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Abstract. The goal of Model Management is the development of new technolo-
gies and mechanisms to support the integration, evolution and matching of mod-
els. Such tasks are to be performed by means of a set of model management
operators which work on models and their elements, without being restricted to
a particular metamodel (e.g. the relational or UML metamodel).

We propose that generic model management should employ a generic meta-
model (GMM) which serves as an abstraction of the features of particular meta-
models while preserving the semantics of its different elements. A naive gener-
alization of the elements of concrete metamodels in generic metaclasses would
loose some of the specific features of the metamodels, or yield a prohibitive num-
ber of metaclasses in the GMM. To avoid these problems, we propose the Generic
Role Based Metamodel GeRoMe in which each model element is decorated with
a set of role objects that represent specific properties of the model element. Roles
may be added to or removed from elements at any time, which enables a very
flexible and dynamic yet accurate definition of models.

Roles constitute to operators different views on the same model element. Thus,
operators concentrate on features which affect their functionality but may remain
agnostic about other features. Consequently, these operators can use polymor-
phism and have to be implemented only once using GeRoMe, and not for each
specific metamodel. We verified our results by implementing GeRoMe and a se-
lection of model management operators using our metadata system ConceptBase.

1 Introduction

Design and maintenance of information systems require the management of complex
models. Research in model management aims at developing technologies and mecha-
nisms to support the integration, merging, evolution, and matching of models. These
problems have been addressed for specific modeling languages for a long time. Model
management has become an active research area recently, as researchers now address
the problem of generic model management, i.e. supporting the aforementioned tasks
without being restricted to a particular modeling language [3, 4]. To achieve this goal,
the definition of a set of generic structures representing models and the definition of
generic operations on these structures are required.

According to the IRDS standard [10], metamodels are languages to define models.
Examples for metamodels are XML Schema or the UML Metamodel. Models are the
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description of a concrete application domain. Within an (integrated) information sys-
tem, several metamodels are used, a specific one for each subsystem (e.g. DB system,
application). Thus, the management of models in a generic way is necessary.

1.1 The Challenge: A Generic Mechanism for Representing Models

This paper addresses the first challenge mentioned in [4], the development of a mecha-
nism for representing models. Since the goal is the support of generic model manage-
ment, this has to be done in some generic way. Currently, model management appli-
cations often use a generic graph representation but operators have to be aware of the
employed metamodel [5, 8, 13]. While a graph representation is often sufficient for the
purpose of finding correspondences between schemas, it is not suitable for more com-
plex operations (such as merging of models) as it does not contain detailed semantic
information about relationships and constraints. For example, in [15] a generic (but yet
simple) metamodel is used that distinguishes between different types of associations in
order to merge two models. A more detailed discussion about the related work on the
representation of models is given in section 2.

The intuitive approach to develop a truly generic metamodel (GMM) identifies ab-
stractions of the metaclasses of different metamodels. Its goal is to define a comprehen-
sive set of generic metaclasses organized in an inheritance lattice. Each metaclass in a
given concrete metamodel then has to be mapped to a unique metaclass of the GMM.

The sketched approach exhibits a prohibitive weak point: elements of particular
metamodels often have semantics that overlap but is neither completely different nor
equivalent. For example, a generic Merge operator has to merge elements such as
classes, relations, entity types and relationship types. All of these model elements can
have attributes and should therefore be processed by the same implementation of an op-
erator. In this setting, such polymorphism is only possible if the given model elements
are represented by instances of the same metaclass in the GMM, or at least by instances
of metaclasses with a common superclass. Thus, one has to choose the features of model
elements which are combined in one metaclass.

Actually, in each metamodel there may be elements incorporating an entirely new
combination of such aspects. One approach to cope with this problem is to focus on the
“most important” features of model elements while omitting such properties which are
regarded as less important. But to decide which properties are important and which are
not results in loss of information about the model.

All properties of model elements could be retained if the GMM introduced a set of
metaclasses as comprehensive as possible and combined them with multiple inheritance
such that any combination of features is represented by a distinct metaclass. Despite the
modeling accuracy of such a GMM, it will suffer from another drawback, namely that
it leads to a combinatorial explosion in the number of sparsely populated intersection
classes which add no new state.

1.2 Our Solution: Role Based Modeling

In such cases, a role based modeling approach is much more promising. In role based
modeling, an object is regarded as playing roles in collaborations with other objects.
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Applied to generic metadata modeling this approach allows to decorate a model
element with a combination of multiple predefined aspects, thereby describing the ele-
ment’s properties as accurately as possible while using only metaclasses and roles from
a relatively small set. In such a GMM, the different features of a model element (e.g. it is
not only an Aggregate but also an Association) are only different views on the same ele-
ment. During model transformations, an element may gain or lose roles, thereby adding
and revoking features. Thus, the combinatorial explosion in the number of metaclasses
is avoided but nevertheless most accurate metadata modeling is possible.

Therefore, the GMM proposed in this work retains these characteristics by employ-
ing the role based modeling approach, resulting in the Generic Role Based Metamodel
GeRoMe. Implementations of model management operators can assure that model ele-
ments have certain properties by checking whether they play the necessary roles. At the
same time the operator remains agnostic about any roles which do not affect its func-
tionality. Thus, while role based metamodeling allows to formulate accurate models, the
models appear to operators only as complex as necessary. GeRoMe will be used only
by model management applications; users will use their favorite modeling language.

The definition of the GMM requires a careful analysis and comparison of existing
metamodels. Since it has to be possible to represent schemata in various metamodels in
order to allow generic model management, we analyzed five popular yet quite different
metamodels (Relational, EER, UML, OWL DL, and XML Schema). We identified the
common structures, properties, and constraint mechanisms of these metamodels. This
part of our work can be seen as an update to the work in [9], in which several semantic
database modeling languages have been compared.

The paper is structured as follows. Section 2 provides some background information
on model management and role based modeling, and presents a motivating scenario. In
section 3, we analyze and compare existing metamodels and derive the Generic Role
Based Metamodel GeRoMe. Section 4 shows several examples of models in different
metamodels represented in GeRoMe. Section 5 explains how model management op-
erations can be performed using GeRoMe. As an example, we describe some atomic
operations necessary for the transformation of an EER model into a a relational model.
The implementation of our model management prototype is discussed in section 6. Fi-
nally, section 7 summarizes our work and points out future work.

2 Background and Motivation

2.1 Model Management

Model management aims at providing a formalization for the definition and modifi-
cation of complex models [4]. To achieve this goal, a model management system has
to provide definitions for models (i.e. schemas represented in some metamodel), map-
pings (i.e. relationships between different models), and operators (i.e. operations that
manipulate models and mappings). There have been earlier approaches to model man-
agement [1, 12], which did address especially the transformation of models between
different metamodels. Model management has become more important recently, as the
integration of information systems requires the management of complex models. The
most important operations in model management are Merge (integration of two models),
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Match (creating a mapping between two models), Diff (finding the differences between
two models), and ModelGen (generating a model from another model in a different
metamodel representation).

Rondo [13] is the first complete prototype of model management. It represents mod-
els as directed labeled graphs. Each node of such a graph denotes one model element,
e.g. an XML complex type or relational table. A model is represented by a set of edges
between these nodes. A model element’s type (Table, Column, Class, . . . ) is also spec-
ified by such an edge with the label type. Furthermore, types of attributes are specified
by other dedicated edges, e.g. SQLtype. For each of the supported metamodels a dif-
ferent set of types is available. Although the models are represented in a generic graph
structure, the implementation of the operators is not truly generic. For example, the im-
plementation of the match operator requires two models of the same type as input, and
some operators (such as Extract) have specific implementations for each metamodel.

Clio [8] is a tool for creating schema mappings. Whereas schema matching algo-
rithms just discover correspondences between schemas, Clio goes one step further and
derives a mapping from a set of correspondences. The mapping is a query that trans-
forms the data from one schema into another schema. However, Clio supports only
XML and relational schemas.

More sophisticated model management operators such as Merge (integration of two
models according to a given mapping, resulting in a new model) require even more
semantic information about the models involved. For example, in [15] a meta model
with several association types (e.g. has-a, is-a) is used.

The various approaches to model management show that each operator requires a
different view on a model. Schema matching focuses on labels and structure of schema
elements, whereas merging and transformation of models require more detailed infor-
mation about the semantics of a model (e.g. association types, constraints). These dif-
ferent views are supported by our role based approach, as operators will see only those
roles which are relevant in their context.

2.2 Scenario

Complex information systems undergo regular changes due to changes of the require-
ments, of the real world represented by the information system, or of other systems
connected to the information system. As an example, we consider the following eBusi-
ness scenario: a supplier of an automotive manufacturer receives orders from a business
partner in some XML format. The orders are entered into the ERP system of the sup-
plier by a transformation program, which uses a mapping between the XML schema
and the relational DB of the ERP system.

In order to generate this mapping, the two models are represented as models in a
generic metamodel (GM1 and GM2). A Match operator can then be used to create a
mapping GM1 GM2 between the two models, which can be further translated into a
mapping XS1 RM2 between the original models.

Due to a change in the system of the manufacturer, the schema of the orders has
changed. Then, this change has to be applied to the mapping between the XML schema
and relational DB. Focusing on the models, this scenario can be seen as an example of
schema evolution (Fig. 1). The original XML schema XS1 is mapped to the relational
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Fig. 1. Schema evolution using GeRoMe and Model Management

model (RM2) of the DB using the mapping XS1 RM2. The schema evolution generates
a new version of the XML schema, namely XS1’.

Again, instead of applying the model management operators to the level of specific
schemas, we will first generate a corresponding representation of the specific model in
our GMM (GM1’). Then, we have to apply the Match operator to GM1 and GM1’, re-
sulting in a mapping GM1’ GM1 between these models. This match operation should be
simpler than matching the new version GM1’ with GM2 directly, as two versions of the
same model should be quite similar. Then, we can compose the mappings GM1’ GM1
and GM1 GM2 to a new mapping GM1’ GM2. Note, that this operation has just to con-
sider mappings between models represented in GeRoMe, which should simplify the
implementation of such an operator. The result of this step is a mapping from GM1’ to
GM2 of those elements which are also present in GM1.

In order to map elements which have been added during the schema evolution a
Diff operator has to be used on GM1’ and GM1 which takes into account the mapping
GM1’ GM1. The difference then has to be mapped individually.

The important difference to other approaches is that the operations in GeRoMe are
truly generic, they do not have to take into account different representations of models.
Therefore, the operators have to be implemented only once, namely for the GeRoMe
representation.

2.3 Role Based Modeling

The concept of role (or aspect) based modeling has first been described in detail in
the context of the network model [2] and later on in several works on object-oriented
development and object-oriented databases [6, 16, 17].

Different formalizations have been proposed, which exhibit significant differences,
but all have in common that a role or aspect extends the features of an existing object
while being a view on the object and not an object in its own right. In [6] multiple direct
class membership is considered as a solution to the problem of artificial intersection
classes. That is, instead of defining an intersection class, the combination of state and
behavior is achieved by defining an object to be instance of several classes at the same
time, which are not necessarily on the same specialization path.

In [16] the notion of aspects of objects is discussed. It is stated that at any given mo-
ment an entity may have many different types that are not necessarily related. Often this
issue cannot be handled by multiple inheritance since this would lead to a large number
of sparsely populated “intersection classes” which add no new state. This approach is
different from multiple direct class membership in that each object can have multiple
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aspects of the same type, e.g. a person can at the same time be a student at more than
one university while still being the same individual.

Other approaches, such as the one considered in [17], treat the different features of
an object as roles, which are themselves instances of so called role classes and have
identity by state. This representation also allows model elements to play directly or
implicitly more than one instance of the same role. In addition, [17] introduces the
concept of role player qualification which means that not every object may play every
role but that certain conditions have to hold.

3 The Generic Role Based Metamodel GeRoMe

In this section, we will first explain the role model which we have employed to define
GeRoMe. Based on our analysis of existing metamodels (section 3.2), we have derived
the generic role based metamodel, which is described in detail in section 3.3.

3.1 Description of the Role Model

GeRoMe employs the following role model. A model element is represented by an
object which has no characteristics in its own right. Roles can be combined to make
up a model element encompassing several properties. Therefore, the model element is
decorated with its features by letting it play roles. A role maintains its own identity and
may be player of other roles itself. Every model element has to play at least one role and
every role object has exactly one player. In our model, some role classes may be used
more than once by a model element, e.g. an Attribute may play the role of a Reference
to more than one other Attribute. Thus, the complete representation of a model element
and its roles forms a tree with the model element as its root.

We used three different relationships between role classes, namely inheritance, play,
and precondition. The play relationship defines which objects may be player of certain
roles. In addition, a role may be a precondition of another role. Thus, in order to be
qualified to play a role of a certain class, the player must be already the player of another
role of a certain other class. Except for namespaces, all links between model elements
are modeled as links between roles played by the elements.

To tap the full power of role modeling, we have to define role classes in such a way
that each of them represents an “atomic” property of a model element. Then roles can
be combined to yield the most accurate representation of an element.

3.2 Role Based Analysis of Concrete Metamodels

A generic metamodel should be able to represent both the structures and constraints ex-
pressible in any metamodel. Thus, to define such a metamodel it is necessary to analyze
and compare the elements of a set of metamodels. Our choice of metamodels comprises
the relational model (RM) [7] and the enhanced entity relationship model (EERM) [7]
because these two models are rather simple and are in widespread use. The metamodel
of the Unified Modeling Language (UML, version 1.5) has been analyzed as an exam-
ple for object-oriented languages. The description logics species of the Web Ontology
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Table 1. Roles played by concrete metaclasses

Role EER Relational OWL DL XML Schema
Domain domain domain xsd datatype any simple type
Aggregate entity/rel.-ship type,

composed attribute
relation class complex type

Association relationship type - a pair of inverse ob-
ject properties

element

Identified entity/rel.-ship type - class complex type, schema
BaseElement base of anon. domain,

supertype in isA,
comp. type in Union

base of anonymous
domain

superclass, super-
property

base simple / complex
type

DerivedElement subtype in isA or
union type

anonymous domain
constraint

subclass, subprop-
erty

derived simple / com-
plex type

Union derivation link of
union type

- derivation link of
union class

derivation link of
union type

IsA isA derivation link - subclassing deriva-
tion link

restriction / extension
derivation link

Enumeration enumerated domain
restriction

enumerated domain
restriction

enumeration enumeration

Attribute (composite / multival-
ued) attribute

column data type property attribute, element with
simple type

AssociationEnd link between relation-
ship type and its par-
ticipator

- object property links between two ele-
ments one of which is
element of the other’s
complex type

Value any instance domain value, tuple data type value, indi-
vidual

xsd value, valid XML

Visible entity type, relation-
ship type, attribute

relation, column named class, prop-
erty

named type, attribute
element

Reference - foreign key - keyref
Disjointness constraint on subtypes - constraint on classes -
Injective primary/partial key unique, primary key inverse functional unique, key
Identifier primary/partial key primary key - key
Universal anonymous domain of

attribute
anonymous domain
constraint of column

allValuesFrom restriction of complex
type

Existential - - someValuesFrom -
Default - default value - default value

Language (OWL DL, http://www.w3.org/2004/OWL/) has been included since it
follows different description paradigms due to its purpose. For example, properties of
concepts are not defined within the concepts themselves but separately. Finally, XML
Schema (http://www.w3.org/XML/Schema) has been analyzed as it is the most im-
portant metamodel for semistructured data.

We analyzed the elements and constraints available in these five metamodels and
made out their differences and similarities. In doing so, we identified the role classes,
which make up our role based metamodel. In total, we compared about seventy struc-
tural properties and elements and twenty types of constraints. Some of them are very
easily abstracted, such as data types or aggregates. Others, such as the XML Schema
element or OWL object properties, are rather intricate and need closer inspection. The
XML Schema element is an association (associating a parent element with its children).
The root element of a document is a special element which does not have a parent. Fur-
thermore, an XML Schema may allow different types of root elements for a document.

http://www.w3.org/2004/OWL/
http://www.w3.org/XML/Schema
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Another problematic example are object properties in OWL DL: the Association role
is played by a “pair of properties” and the AssociationEnd role is played by object
properties. Thus, it is difficult to represent such specific model elements in a GMM.

In section 4, we describe some of the representation problems in more detail. Fur-
thermore, some metamodels provide redundant options for representing the same se-
mantics, e.g. there is no semantic difference between an XML Schema attribute and a
simple-typed XML Schema element with a maximum cardinality of 1.

Table 1 shows a selection of role classes and states the related model elements in
the considered metamodels. The table contains roles which are used to define structural
model elements (e.g. relation, class) and roles to define relationships and constraints
(e.g. association, disjointness). Due to space constraints, the table does not embody all
metamodel elements and correspondences in the different metamodels. Furthermore,
we omitted the UML metamodel for the same reason.

3.3 Description of GeRoMe

Figure 2 presents the Generic Role Based Model GeRoMe at its current state, based on
the analysis of the previous section. Below, we will describe the elements of GeRoMe
according to their basic characteristics: structural elements, derivations, and constraints.

Structural Elements. Every model element representing a primitive data type plays
the role of a Domain. GeRoMe contains a collection of predefined domains such as int

Fig. 2. The Generic Role Based Metamodel (GeRoMe)
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and string. In contrast, model elements which may have attributes play an Aggregate
role (e.g. entity and relationship types, composite attributes in EER; relations, classes
and structs in other metamodels).

Thus, the Aggregate role is connected to a set of Attribute roles. Each of these
Attribute roles is part of another tree-structured model element description. An Attribute
role is a special kind of Property and has therefore the min and max attributes which
can be used to define cardinality constraints. Every attribute has a Type, which may be a
primitive type or an Aggregate for composite attributes. Furthermore, an Attribute role
may itself play the role of a Reference, which defines a referential constraint to another
Attribute of the same type.

The Aggregate role and the Domain role are specializations of Type. Type is a spe-
cialization of DerivableElement which is the abstract class of roles to be played by
all model elements which may be specialized. Another kind of DerivableElement is
the Association role. Properties of associations are AssociationEnd roles. For example,
association roles are played by EER relationship types, UML associations, or UML as-
sociation classes. A model element which provides object identity to its instances may
participate in one or more associations. This is modeled by specifying the element’s
Identified role to be the participator of one or more AssociationEnd roles. Thus, an as-
sociation end is a model element in its own right, and the association is a relationship
between objects with identity. In addition, the roles AggregationEnd and Composition-
End can be used to model the special types of associations available in UML.

The Association and Aggregate roles are an intuitive example of two role classes
that can be used in combination to represent similar concepts of different metamodels.
If the represented schema is in a concrete metamodel which allows relationship types
to have attributes, such as the EER metamodel, then every model element playing an
Association role may play additionally an Aggregate role. If associations may not have
attributes, which is the case in OWL, a model element may only play either of both
roles. On the other hand, the representation of a relational schema may not contain
Association roles at all. Thus, these two roles can be combined to represent the precise
semantics of different metamodel elements. Of course any of these combinations can
be further combined with other roles, such as the Identified role, to yield even more
description choices.

Finally, model elements can be Visible, i.e. they can be identified by a name. The
name attribute of a Visible role has to be unique within the Namespace it is defined in.
A model’s root node is represented by a model element which plays a Namespace role.

Derivation of New Elements. A BaseElement role is played by any model element
used in the definition of a derived element. Thus, a DerivedElement can have more than
one BaseElement and vice versa. The type of base element determines the properties of
the derived element. A Subtrahend is an element whose instances are never instances
of the derived element (e.g. a complementOf definition in OWL).

BaseElement and DerivedElement roles are connected via dedicated model ele-
ments representing the DerivationLink. Each DerivationLink connects one or more
BaseElements to one DerivedElement. For example, new types can be defined by Enu-
meration, IsA, or Union definitions. The IsA role can be used to define specialization
relationships. It extends the definition of a superclass by adding new properties (e.g.
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inheritance in UML). A DerivedElement role which is connected to an isA role with
more than one BaseElement role can be used to define a type to be the intersection of
its base elements.

We identified two different kinds of isA relationships which are often not distin-
guished from each other. All metamodels allow extension (i.e. the subtype defines addi-
tional attributes and associations) if they allow specialization at all. In EER and OWL,
model elements can specialize base elements also by constraining the ranges of inher-
ited properties. In EER, this is called predicate defined specialization [7–p.80], whereas
in OWL it is called restriction and comprises a very important description facility for
inheritance. Such derivations can be expressed in our metamodel by connecting a Uni-
versal or Existential role played by the restricted range to the DerivedElement role. This
Restriction role has to define a property, which it constrains.

Furthermore, there are several different ways to define new domains based on exist-
ing ones. In XML Schema, named domains can be derived from others whereas in the
relational metamodel derived domains occur only as an anonymous type of attributes
with enumeration or interval domains.

Constraints. Constraints are represented by separate model elements. For example,
a disjointness constraint on a set of derived elements (or any other types) has to be
defined by a model element representing this constraint. The element has to play a
Disjointness role which references the types to be disjoint. In the case of OWL or UML,
any collection of classes can be defined to be disjoint; in EER this constraint can be used
to define a disjoint isA relationship by referencing at least all of the derived elements.

Another constraint is the Injective constraint which can be defined on a set of prop-
erties. Such an Injective role is equivalent to a uniqueness constraint. It can also define a
composite key by being connected to multiple properties. An injective constraint play-
ing an Identifier role defines a primary key. This reflects the fact that a primary key is
only a selected uniqueness constraint, and thereby one of multiple candidate keys.

The XOr constraint is a modeling feature that is available in UML metamodels. It
can be defined on association ends and states that an object may participate only in
one of these associations. Thus, in GeRoMe an XOr constraint is related to at least two
properties. GeRoMe can be extended with new role classes representing other features
of constraints and structures while existing models and operators still remain correct.

4 Representation Examples

This section presents some example models based on a small airport database in [7–
p.109] (see fig. 3). We represented EER, XML Schema and OWL DL models for this
example. The model contains simple entity types composed of attributes as well as
some advanced features, which are not supported by all metamodels (e.g. composite
attributes, isA relationship).

4.1 Representation of an EER Schema

Fig. 4 shows a part of the representation of the airport model in GeRoMe. For the sake
of readability, we refrain here from showing the whole model and omitted repeating



1216 D. Kensche et al.

PlaneType

Pilot

Employee

Person

WorksOn

Flies

isA

Capacity WeightModel

SSn

Name

Lic_Num

Restr

p

partial,
overlapping

1,n

1,n

0,n

0,n

LNameFName
Hours

Fig. 3. Part of an airport EER schema

AirportSchema

Person
Constraint1

Name

SSn

Lic_Num Restr

Inj

Id3 Id2 Id1

BE

OId

Ag

NS

Vis

NS

Vis

Vis

Vis

Vis

Att

AttAtt

Att

Employee

DEOId

Vis

Pilot

DE

OId Ag

NS

Vis

DerivPilot IsA
DerivEmp IsA

Ag

Namespace.owned

Aggregate.property

Visible.name

Attribute.type

Injective.component

Identifier.identified

DerivationLink.base/derived

Association.associationend

AssociationEnd.participator

Flies

As

OId

Ag

NS

VisHours

Vis

Att

min,max: (1, n)

PlaneTypeAE

Vis

AE PilotAE

Vis

AE

....

NameType
string

FName LName
min,max: (1, 1)

Vis

Vis

Vis

D

AttAtt

NS

Ag

„Name“

Fig. 4. GeRoMe representation of an EER schema

structures with the same semantics such as literal values or links from namespaces
to their owned elements. The GeRoMe representation shows each model element as a
ModelElement object (gray rectangle) which plays a number of roles (white squares)
directly or by virtue of its roles playing roles themselves. Each such role object may
be connected to other roles or literals, respectively. Thus, the roles act as interfaces or
views of a model element. The links between role objects connect the model element
descriptions according to the semantics of the represented schema.

The root model element of the airport schema is a model element representing the
schema itself (AirportSchema). It plays a Namespace role (NS) referencing all model
elements directly contained in this model.

The Name attribute is a visible model element and therefore its model element ob-
ject plays the Visible role (Vis). The role defines a name of the element as it could
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be seen in a graphical EER editor (note that we omitted the names for other Visi-
ble roles).

Since entity types are composed of attributes, every object representing an entity
type plays an Aggregate role (Ag). Furthermore, instances of entity types have ob-
ject identity. Consequently, representations of entity types also play an Identified role
(OId). The Aggregate role is again connected to the descriptions of the entity type’s
attributes.

The EER model defines a primary key constraint on the SSn attribute. Therefore, a
model element representing the constraint (Constraint1) and playing an Injective role
(Inj) is connected to this attribute. This is a uniqueness constraint which is special in
the sense that it has been chosen to be a primary key for the entity type Person. This
fact is represented by the constraint playing an Identifier role (Id1) connected to the
identified aggregate. Since Person’s subtypes must have the same identifier, the injec-
tiveness constraint plays also Identifier roles (Id2, Id3) with respect to these model
elements.

Specification of domain constraints is usually not possible in the EER model, but
the addition of default domains does not hurt. Therefore, attributes always have a type
in GeRoMe. Domains are themselves represented as model elements playing domain
roles (D) (e.g. string). It is also possible to derive new types from existing ones as this
is also possible in most concrete metamodels.

In addition, note that the composite attribute Name has not a domain but another
Aggregate as type. Unlike the representation of an entity type, Name Type is not player
of an Identified role. Consequently, this element cannot be connected to an Association-
End, which means that it cannot participate in associations. Furthermore, Name Type
is not visible as it is an anonymous type. However, the representation is very similar
to that of entity types and this eases handling both concepts similarly. For example, in
another schema the composite attribute could be modeled by a weak entity type. If these
two schemata have to be matched, a generic Match operator would ignore the Identified
role. The similarity of both elements would nevertheless be recognized as both elements
play an Aggregate role and have the same attributes.

Furthermore, the figure shows the representation of the isA relationship. Since ev-
ery instance of Pilot and Employee is also an instance of Person, the Person model
element plays a BaseElement role (BE) referenced by two IsA roles (IsA). These roles
define two children, namely the DerivedElement roles (DE) which are played by the re-
spective subtypes Employee and Pilot. Any attribute attached to the Aggregate roles of
the subtypes defines an extension to the supertype. The children could also be defined
as predicate-defined subtypes by associating to the DerivedElement roles a number of
Restriction roles.

The subtype Pilot participates in the relationship type Flies. The representation of
this relationship contains an Association role (As) which is attached to two Association-
Ends (AE) (i.e. a binary relationship). Furthermore, the relationship has an attribute, and
consequently, it plays the role of an Aggregate. The representations of the two associ-
ation ends define cardinality constraints and are linked to the Identified roles (OId) of
their respective participators. They also may play a Visible role which assigns a name
to the association end.
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4.2 Representation of an XML Schema

Fig. 5 shows the XML Schema representation of the example model in GeRoMe. The
XML Schema element is a relationship between the type defined for the element and the
complex type of the nested element. But it is always a 1:n relationship since an XML
document is always tree structured. Cross links between elements in different subtrees
have to be modeled by references. But what about root elements in a schema? These
elements are related to the schema itself which in our role based model is represented
by the AirportSchema model element. This is just one example of a concrete model
element which is not obviously mapped to a generic metamodel.

An XML document conforming to an XML Schema can have any element as root
element which is defined in the schema file as a direct son of the schema element.
Consequently, any such element is represented in GeRoMe as a model element playing
an association role with its complex type as one participator and the schema node as
the other participator. In the example, Airport is the only such element. This element
is visible and its name is “airport”. AssociationEnds of XML elements have no names
attached and therefore are anonymous. Complex types may be anonymously nested into
an element definition. In the example, this is the case for AirportType. Since definitions
of keys have labels in XML Schema, the identifier of Person plays a Visible role with
its label “personKey” assigned to it.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace role of the containing element. For example,
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BE

OId

AgNS

Vis

NS

Vis

Vis

D

Att

OId

PilotType

DE OId

Vis EmpType

DE OId

VisPilotEmpType

DE OId

Ag NS

Vis

Lic_Num
Restr

Vis
Vis

Att
Att

AgNS

DerivPIsA DerivEIsADerivPEIsA

Lic_Num Restr

VisVis

AttAtt

Ag NS

....

Id1

Airport

AsNS

Vis

AirportType

AnonAE2

AE
NS

AnonAE1

AE
OId

Person Vis

AsNS

AnonAE1

AE

AnonAE1

AE

Pilot Vis

AsNS

....

Vis

„personKey“

Flies

As

NS Vis

min,max: (1, 1)

„airport“

Fig. 5. Representation of a similar XML Schema
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the element Flies is owned by the Namespace role of PilotType. Another consequence
of the structure of semistructured data is that the AssociationEnd of the nested type
always has cardinality (1,1), i.e. it has exactly one parent. Finally, the model element
PilotEmpType has been introduced as it is not possible to represent overlapping types
in XML Schema.

4.3 Representation of an OWL DL Ontology

In table 1, we stated that OWL DL object properties are represented by model elements
playing AssociationEnd roles and that a pair of these model elements is connected by an
Association. This is another good example for the problems which occur when integrat-
ing heterogenous metamodels to a GMM. The reasons for the sketched representation
can be explained with the semantics of the relationship type WorksOn in fig. 3.

Intuitively and correctly, one represents WorksOn as a model element playing an
Association role. WorksOn has two AssociationEnds: one with cardinality (0,n) pointing
on PlaneType and one with cardinality (1,n) pointing on Employee. This is represented
analogous to Flies in fig. 4. Now what are the problems if you would regard an object
property WorksOn as corresponding to the given relationship type?

Firstly, an object property always has domain and range. Thus, it has a direction. But
the direction of a relationship type is only suggested by its name. On the other hand, an
association end has a direction. The role name describes the role which the participator
plays in the relationship type w.r.t. the participator at the opposite end. Furthermore,
these role names are often phrasal verbs as are the names of object properties in OWL.
Actually, in description logics object properties are often called roles. Thus, “WorksOn”
should be the role name assigned to the link between the relationship type and the entitiy
type PlaneType.

Secondly, an object property may have one cardinality restriction, whereas a re-
lationship type has at least two (one for each participating entity). This shows that an
object property corresponds to an association end, and that a pair of object properties (of
which one is the inverse of the other) is a correct representation of a binary association.
Note that OWL DL allows only binary relationships.

In order to allow other constraints, such as Symmetric, new roles can be added to
GeRoMe. Adding a new role to the metamodel will render existing models and operator
implementations valid and correct. Thus, it is also easy to extend GeRoMe if this is
necessary in order to include new modeling constructs.

5 Model Management Using GeRoMe Models

In this section, we show how model management operators can make use of GeRoMe.
Transformation of models is a typical task for model management applications. We
will explain the transformation of the EER model of fig. 4 into a relational schema.
Therefore, the original representation has to undergo several transformations in order
to become a representation of a relational schema. Fig. 6 shows the final result of the
transformation steps which will be discussed in detail in the following paragraphs.
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Fig. 6. Representation of the resulting relational schema

In model management, transformation of models is performed by a ModelGen op-
erator, i.e. the operator generates a model from another existing model. We have im-
plemented the transformation of constructs such as composite attributes or inheritance
from an EER schema by several ModelGen X operators. Each operator transforms the
modeling constructs not allowed in the relational model into equivalent modeling ele-
ments of the relational model. The decomposition of the operators into several “atomic”
operators has the advantage that they can be reused in combination with other opera-
tors to form new operators. Note that the following operators are not aware about the
original representation of the models, i.e. the operators just use the GeRoMe represen-
tation. Thus, these operators could also be used to transform a UML model into XML
Schema if similar transformation tasks are required (e.g. transformation of associations
to references).

It has to be emphasized that mapping of models from one metamodel to another is
just one popular example application of model management. The goal of our generic
metamodel is not only to provide a platform for schema translation but to provide a
generic model representation that serves as a foundation for the polymorphic usage of
any model management operator. Thereby, other applications of model management,
such as schema evolution, are also supported in a generic way.

Transformation of Relationship Types. Relationship types are not allowed in the re-
lational metamodel. According to properties such as cardinality constraints, they have
to be transformed to relations by executing the operator ModelGen AssocToRef for each
Association role. First, it looks for attached AssociationEnd roles, the arity of the as-
sociation, and cardinality constraints. Depending on these constraints the transforma-
tion is either performed automatically or the user is asked for a decision before the
operator can proceed. Copies of all attributes in the participators’ identifiers are at-
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tached to the relationship’s Aggregate role. An Aggregate role has to be created first,
if not yet available. Furthermore, these copies play Reference roles (Ref) referencing
the original attributes, and thereby defining referential constraints. After performing all
these transformations, the association ends and the relationship’s Association role are
deleted.

This yields an intermediate result which cannot be interpreted as a valid schema in
the EER or relational metamodel, since it now contains constructs disallowed in both
metamodels. An Export operator to the Relational or EER metamodel would have to
recognize this invalidity and reject to export.

Transformation of IsA Relationships. The isA relationships also have to be removed
depending on their characteristics (partial and overlapping), the attributes of the exten-
sions Pilot and Employee thereby become attributes of the supertype.

The operator ModelGen FlattenIsA fulfills this task by receiving a BaseElement
role as input. It first checks for disjointness of connected isA relationships and whether
they are total or not. Depending on these properties, the user is presented a number of
choices on how to flatten the selected isA relationships. In the example, the base type
Person and its subtypes Pilot and Employee have been selected to be transformed to
one single aggregate due to the fact that the isA relationship is neither total nor disjoint.
The resulting aggregate contains all attributes of the supertype and of the subtypes.
Additionally, the boolean attributes isPilot and isEmployee (including Default roles Df1
and Df2 related to these attributes) have been introduced.

Transformation of Composite Attributes. The result yet contains a composite at-
tribute and Identified roles (OId), which are not allowed in a relational model. The
Identified roles can be removed directly, as the associations have been transformed to
attribute references (earlier by the operator ModelGen AssocToRef). The transformation
of composite attributes is done by another atomic operator. First, it collects recursively
all “atomic” attributes of a nested structure. Then, it adds all these attributes to the
original Aggregate and removes all the structures describing the composite attribute(s)
(including the anonymous type). This operator also needs to consider cardinality con-
straints on attributes, since set-valued attributes have to be transformed into a separate
relation.

In this way, the whole EER schema has been transformed to a corresponding rela-
tional schema. Of course, more operators are needed to handle other EER features, such
as Union derivations of new types.

Please note that the differences in the representations stem from the constraints and
semantics of the concrete metamodels. Nevertheless the representations use the same
role classes in all models, while accurately representing the features of the constructs
in the concrete modeling languages. For example, the XML Schema PersonType plays
the same roles as the EER Person, since entity types have the same semantics as XML
Schema complex types. Furthermore, the relational Person does not play the Identified
and BaseElement roles since these are not allowed in the relational model. On the other
hand, all these roles play an Aggregate role, and therefore they look the same to an
operator which is only interested in this role.
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6 Implementation

Our implementation of a model management platform is based on a multi-layered archi-
tecture. The lowest layer provides facilities to store and retrieve models in the GeRoMe
representation and is implemented using the deductive metadatabase system Concept-
Base [11]. ConceptBase uses Telos as modeling language [14], which allows to repre-
sent multiple abstraction levels and to formulate queries, rules and constraints. Objects
are represented using a frame-like or graphical notation on the user side, and a logical
representation (triples similar to RDF) based on Datalog¬ internally. Using a logical
foundation for the implementation of GeRoMe gives the advantage that some of the
operators can be implemented in a declarative way. Furthermore, the semantics of the
concrete metamodels can also be encoded in logical rules (e.g. inheritance of attributes).

Models represented in GeRoMe can also be stored as XMI documents (XML Meta-
data Interchange) to ease the exchange of metadata. Import and export operators to the
native format of the various modeling languages are currently being implemented. The
implementation of import and export operators is also a validation of GeRoMe since it
proves that the modeling constructs from various metamodels can be represented. Be-
fore a model can be exported to a concrete metamodel, the export operator has to check
whether all roles used can be represented in the target metamodel. If not, the problem-
atic roles have to be transformed into different elements as described, for example, in
the previous section. Note that an import to and an export from GeRoMe will result in
a different model than at the beginning, as there are redundant ways to represent the
same modeling construct in specific metamodels. For example, consider a simple typed
XML Schema element with a maximum occurrence of one; this could also be modeled
as an attribute.

On top of the storage layer, an abstract object model corresponding to the model in
fig. 2 has been implemented as a Java library. It uses ConceptBase as storage mecha-
nism and to evaluate rules and queries over a GeRoMe representation. The next layer is
formed by atomic operators. Operators have to be implemented “as atomically as pos-
sible” in order to allow maximum reuse. These atomic operators are not aware of the
original metamodel, i.e. their implementations should use only roles and structures in
GeRoMe.

The operator layer is used by a scripting engine which enables the definition of
more complex operators as scripts. A ModelGen RM operator for transformation of
schemata to the relational model could then be defined as a script which reuses operators
as described in section 5. This scripting facility is analogous to the scripts which can be
defined in the model management application Rondo [13].

7 Conclusion

Generic model management requires a generic metamodel to represent models defined
in different modeling languages (or metamodels). The definition of a generic metamodel
is not straightforward and requires the careful analysis of existing metamodels. In this
paper, we have presented the generic role based metamodel GeRoMe, which is based
on our analysis and comparison of five popular metamodels (Relational, EER, UML,
OWL, and XML Schema).
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We recognized that the intuitive approach of identifying generic metaclasses and
one-to-one correspondences between these metaclasses and the elements of concrete
metamodels is not appropriate for generic metamodeling. Although classes of model
elements in known metamodels are often similar, they also inhibit significant differ-
ences which have to be taken into account. We have shown that role based metamod-
eling can be utilized to capture both, similarities and differences, in an accurate way
while avoiding sparsely populated intersection classes. In addition, the role based ap-
proach enables easy extensibility and flexibility as new modeling features can be added
easily. Implementations of operators access all roles they need for their functionality
but remain agnostic about any other roles. This reduces the complexity of models from
an operator’s point of view significantly. Furthermore, the detailed representation of
GeRoMe models is used only by a model management application, users will still use
their favorite modeling language.

Whereas role based modeling has yet only been applied to the model level, we have
shown that a generic metamodel can benefit from roles. In particular, GeRoMe enables
generic model management. As far as we know, the role based approach to the problem
of generic metadata modeling is new.

Using GeRoMe, model management operators can be implemented polymorphi-
cally, i.e. they just have to be implemented only once using the GMM. The role based
approach has been validated by representing several models from different metamod-
els in GeRoMe. We are implementing automatic import/export operators in order to
verify that the model elements of different metamodels can be represented accurately
and completely in GeRoMe. Furthermore, we have implemented GeRoMe and some
ModelGen operators using our metadatabase system ConceptBase.

Future work will concentrate on evaluating and refining GeRoMe. The approach has
to be further validated by implementing model management operators that make use of
the GMM. While it might be necessary to integrate new modeling features of other
languages, or features which we did not take into account so far, we are confident that
our work is a basis for a generic solution for model management.
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