Tj ) ·
|Tj |
|Si |

. (3)

As the final normalization step in section 3.2 ensures thatPr(Si |Tj)≤min(|Si |/|Tj |,1)
(see equation (1)), the resulting valuePr(Tj |Si) is always in[0,1].

This completes the schema mapping learning process.

4 Experiments for learning schema mappings

This chapter describes the experiments conducted so far for evaluating sPLMap.

4.1 Evaluation setup

This section describes the test sets (source and target instances) and the classifiers used
for the experiments. It also introduces different effectiveness measurements for evaluat-
ing the learned schema mappings (error, precision, recall). Experiments were performed
on two different test beds3:

– BIBDB contains over 3,000 BibTeX entries about information retrieval and related
areas. The documents are available both in BibTeX (source schema) and in a man-
ually created standard schema (from the MIND project), derived from BibTeX via
simple rules. Both schemas share a large amount of common attribute names.

– LOC is an Open Archive collection of the Library of Congress with about 1,700
documents, available in MARC 21 (source schema) and in Dublin Core (target
schema). MARC 21 has a higher granularity as DC, thus a lot of DC attribute
values are the concatenation of several MARC 21 attributes. Both schemas use a
completely different name scheme, thus they do not have attribute names in com-
mon.

Each collection is split randomly into four sub-collections of approximately the same
size. The first sub-collection is always used for learning the parameters of the normal-
ization functions (same documents in both schemas). The second sub-collection is used

3 http://faure.isti.cnr.it/~straccia/download/TestBeds/ecir05-exp.tar.gz



as source instance for learning the rules, and the third sub-collection is used as the target
instance. Finally, the fourth sub-collection is employed for evaluating the learned rules
(for both instances, i.e. we evaluate on parallel corpora).

Each of classifiers introduced in section 3.3 are used alone, plus the combinations
CLkNN+CLB+CLL andCLkNN+CLB+CLL +CLN. The three normalization functions
from section 3.2 (fsum, fminmaxand fid) are used; in every experiment, every classifier
used the same normalization function.

The probability of a tuplet in the given target instanceTJ
j is denoted by

Pr(Tj(d,v) ∈ TJ
j ). Often the target instance only contains deterministic data, then we

havePr(Tj(d,v) ∈ TJ
j ) ∈ {0,1}. Similarly, Pr(Tj(d,v) ∈ Tj(I ,Σ j)) ∈ [0,1] denotes the

probability of tuplet w. r. t. the minimal solution of the given source instance and the
learned schema mapping, i.e. by applying the schema mapping on the source instance.
Rule application includes mapping the resulting tuple weights onto 0 or 1, respectively,
in the case where a rule weightα outside[0,1] (due to a wrong estimation) leads to a
tuple weight which is less than zero or higher than one.

The error of the mapping is defined by:

E(M ) =
1

∑ j |U j |∑j
∑

Tj (d,v)∈U j

(Pr(Tj (d,v) ∈ TJ
j )−Pr(Tj (d,v) ∈ Tj (I ,Σ j )))2 ,

U j = Tj ∪Tj (I ,Σ j ) .

Here, the setU j contains the union of the given target instance tuples and the tuples cre-
ated by applying the mapping rules. For each of these tuples, the squared difference of
the given weightPr(t|Tj) in the target instance and the computed weightPr(t|Tj(I ,Σ j))
is computed. Furthermore, we evaluated if the learning approach computes the correct
rules (neglecting the corresponding rule weights). Similar to the area of document re-
trieval, precision defines how many learned rules are correct, and recall defines how
many correct rules are learned. Finally, the F-measure denotes the harmonic mean of
precision and recall. So, letRL denote the set of rules (without weights) returned by the
learning algorithm, andRA the set of rules (again without weights) which are the actual
ones. Then

precision:=
|RL∩RA|
|RL|

, recall :=
|RL∩RA|
|RA|

, F =
2

1
precision+ 1

recall

.

4.2 Results

In the experiments presented in this section, the learning steps are as follows:

1. Find the best schema mapping
(a) Estimate the plausibility probabilitiesPr(Si |Tj) for everySI ∈ S, Tj ∈ T using

the classifiers.
(b) For every target relationTj and for every non-empty subset of the 10 best4

schema mapping rules havingTj as head, estimate the probabilityPr(Σ j ,J, I).

4 These are the rules with the highest predictionPr(Si |Tj ).



(c) Select the rule setΣ j which maximizes the probabilityPr(Σ j ,J, I).

2. Estimate the weightsPr(Tj |Si) for the learned rules by convertingPr(Si |Tj), using
equation (3).

3. Compute the error, precision and recall as described above.

The results depicted in the tables 1 and 2 show that the LOC collection is much harder,
as the schemas have different granularities, and both schemas do not have any attribute
name in common. The error for the BIBDB collection can be quite low (below 0.1 for
CLL), while the error is in all but two cases above 0.5 for LOC. Precision is high for
both collections, but higher for BIBDB. As the learnerCLN cannot learn any rule for
LOC (as both schemas use completely different attribute names), the precision is not
defined. For the BIBDB collection, recall can be quite high (over 0.9 forCLkNN and the
combined classifiers). For LOC, however, the best recall achieved is 0.3171

Averaged on both collections and all normalization functions, the error is mini-
mized byCLkNN with an error of 0.2864, followed by the two combinations with an
error of 0.4334, followed byCLkNN+CLB +CLL and andCLkNN+CLB +CLL +CLN

(each 15-18% worse). Not surprisingly,CLN and CLE performed worst (more than
100% worse thanCLkNN). These results are replicated considering recall. Interestingly,
CLE yields the highest precision with 0.9250, followed byCLL (about 14% worse) and
CLkNN+CLB+CLL +CLN (about 23% worse). The worst precision (<=0.5 on average)
is obtained byCLN andCLB. This last result is due to the fact thatCLN does not work
on the LOC collection (with no attribute names in common), but perfectly works on the
BIBDB collection; whileCLB performs worst for both collection. Overall, combining
classifiers can reduce the error and increase recall and precision.

Averaged on both collections and all classifiers, the best normalization functions
w. r. t. the error areflog ◦ fsum (0.3331) andflin ◦ fsum (about 25% worse). Precision
is maximized for fid (0.7346), while recall is maximized forflog ◦ fsum and fid (both
about 0.45). The experiments show that using the trivial normalization functionfid
dramatically increases the error (70%), but performs best w. r. t. precision and recall.
In other words, the trivial normalization function helps in finding the correct rules, but
fails in finding good rule weights (for which a different normalization function has to
be applied).

The best classifier/normalization function combination isCLkNN with flog ◦ fsum

with an error of 0.1261. Best precision is obtained for usingCLE with any normal-
ization function (virtually no difference on average). Recall is maximized forCLkNN+
CLB+CLL +CLN with fid (surprisingly), followed by the other normalization functions
for CLkNN.

As an illustrative example, in one of BIBDB runs, these two rules are returns for the
target attributebooktitle:

0.51standard_booktitle(D,X) ← BIBDB_booktitle(D,X′),

conv(idText,X,X,idText,X′,X′)

0.98standard_booktitle(D,X) ← BIBDB_journal(D,X′),

conv(idText,X,X,idText,X′,X′)



Notice that, for instance, a query forbooktitle is then converted into the source
schema, using the above rules, by unfolding the query into two source queries (one for
booktitle, the other forjournal).

5 Related work

In the field of federated databases, two approaches are distinguished (see [11, 14]).
In “local as view” (LaV), the source schemas are defined as views (mappings) over a
fixed global schema. This makes it easy to add a new source, but query transformation
has exponential time complexity. In contrast, the global schema is defined as a view
over local schemas in the “global as view” (GaV) approach. Here, query transformation
can be reduced to rule unfolding, but adding new sources might require to modify the
global view. The GLaV approach [6] combines the advantages of both worlds. The
global schema is specified ontologically and independent from the sources, the source
schema models the documents returned by the source, and mappings are defined by
logical rules between query expressions. We adopt the main GLaV idea of independent
schemas, but use probabilistic GaV rules, and restrict the schema structure to binary
relations (for attributes).

Automatically learning rules is an important problem in machine learning, e.g. for
learning relationships between taxonomies or document classifications. A general ap-
proach to this pronlem (not only for schema mapping) is described in [12]. ILP (Induc-
tive Logic Programming) is employed for learning rules, while PAC learning algorithm
is used for learning the rule weights. The approach requires the same documents in
both schemas (“parallel corpora”), which is infeasible in most environments. A second
drawback is that it is based on exact match only.

Similar to sPLMap, the heuristic system LSD [3] for finding 1:1 matchings in XML
documents uses a linear combination of the predictions of multiple base learners (clas-
sifiers). The combination weights are learned via regression on manually specified map-
pings between a small number of learning schemas. LSD has several extensions, e.g.
iMAP [2] for complex matchings in relational databases and GLUE [4] for matching
ontologies on the semantic web (which relies on joint probability distributions).

Information theory measures and graph matching is used in [10]. Graphs are con-
structed from the schemas, where the attributes form the nodes, labelled with the en-
tropy of the attribute. All nodes are connected, the edges are labelled with the mutual
information (correlation between two distributions). Both measures do not require any
interpretation of the data, i.e. data type do not have to be considered. A distance measure
is defined, and optimum graph matchings is applied for finding schema mappings.

A completely different approach is taken in MGS [9]. It aims at finding a “hid-
den model”, a schema that probabilistically generates the observed schemas. A hidden
model is a partition of the attribute space with a probability function of the partitions
and their attributes. The first step finds cliques in the graph where two nodes (attributes)
are connected if they are not occurring in the same schema. These cliques do not con-
tradict the schemas. The problem of selecting those cliques which form a partitions is
then reduced to a set-cover problem, and the probability functions are computed by



maximum-likelihood. In a final step,χ2 statistical testing is employed for finding suffi-
ciently consistent models.

6 Conclusion and outlook

Learning rules automatically is an important problem in machine learning, and a large
amount of work has been devoted to it. Schema matching is one instantiation of this
task, where correspondences (“rules”) between two heterogeneous schemas have to be
found. In this paper we introduced sPLMap, a formal GLaV-like framework for schema
matching, where the mappings are defined as uncertain rules in probabilistic Datalog.
These schema mapping rules do not only cover transforming data from one attribute
into another, but can also be used for transforming query conditions (potentially also
modifying the operator or the comparison value). Although the framework is based on
logics, real-world documents and queries with a linear schema can easily be converted
into the logical formalism.

The framework sPLMap also covers learning of schema mappings. Different classi-
fiers are used for predicting the probability that tuples in a target relation are plausible
for a source relation. Similar to LSD, these predictions are combined to an overall ap-
proximation of rule probability. From these probabilities, a probability that a set of such
schema mapping rules is plausible is derived. Finally, the rule weights have to be com-
puted. The evaluation shows good performance in error, precision and recall, depending
on the chosen classifier(s) and normalization function(s). In particular, instance-based
classifiers perform surprisingly well.

The results in this paper can be employed in different ways:

1. Specific schema mapping services can be built automatically. Each schema map-
ping service has associated two schemas, and it is responsible for mapping between
these two schemas. The mapping should be learned automatically instead of being
defined manually.

2. Peer-to-peer networks are dynamic scenarios where services can dynamically join
and leave, so the system can–for each query–only consider the services which are
currently available. Using a decision-theoretic model as for the narrower task of
resource selection, we have to find a quality measurement for a schema mapping
service.

We mainly target at the information exchange problem: Two schemas are given, and an
object instance in one schema is transformed into an instance of the other schema. Our
mechanism could also be used for the problem of information integration: Given two
source schemas, a mediated schema of them has to be created. A solution would be to
build the union of both schemas, learn mapping rules, and remove useless attributes.

In future, more variants should be developed and evaluated to improve the quality
of the learning mechanism. Additional classifiers could consider the data types of two
attributes, could use a thesaurus for finding synonym attribute names, or could use other
measures like KL-distance or mutual information. Instead of averaging the classifier
predictions, the weights could be learned via regression. Odds or statistical significance
tests could be employed for determining the best schema mapping.



In this work, theconv predicate is given. In environments with large numbers of
data types, or a dynamically changing set of data types, learning the conversion predi-
cate would be desirable, e.g. the conversion from centimeter to inch.

A more basic extension is the application onto ontologies. Instead of linear schemas,
classification hierarchies are given. The task then is to map instances from one class
onto classes in the other hierarchy. We are currently developing a variant oPLMap
which is able to infer mapping rules between ontologies.

7 Acknowledgements

This work is supported in part by ISTI-CNR (project “Distributed Search in the Seman-
tic Web“) and in part by the DFG (grant BIB47 DOuv 02-01, project “Pepper”).

References

[1] J. Callan and M. Connell. Query-based sampling of text databases.ACM Transactions on
Information Systems, 19(2):97–130, 2001.

[2] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. InSIGMOD 2004, 2004.

[3] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. InSIGMOD Conference, 2001.

[4] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning to match
ontologies on the semantic web. 2004.

[5] R. Fagin, P. G. Kolaitis, W.-C. Tan, and L. Popa. Composing schema mappings: Second-
order dependencies to the rescue. InProceedings PODS, 2004.

[6] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational plans for data integration. In
Proceedings of 16th Natl Conf on Artificial Intelligence, pages 67–73, 1999.

[7] N. Fuhr. Towards data abstraction in networked information retrieval systems.Information
Processing and Management, 35(2):101–119, 1999.

[8] N. Fuhr. Probabilistic Datalog: Implementing logical information retrieval for advanced
applications.Journal of the American Society for Information Science, 51(2):95–110, 2000.

[9] B. He and K. C.-C. Chang. Statistical schema matching across web query interfaces. In
Papakonstantinou et al. [13].

[10] J. Kang and J. F. Naughton. On schema matching with opaque column names and data
values. In Papakonstantinou et al. [13].

[11] M. Lenzerini. Data integration: a theoretical perspective. InProceedings of the 21st
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS-
02), pages 233–246. ACM Press, 2002.

[12] H. Nottelmann and N. Fuhr. Learning probabilistic Datalog rules for information classifi-
cation and transformation. In H. Paques, L. Liu, and D. Grossman, editors,Proceedings
of the 10th International Conference on Information and Knowledge Management, pages
387–394, New York, 2001. ACM.

[13] Y. Papakonstantinou, A. Halevy, and Z. Ives, editors.Proceedings SIGMOD 2003, 2003.
[14] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.The

VLDB Journal, 10(4):334–350, 2001.
[15] F. Sebastiani. Machine learning in automated text categorization.ACM Computing Surveys,

34(1):1–47, 2002.



fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.8615 0.3689 0.3689 0.3689
CLL 0.4042 0.0855 0.0854 0.0548
CLN 0.2639 0.2639 0.2639 0.2639
CLkNN 0.1696 0.0578 0.0535 0.0382
CLB 0.7024 0.1607 0.1621 0.1629
CLkNN+CLB+CLL 0.3287 0.0694 0.0686 0.0555
CLkNN+CLB+CLL+CLN 0.3225 0.0920 0.0916 0.0806

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CLE 1.0000 1.0000 1.0000 1.0000
CLL 0.8750 0.8750 0.8750 0.8750
CLN 1.0000 1.0000 1.0000 1.0000
CLkNN 0.7692 0.7692 0.7692 0.7500
CLB 0.5000 0.5000 0.5000 0.4667
CLkNN+CLB+CLL 0.7692 0.5882 0.5882 0.5263
CLkNN+CLB+CLL+CLN 1.0000 0.7692 0.7692 0.7692

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.3636 0.3636 0.3636 0.3636
CLL 0.6364 0.6364 0.6364 0.6364
CLN 0.6364 0.6364 0.6364 0.6364
CLkNN 0.9091 0.9091 0.9091 0.8182
CLB 0.5455 0.5455 0.5455 0.6364
CLkNN+CLB+CLL 0.9091 0.9091 0.9091 0.9091
CLkNN+CLB+CLL+CLN 1.0000 0.9091 0.9091 0.9091

(c) Recall

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.5333 0.5333 0.5333 0.5333
CLL 0.7368 0.7368 0.7368 0.7368
CLN 0.7778 0.7778 0.7778 0.7778
CLkNN 0.8333 0.8333 0.8333 0.7826
CLB 0.5217 0.5217 0.5217 0.5385
CLkNN+CLB+CLL 0.8333 0.7143 0.7143 0.6667
CLkNN+CLB+CLL+CLN 1.0000 0.8333 0.8333 0.8333

(d) F-measure

Table 1.Experimental results – BIBDB



fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.7655 0.7602 0.7602 0.7613
CLL 0.6754 0.7207 0.7110 0.6266
CLN 1.0000 1.0000 1.0000 1.0000
CLkNN 0.5948 0.5874 0.5763 0.2140
CLB 0.6273 0.6315 0.5708 0.2760
CLkNN+CLB+CLL 0.6250 0.5561 0.5527 0.3837
CLkNN+CLB+CLL+CLN 0.6421 0.5427 0.5545 0.3771

(a) Error

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.8889 0.8889 0.8889 0.7333
CLL 0.8000 0.8000 0.8000 0.4737
CLN N/A N/A N/A N/A
CLkNN 0.7059 0.7059 0.7059 0.1688
CLB 0.4375 0.4375 0.4375 0.1731
CLkNN+CLB+CLL 0.7692 0.6429 0.6923 0.3000
CLkNN+CLB+CLL+CLN 0.7692 0.6429 0.6923 0.3000

(b) Precision

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.1951 0.1951 0.1951 0.2683
CLL 0.1951 0.1951 0.1951 0.2195
CLN 0.0000 0.0000 0.0000 0.0000
CLkNN 0.2927 0.2927 0.2927 0.3171
CLB 0.1707 0.1707 0.1707 0.2195
CLkNN+CLB+CLL 0.2439 0.2195 0.2195 0.2195
CLkNN+CLB+CLL+CLN 0.2439 0.2195 0.2195 0.2195

(c) Recall

fid fsum flin ◦ fsum flog ◦ fsum

CLE 0.3200 0.3200 0.3200 0.3929
CLL 0.3137 0.3137 0.3137 0.3000
CLN N/A N/A N/A N/A
CLkNN 0.4138 0.4138 0.4138 0.2203
CLB 0.2456 0.2456 0.2456 0.1935
CLkNN+CLB+CLL 0.3704 0.3273 0.3333 0.2535
CLkNN+CLB+CLL+CLN 0.3704 0.3273 0.3333 0.2535

(d) F-measure

Table 2.Experimental results – LOC


