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Abstract
Property mapping is a fundamental component of
ontology matching, and yet there is little support
that goes beyond the identification of single prop-
erty matches. Real data often requires some degree
of composition, trivially exemplified by the map-
ping of “first name”, “last name” to “full name” on
one end, to complex matchings, such as parsing and
pairing symbol/digit strings to SSN numbers, at the
other end of the spectrum. In this paper, we propose
a two-phase instance-based technique for complex
datatype property matching. Phase 1 computes the
estimate mutual information matrix of the property
values to (1) find simple, 1:1 matches, and (2) com-
pute a list of possible complex matches. Phase 2
applies genetic programming to the much reduced
search space of candidate matches to find complex
matches. We conclude with experimental results
that illustrate how the technique works. Further-
more, we show that the proposed technique greatly
improves results over those obtained if the estimate
mutual information matrix or the genetic program-
ming techniques were to be used independently.

1 Introduction
Ontology matching is a fundamental problem in many ap-
plications areas [Euzenat and Shvaiko, 2007]. Using OWL
concepts, by datatype property matching we mean the special
case of matching datatype properties from two classes.

Concisely, an instance of a datatype property p is a triple
of the form (s, p, l), where s is a resource identifier and l is a
literal. A datatype property matching from a source class S to
a target class T is a partial relation µ between sets of datatype
properties from S and T , respectively. We say that a match
(A,B) ∈ µ is m:n iff A and B contain m and n properties,
respectively. A match (A,B) ∈ µ should be accompanied by
one or more datatype property mappings that indicate how
to construct instances of the properties in B from instances
of the properties in A. A match (A,B) ∈ µ is simple iff it
is 1:1 and the mapping is a simple function, such as string
concatenation; otherwise, it is complex.

In this paper, we introduce a two-phase, instance-based
datatype property matching technique that is able to find com-

plex n:1 datatype property matches and construct the corre-
sponding property mappings. The technique extends the on-
tology matching process described in [Leme et al., 2009] to
include complex matches between sets of datatype properties
and is classified as instance-based since it depends on sets of
instances.

Briefly, given two sets, s and t, that contain instances of the
datatype properties of the source class S and the target class
T , respectively, the first phase of the technique constructs
the Estimated Mutual Information matrix (EMI) [Leme et al.,
2008; 2009] of the datatype property instances in s and t,
which intuitively measures the amount of related information
from the observed property instances. The scope of this phase
is to identify simple datatype property matches. For exam-
ple, it may detect that the “e-mail” datatype property of one
class matches the “electronic address” datatype property of
another class. Additionally, the first phase suggests, for the
second phase, sets of candidate datatype properties that can
be matched only under more complex relationships, thereby
reducing the search space.

The second phase uses a genetic programming approach
(GP) to find complex n:1 datatype property matches. For
example, it discovers that the “first name” and “last name”
datatype properties of the source class match the “full name”
datatype property of the target class, and return a property
mapping function that concatenates the values of “first name”
and “last name” (of the same class instance) to generate the
“full name” value. The reason for adopting genetic program-
ming is two-fold: it reduces the cost of traversing the search
space; and it can be used to automatically generate complex
mappings between datatype property sets.

The problem of finding complex matches between sets of
datatype properties should not be underestimated since the
search space is typically quite large. Therefore, our con-
tribution towards a more accurate and efficient solution lies
in proposing a two-phase technique, which deals with the
problem of finding complex matches by: (a) using the Esti-
mated Mutual Information matrix (in Phase 1) as a prepro-
cessing stage, limiting the candidate sets of properties for
complex matches; (b) adopting a genetic programming strat-
egy to automatically generate complex property mappings.
We also give empirical evidence that the combination of both
approaches, EMI and GP, yields better results than using ei-
ther technique in separate.



2 Background
2.1 Vocabulary matching and concept mapping
We decompose the problem of OWL ontology matching into
the problem of vocabulary matching and that of concept map-
ping. In this section, we briefly review these concepts and ex-
tend them to account for complex property matching. In what
follows, let S and T be two OWL ontologies, and VS and VT
be their vocabularies, respectively. Let CS and CT be the sets
of classes and PS and PT be the sets of properties in VS and
VT, respectively.

An instance of a class c is a triple of the form
(s, rdf :type, c), an instance of an object property p is a triple
of the form (s, p, o) and an instance of a datatype property
d is a triple of the form (s, d, l), where s and o are resource
identifiers and l is a literal.

A vocabulary matching between S and T is a finite set
µ ⊆ VS × VT. Given (v1, v2) ∈ µ, we say that (v1, v2) is
a match in µ and that µ matches v1 with v2; a property (or
class) matching is a matching defined only for properties (or
classes).

A concept mapping from S to T is a set of transformation
rules that map instances of the concepts of S into instances of
the concepts of T.

In this paper, we extend vocabulary matchings to also in-
clude pairs of the form (A,B) where A and B are sets of
datatype properties in PS and PT, respectively. We say that
(A,B) is an m:n match iff A and B contain m and n prop-
erties, respectively. In this case, a match (A,B) must be ac-
companied by datatype property mappings, denoted µ[A,Bi],
which are transformation rules that map instances of the prop-
erties in A into instances of the property Bi, for i = 1, . . . , n,
where B={B1, . . . , Bn}. Using “//” to denote string concate-
nation, the following transformation rule (s, fullName, v)
← (s, firstName, n), (s, lastName, f), v = n//f indi-
cates that the value of the “fullName” property is obtained by
concatenating the values of properties “firstName” and “last-
Name”. We will use the following abbreviated form for map-
ping rules with the above syntax:

µ[{firstName, lastName}, fullName] =

“fullName← firstName//lastName
′′

As an abuse of notation, when A is a singleton {A1}, we
simply write µ[A1, Bi], rather than µ[{A1}, Bi]. Finally,
a match (A,B) is simple iff it is 1:1, that is, of the form
({A1}, B1), and the mapping µ[A1, B1] is the identity trans-
formation rule, defined as “(s,B1, l) ← (s,A1, l)”; other-
wise, the match is complex.

2.2 An instance-based process for vocabulary
matching

In this section, we very briefly summarize the instance-based
process to create vocabulary matching introduced in [Leme et
al., 2009]. The outline of the process is as follows:

S1. Generate a preliminary property matching using similar-
ity functions.

S2. Generate a class matching using the property matching
obatined in S1.

S3. Generate an instance matching using the output from S1.

S4. Refine the property matching using the class matching
generated in S2 and the instance matching from S3.

The final vocabulary matching is the result of the union of
the class matching obtained in S2 and the refined property
matching obtained in S4.

The intuition used in all steps of the process is that “two
schema elements match iff they have many values in common
and few values not in common”, i.e. iff they are similar above
a given similarity threshold.

We obtain the following output from each individual step.
S1 generates preliminary 1:1 property matchings based on the
intuition that two properties match iff their instances share
similar sets of values. In the case of string properties, their
values are replaced by the tokens extracted from their values.
S1 provides evidences on class and instance matchings, ex-
plored in the next two steps.

S2 generates class matchings based on the intuition that
two classes match iff their sets of properties are similar. This
step uses the property matchings generated in S1.

S3 generates instance matchings based on the intuition that
two instances match iff the values of their properties are sim-
ilar. However, equivalent instances from different classes
may be described by very different sets of properties. There-
fore, extracting values from all of their properties may lead
to the wrong conclusion that the instances are not equivalent.
Therefore, [Leme et al., 2009] propose to extract values only
from the matching properties of the instances.

3 Two-phase property matching technique
In this section, we introduce a technique to partly implement
and extend the ontology matching process of Section 2.2 to
compute complex n:1 datatype property matches (note that
the technique does not cover n:m matches). The technique
comprises two phases: Phase 1 uses Estimated Mutual In-
formation matrices, defined in Section 3.1, to compute 1:1
simple matches, while Phase 2 uses genetic programming to
compute complex n:1 matches, based on the information re-
turned by Phase 1.

3.1 Phase 1: computing simple datatype property
matches with estimated mutual information

Let p=(p1,. . . ,pu) and q=(q1,. . . ,qv) be two lists of sets. The
co-occurrence matrix of p and q is defined as the matrix [mij ]
such that mij = |pi ∩ qj|, for i ∈ [1, u] and j ∈ [1, v]. The
Estimated Mutual Information matrix (EMI) of p and q is de-
fined as the matrix [EMIpq] such that:

EMIpq =
mpq

M
· log

M · mpq
v∑
j=1

mpj ·
u∑
i=1

miq

 (1)

where M =
u∑
i=1

v∑
j=1

mij .

We now adapt these concepts to define Phase 1 of the
datatype property matching process. Let S and T be two
classes with sets of datatype properties A={A1, . . . , Au} and
B={B1, . . . , Bv}, respectively. Let s and t be sets of instances



of the properties in A and B, respectively (s and t therefore are
sets of RDF triples).

Rather than simply using the cardinality of set intersections
to define the co-occurrence matrix [mij ], Phase 1 computes
[mij ] using set comparison functions that take two sets and
return a non-negative integer. Such functions play the role of
flexibilization points of Phase 1, as illustrated in Section 4.1.

The set comparison functions depend on the types of the
values of the datatype properties as well as on whether the
functions take advantage of instance matches. For example,
given a pair of datatype properties, Ai and Bj , mij may be
defined as the number of pairs of triples (a,Ai, b) in s and
(c,Bj , d) in t such that instances a and cmatch (or are identi-
cal) and the literals b and d are equal (or are considered equal,
under a literal comparison function defined for the specific
datatype of b and d).

For instance, [Leme et al., 2009] adopt the cosine similar-
ity function to compare strings. Thus, mij is computed as the
number of (string) values of triples for propertyAi in s whose
cosine distance to values of instances for property Bj in t is
above a given threshold (α = 0.8 in [Leme et al., 2009]).

To compute simple matches (1:1), the cosine similarity
function proved to be appropriate, especially if the strings to
be compared have approximately the same number of tokens.
However, the cosine similarity function turned out not to be
appropriate when using the co-occurrence matrix to suggest
complex matches to Phase 2 of the technique. We therefore
adopted the Jaccard similarity coefficient to compute the co-
occurrence matrix, defined as

Jaccard(b, d) =
|b ∩ d|
|b ∪ d|

(2)

which counts the number of tokens that strings b and d have
in common.

Thus, given two properties Ai and Bj , mij is computed
as the sum of Jaccard(Ai, Bj), for all pairs of strings d and
b such that there are triples of the form (a,Ai, b) in s and
(c,Bj , d) in t.

Phase 1 proceeds by computing the EMI matrix based on
the co-occurrence matrix, as in Eq. 1. Next, it computes a 1:1
matching, µEMI , between the properties in A={A1, . . . , Au}
and those in B={B1, . . . , Bv} such that, for any pair of prop-
erties Ap and Bq , (Ap, Bq) ∈ µEMI iff EMIpq > 0 and
EMIpj ≤ 0, for all j ∈ [1, v], with j 6= q, and EMIiq ≤ 0,
for all i ∈ [1, u], with i 6= p. Furthermore, Phase 1 assumes
that the property mappings, µEMI [Ar, Bs], are always the
identity function.

Finally, Phase 1 also outputs a list of datatype properties
to be considered for complex matching in Phase 2. For the
kth column of the EMI matrix, it outputs the pair (Ak,Bk) as a
candidate n:1 complex match, where Bk is the property of T
that corresponds to the kth column and Ak is the set of prop-
erties Ai of S such that EMIik > 0. Indeed, if EMIik ≤ 0,
then Ai and Bk have no information in common. However,
note that this heuristics does not indicate what is a candidate
property mapping µ[Ak,Bk]. This problem is faced in Phase
2.

3.2 Phase 2: computing complex property matches
with genetic programming

The second phase of the technique uses genetic programming
to create mappings between the properties that have some de-
gree of correlation, as identified in the first phase. Briefly, the
process goes as follows.

Recall that genetic programming refers to an automated
method to create and evolve programs to solve a prob-
lem [Koza, 1992]. A program, also called an individual or
a solution, is represented by a tree, whose nodes are labeled
with functions (concatenate, split, sum, etc) or with values
(strings, numbers, etc). New individuals are generated by ap-
plying genetic operations to the current population of indi-
viduals. Note that genetic programming does not enumerate
all possible individuals, but it selects individuals that should
be bred by an evolutionary process. The fitness function as-
signs a fitness value to each individual, which represents how
good the individual is compared to others, i.e., the survival
probability of the individual in the genetic process.

The process requires two configuration steps, carried out
just once. First, certain parameters of the process must be
properly calibrated to prevent overfitting problems, to avoid
unnecessary runtime overhead, and to help finding good solu-
tions (see Section 4). Once the parameters are calibrated, the
second configuration step is to determine the stop criterion.
We opted to stop after a predetermined maximum number of
generations and return the best-so-far individual to limit the
cost of searching for individuals.

We now show how to use genetic programming to com-
pute complex datatype property matches. Let S and T be two
classes with sets of datatype properties A={A1, . . . , Au} and
B={B1, . . . , Bv}, respectively. Let s and t be lists of sets of
instances of the properties in A and B, respectively.

The genetic programming phase receives as input the can-
didate matches that Phase 1 outputs and the sets s and t. For
each input candidate match, it outputs a property mapping
µ[Ak,Bk], if one exists; otherwise it discards the candidate
match.

Let (Ak,Bk) be a candidate match output by the first phase,
where Ak is a set of properties in A and Bk is a property in B.
The genetic programming phase first generates a random ini-
tial population of candidate property mappings. In each iter-
ation step, it creates new candidate property mappings using
genetic operations. It keeps the best-so-far individual, and
returns it when the stop criterion is reached.

The process depends on the following specifications (see
[Nunes et al., 2011b] for a concrete example), which should
be regarded as flexibilization points.

A candidate property mapping µ[Ak,Bk] (the individual in
this case) is represented as a tree whose leaves are labeled
with the properties in Ak and whose internal nodes are labeled
with primitive mapping functions.

The maximum population size, σpopulation, is a parameter
of the process. The initial population consists of σpopulation
randomically generated trees. Each tree has a maximum
height, defined by the parameter σheight, each leaf is labeled
with a property from Ak and each internal node is labeled with
a primitive mapping function.



The reproduction operation simply preserves a percentage
of the property mappings from one generation to the next,
defined by the parameter σreproduction.

The crossover operation exchanges subtrees of
two candidate property mappings to create new
candidate mappings. For example, suppose that
Ak={firstName,middleName, lastName} and
Bk=fullName and consider the following two candi-
date property mappings (which use the concatenation
operation, “//”, and are represented using the notation
adopted in Section 2.1):

µ1[A
k
, Bk] = “fullName← (lastName//(firstName // middleName))

µ2[A
k
, Bk] = “fullName← ((middleName // firstName)//lastName)

The crossover operation might generate the following two
new candidate property mappings (by swapping the sub-
expressions in boldface):

µ3[A
k
, Bk] = “fullName← (lastName//(middleName // firstName))

µ4[A
k
, Bk] = “fullName← ((firstName // middleName)//lastName)

The mutation operation randomly alters a node (labeled
with a property or with a primitive mapping function) of
a candidate property mapping. For example, the node la-
beled with “middleName” of µ4[Ak, Bk] can be mutated to
“firstName”, resulting in a new candidate property mapping
(which is acceptable, but not quite reasonable, since it repeats
firstName):

µ5[A
k
, Bk] = “fullName← ((firstName//firstName)//lastName)

Finally, recall that s and t are lists of sets of instances of
the properties in A and B, respectively. The fitness value of
µ[Ak,Bk] is computed by applying µ[Ak,Bk] to the instances
of the properties in Ak occurring in s, creating a new set of
instances for Bk, which is then compared with the set of in-
stances of Bk occurring in t. As in Section 3.1, the exact
nature of fitness function depends on the types of the values
of the datatype properties as well as on whether the function
takes advantage of instance matches or not (which is possible
when implementing S4). For instance, we used the Leven-
shtein similarity function for string values and KL-divergence
measure [Cover and Thomas, 1991] for numeric values.

The Levenshtein similarity function is normalized to fall
into the interval [0, 1], where 1 indicates that a string is ex-
actly equal to the other and 0 that the two strings have noth-
ing in common, while the KL-divergence measure is used to
compute the similarity between two value distributions.

Recall that we are given two samples, p and q, of instances
of properties of classes P and Q, respectively. Construct the
set X of strings that occur as literals of instances of Bk ob-
tained by applying µ[Ak,Bk] to p, and the set Y of strings that
occur as literals of instances of Bk in q. The fitness score for
a candidate property mapping is:

Fitnessstring(µ[Ak, Bk]) =
1

n

∑
x∈X
y∈Y

Levenshtein(x, y) (3)

where n is the number of pairs in X × Y .
In the case of numeric values, construct the set X of nu-

meric values that occur as literals of instances ofBk, obtained

Table 1: Example schemas.
# P # Q
A1 FirstName

B1
FullName
(FirstName // LastName)A2 LastName

A3 E-Mail B2 E-Mail
A4 Address

B3

FullAddress
(Address // Number //
Complement // Neighborhood)

A5 Number
A6 Complement
A7 Neighborhood

by applying µ[Ak,Bk] to p, and the set Y of numeric values
that occur as literals of instances of Bk in q. The fitness score
for a candidate property mapping is:

Fitnessnumeric(F,G) =
1

n

∑
x∈X
y∈Y

ln

(
F (x)

G(y)

)
F (x) (4)

where n is the number of pairs inX×Y , F (x) represents the
target distribution of instances in X and G(y) is the the set of
materialized mapping µ in Y from the source distribution of
instances.

4 An example implementation
With the help of an example, we illustrate how to implement
the two-phase technique. We assume that the implementation
is in the context of S1 of the process described in Section 2.2,
that is, we will not use instance matches. We start with Phase
1, described in Section 3.1.

The example is based on personal information classes,
modeled by class P , with 7 properties and class Q with 3
properties. Table 1 shows the properties from the two classes
P and Q, and also indicates which properties or sets of prop-
erties match. For example, {A1, A2} matches B1.

4.1 Phase 1: computing simple property matches
with estimated mutual information

Recall from Section 3.1 that an implementation of Phase 1
requires defining set comparison functions used to compute
the co-occurrence matrix [mij ]. We discuss this point in what
follows, with the help of the running example.

We assume that all property values are string literals and
that we are given two samples, p and q, of instances of prop-
erties of classes P and Q, respectively (each with 500 in-
stances). As mentioned in Section 3, [Leme et al., 2009] use
the cosine similarity function to compute the co-occurrence
matrix, which is able to indicate only simple 1:1 matches. By
contrast, we used the Jaccard similarity coefficient that mea-
sures the similarity between sets, which is able to find simple
1:1 matches and suggest complex matches.

Figure 1 (a) shows the co-occurrence matrix computed us-
ing the cosine similarity measure. Note that m43 = 164K,
which is high because the values of A4 and B3 come from a
controlled vocabulary with a small number of terms (not in-
dicated in Table 1). By contrast, m32 = 500, which is low
because A3 and B2 are keys (also not indicated in Table 1).

Figure 1 (b) shows the co-occurrence matrix computed
using the Jaccard similarity (see Eq. 2), which measures



the similarity and diversity between sets. Thus, the co-
occurrence indices are more sparse between the attributes that
have values in common.

To clarify, consider A7 (Neighborhood) and B3 (FullAd-
dress) and suppose that “Cambridge” is an observed value of
A7 and “* Oxford Street Cambridge MA, United States” of
B3. The cosine similarity of these two strings is 0.37, which
is lower than the threshold set by [Leme et al., 2009] (again,
α = 0.8). Hence, these two strings are considered not to be
similar. However, also observe that “Cambridge” is fully con-
tained in “* Oxford Street Cambridge MA, United States”,
which might indicate that A7, perhaps concatenated with the
values of other datatype properties, might match B3. Contin-
uing with this argument, lowering the threshold also proved
not to be efficient to account for these situations, since this
increases noise in the matching process.

Thus, given two properties Ai and Bj , mij is computed as
the sum of Jaccard(x, y), for all pairs of strings x and y such
that there are triples of the form (a,Ai, x) in p and (b, Bj , y)
in q (see Figure 1). Once the co-occurrence matrix [mij ] is
obtained, we compute the EMI matrix [EMIij ], as described
in Section 3.1 (see Figure 2).

The result of Phase 1 therefore is the matching µEMI be-
tween the sets of properties {A1, . . . , Au} and {B1, . . . , Bv},
computed as in Section 3.1 (which we recall is 1 : 1), assum-
ing that, for each (Ai, Bj) ∈ µEMI , the property mappings
µ[Ai, Bj ] is always the identity function (see Figure 2).



B1 B2 B3

A1 4 1 0
A2 0 0 0
A3 0 500 0
A4 0 0 164K
A5 0 0 0
A6 0 0 0
A7 0 0 0


(a)



B1 B2 B3

A1 4, 8K 0 1, 6K
A2 12, 3K 0 5, 1K
A3 0 500 0
A4 5, 5K 0 55K
A5 0 0 726
A6 797 0 8, 5K
A7 750 0 9, 5


(b)

Figure 1: Co-occurrence matrices using (a) cosine similarity
and (b) Jaccard similarity coefficient.



B1 B2 B3

A1 0,0550 0, 0 0,0040
A2 0,0138 0, 0 0,0020
A3 0, 0 0,0020 0, 0

A4 0, 0 0, 0 0,0677
A5 0, 0 0, 0 0,0090
A6 0,0024 0, 0 0,0094
A7 0,0002 0, 0 0,0114


Figure 2: EMI matrix: dark gray cells represent simple
matches and light gray cells represent possible complex
matches for the property in the column.

4.2 Phase 2: computing complex property matches
with genetic programming

The second phase of the technique was implemented using a
genetic programming toolkit [Meffert, 2013], (the discussion

on calibration is omitted for brevity, see [Nunes et al., 2011b]
for more details).

The first phase of the technique outputs, for instance, a can-
didate match between properties A1, A2, A4, A5, A6 and A7

(FirstName, LastName, Address, Number, Complement and
Neighborhood, respectively) and property B3 (FullAddress),
see Figure 2. Note that quite frequently streets are named af-
ter famous people, which justifies why EMI outputs A1 and
A2 as candidates properties. Following the example, having
6 properties as input, the genetic process begins the search for
the solution.

As the property values are strings, the fitness function se-
lected to find the best individual is the Leveshtein (see Eq. 3).
Thus, after randomly generate an initial set of individuals, the
fitness function assigns to each individual a score. For each
new generation, a new set of individuals is created from those
individuals chosen according to a probability based on their
fitness value. The process stops with an expression that repre-
sents a property mapping that maps the concatenation of the
properties A4, A5, A6 and A7 (that is, the expression:

((Address//Number)//(Complement//Neighborhood))

into property B3 (that is, FullAddrees).

5 Evaluation and Results
The first result in this paper is the comparison of the two
approaches, Estimated Mutual Information and Genetic Pro-
gramming, when separately evaluated.

For this evaluation, we used three datasets1 from three
different domains. Table 2 lists the datasets used and their
schema information. The “Personal Information” dataset lists
information about people, the “Real State” dataset lists infor-
mation about houses for sale, while the “Inventory” dataset
describes product inventories.

Column “EMI” of Table 2 indicates that, using only the
Estimated Mutual Information approach, we obtained a pre-
cision of 1.0 for all datasets, which indicates that none of the
matches were mistakenly found; the rate of recall was low,
between 0.21 and 0.38, indicating a high rate of missed prop-
erty matches; and the F-Measure varied from 0.34 to 0.54,
hinting that this approach is insufficient to find simple and
complex matches. Indeed, out of the 12 simple matches ex-
pected for the “Personal Information” dataset, this approach
correctly obtained 6 matches only. Likewise, the EMI found
3 out of 4 and 4 out of 6, for the datasets “Inventory” and
“Real State”, respectively.

However, according to the discussion at the end of Sec-
tion 3.1, as well as by observing the column “EMI” marked
with “*” in Table 2, there are several candidate complex
matches that were suggested to the GP phase in each ap-
proach. Note that amongst those are the exact remaining
matches not found by the EMI technique. This is an indica-
tion that, although not sufficient in itself, the EMI approach
is an effective pre-processing stage to the GP approach, by
reducing the complexity of the search space while providing
a high quality list of candidate complex matches.

1With exception of the “Personal Information” dataset
due to privacy reasons, other datasets are available at
http://pages.cs.wisc.edu/ anhai/wisc-si-archive/domains/.



Table 2: Mapping results for three datasets in different domains.
EMI GP EMI+GP

Datasets Type EMI GP EMI+GP #Match P R F1 P R F1 P R F1

Personal
Information

String 1:1 6 12 12 12

1 0.38 0.54 0.8 0.75 0.77 1 0.94 0.961:n 11* 1 4 5

Numeric 1:1 0 0 0 0
1:n 0 0 0 0

Inventory
String 1:1 3 4 4 4

1 0.24 0.39 0.97 0.87 0.91 0.97 0.97 0.971:n 18* 2 4 4

Numeric 1:1 6 25 25 25
1:n 18* 1 3 4

Real State
String 1:1 4 4 6 6

1 0.33 0.5 1 0.47 0.64 1 0.8 0.891:n 7* 2 5 5

Numeric 1:1 1 1 1 1
1:n 7* 0 0 3

(∗) Complex matches suggested by EMI.

Column GP of Table 2 indicates that, using genetic pro-
gramming alone, the F-Measure obtained was higher, and that
all simple mappings were found. However, precision was
0.8 for the “Personal Information” dataset and 0.96 for the
“Inventory” dataset, which indicates that some matches were
mistakenly suggested.

Table 2 shows that our two-phase technique resulted in a
considerable improvement over the independent use of the
EMI and GP approaches when used independently. This im-
provement is related to the fact that the first phase, using
the EMI matrix, correctly found all simple matches and sug-
gested correct complex matches to the second phase.

Furthermore, the fact that the EMI matrix suggests corre-
lated properties helps reduce the solution space considered by
the genetic programming algorithm, thus improving its over-
all performance. In our tests, the run time of the combined ap-
proach showed an improvement of approximately 36% when
compared with the run time of the genetic programming ap-
proach alone.

6 Related work
Ontology alignment frameworks implement a set of simi-
larity measures to find the correct mappings. For instance,
[Duan et al., 2010] utilize user feedback to determine the
importance of each similarity measure in the final mapping
result. Similarly, [Ritze and Paulheim, 2011] introduce ECO-
Match that uses alignment examples to define parameters to
set the correct mapping strategy. [Dhamankar et al., 2004]
describe iMap that predefines modules of functions to semi-
automatically find simple and complex matches by leveraging
external knowledge. Likewise, [Albagli et al., 2012] search
for mappings using Markov Networks, which combines dif-
ferent sources of evidence (e.g. human experts, existing map-
pings, etc). Finally, [Spohr et al., 2011] use a translation
mechanism to discover mappings in cross-lingual ontologies.

A drawback in most approaches is scalability. [Duan et
al., 2012] address the scalability problem using a local sensi-
tivity hashing to match instances inside a cluster. [Jiménez-
Ruiz and Grau, 2011] propose an “on the fly” iterative method
called LogMap that, based on a set of anchors (exact map-
pings), creates, extends and verifies mappings using a log-
ical reasoner. Complementary, [Wang et al., 2011] sug-

gest a method for reducing the number of anchors needed
to match ontologies. Recent advances, such as RiMOM [Li
et al., 2009], offer an automated environment to select an
appropriate matching strategy through risk minimization of
Bayesian decision, while ASMOV ([Jean-Mary et al., 2009])
uses semantic validation to verify mappings. Falcon [Hu et
al., 2008] applies a divide-and-conquer approach to ontol-
ogy matching. Several other systems, such as DSSim [Nagy
et al., 2009], S-Match [Giunchiglia et al., 2012], Anchor-
Flood [Hanif and Aono, 2009], Agreement-Maker [Cruz et
al., 2009], ATOM [Raunich and Rahm, 2011] and SAMBO
[Lambrix and Tan, 2006] tackle the alignment for ontologies
and schemas relying on lexical, structural and semantical sim-
ilarity measures. In a recent survey, [Shvaiko and Euzenat,
2013] analyze in more details well-established frameworks
and outline future directions and challenges in this field. Ad-
ditional surveys are provided by [Shvaiko and Euzenat, 2005;
Rahm and Bernstein, 2001].

Contrasting with the approaches just outlined, we pro-
vide an automatic technique that finds simple and complex
mappings between RDF datatype properties without prior
knowledge that can evolve to adapt to schema and ontol-
ogy changes, previously described in [Nunes et al., 2011a].
Similar to our approach, [de Carvalho et al., 2012] proposes
a genetic programming approach for deduplication prob-
lem. However, as the results show, our two-phase approach
achieves better results than those using only the genetic pro-
gramming approach. Moreover, we extend his work to match
simple and complex numeric datatype properties.

7 Conclusion
In this paper, we described an instance-based, property
matching technique that follows a two-phase strategy. The
first phase constructs the Estimated Mutual Information ma-
trix of the property values to identify simple property matches
and to suggest complex matches, while the second phase uses
a genetic programming approach to detect complex property
matches and to generate their property mappings. This com-
bined strategy proved promising to beat combinatorial explo-
sion. In fact, our experiments prove that the technique is a
promising approach to construct complex property matches,
a problem rarely addressed in the literature.
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