
72	 	 1541-1672/08/$25.00 © 2008 IEEE	 IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

T r e n d s & C o n t r o v e r s i e s

Ontologies offer shared vocab-
ularies. They’re key to agent
cooperation and seamless

integration of knowledge systems, and
they’re fundamental to the Semantic
Web. They let us precisely define the
domain of a knowledge-based system.
And they’re increasing in number. With
this increase, the need for new tools
and techniques to reconcile different
ontologies becomes crucial.

Ontology matching and alignment
help establish agreement between dif-
ferent knowledge representations. The
essays here exemplify some of the cre-
ative ways researchers are extending
the state of the art in algorithms that
can establish correspondences between
different but related ontologies. The
essays are based on six of the 12 papers
accepted for the First Workshop on On-
tology Alignment and Visualization, held
in conjunction with the 2008 Interna-
tional Conference on Complex, Intel-
ligent and Software Intensive Systems.
The approaches described make original
use of techniques such as queries, tag-
ging, graph theory, and information
visualization.

Ontology Interoperability
and Matching Applications

Besides concepts, properties, and in-
stances, axioms are essential ontology
components. Frédéric Fürst and Francky
Trichet describe a way for ontology
matching to effectively take these axi-
oms into account. They introduce the
Ontology Conceptual Graphs Language,
a graph-based knowledge representa-
tion and reasoning formalism. Their
TooCom tool supports the definition of
concepts and relations and the speci-
fication of axioms in a graphical way.

They apply graph-theoretic operations
to detect analogies between axioms of
different ontologies.

Horst Kargl and Manuel Wimmer
describe how to improve the quality of
the simple one-to-one correspondences
that constitute the typical output from
automatic schema-matching tools. In an
effort to address some shortcomings as-
sociated with existing schema-matching
approaches, the authors present Smart-
Matcher, an orthogonal extension of
these approaches that uses real-world
examples to evaluate and improve com-
puted alignments. They also introduce
their prototype implementation for
schemas defined in the Eclipse Model-
ing Framework.

For users to see ontology mapping as
a benefit rather than an inconvenience,
Colm Conroy, Declan O’Sullivan, David
Lewis, and Rob Brennan look at interac-
tion processes and user interfaces. Their
focus is ontology mapping for casual
Web users. They break the mapping
process down into small tasks and apply
a tagging approach. A small user experi-
ment indicates that nonexperts can use
their approach to produce mapping re-
sults on a par with ontology experts.

Challenges and Visions
in Ontology Matching:

Asunçion Gómez-Pérez and José Án-
gel Ramos-Gargantilla survey differ-
ent approaches to ontology mapping.
They have designed an XML schema
representation for covering mappings
and their uses in the Semantic Web. Ac-
cordingly, their approach can be used
to represent mappings that include not
only ontologies but also other knowl-
edge representations such as relational
databases, thesauri, and so on.

Jérome Euzenat, Axel Polleres, and
François Scharffe propose an extended
SPARQL query language for ontology
matching. They use SPARQL queries as
a mechanism for translating RDF data
of one ontology to another ontology.
Such functionality lets users exploit in-
stance data described in one ontology
while they work with an application
that’s been designed for another. The
authors present an example translation
of FOAF files into vCards that shows
how to use queries to extract data from
the source ontology and generate new
data for the target ontology.

Ontology alignment and matching
still raise more questions than practical
solutions for a broader audience. With
the last essay, Konstantinos Kotis and
Monika Lanzenberger give an overview
of current dilemmas and crucial chal-
lenges in ontology matching. Their essay
includes a sidebar for further resources,
including the Proceedings from which
these essays originated.

Although many areas need further
research and best practices, ontology
matching offers many ideas for sup-
porting data interoperability. We hope
you enjoy reading about some of them
here.

Monika Lanzenberger is assistant
professor with the Institute of Software
Technology and Interactive Systems at
the Vienna University of Technology.
Contact her at monika.lanzenberger@
ifs.tuwien.ac.at.

Jennifer Sampson is senior ontology
engineer with Epsis AS. Contact her at
jennifer.sampson@mac.com.

Making Ontologies Talk:
Knowledge Interoperability
in the Semantic Web

Monika Lanzenberger, Vienna University of Technology
Jennifer Sampson, Epsis AS

November/December 2008	 www.computer.org/intelligent	 73

Ontology Matching
with Axioms
and Conceptual Graphs
Frédéric Fürst,
University of Picardie–Jules Verne
Francky Trichet, University of Nantes

Strategies for matching ontologies are di-
verse, but most of them consider only align-
ment between lightweight ontologies—that
is, ontologies composed of concept and re-
lation taxonomies. Heavyweight ontologies
additionally include axioms to represent a
domain’s full semantics.1 Not many real-
world ontologies currently make substan-
tial use of axioms, but the full functioning
of the Semantic Web requires computers
to have access both to structured collec-
tions of information and to sets of inference
rules that support automated reasoning. So
we think the need to develop heavyweight
ontologies will inevitably increase. The
World Wide Web Consortium’s work to-
ward standardizing the Semantic Web Rule
Language, for example, is one instance of
this trend.

We’re working to define an ontology-
matching approach based on the explicit
use of all components of a heavyweight on-
tology. Our approach requires the explicit
representation of axioms at the concep-
tual level, as opposed to the operational
level, where most ontological engineering
represents them. For instance, the Protégé
knowledge-modeling environment uses the
Protégé Axiom Language (PAL) to repre-
sent axioms directly via rules or constraints
with fixed and predefined operational
semantics.

Semantically speaking, finding a match
for an axiom’s operational form is difficult.
At the conceptual level, an axiom has a for-
mal semantics but not an operational one.
At the operational level, an axiom has both
formal and operational semantics, and the
latter clearly limits reuse. An axiom’s oper-
ational semantics, represented through a set
of rules and constraints, expresses the way
a computer can use the axiom to reason,
whereas the formal semantics expresses
how the axiom constrains the interpretation
of its primitives—that is, the concepts and
relations.2

Ontology Conceptual
Graphs Language
To represent heavyweight ontologies at the
conceptual level, we use the Ontology Con-

ceptual Graphs Language (OCGL).2 This
modeling language is based on a graphi-
cal syntax inspired by conceptual graphs
(CGs). First introduced as an operational
knowledge-representation model,3 CGs
belong to the semantic networks field and
are mathematically grounded in both logics
and graph theory.

OCGL is based on three building blocks:
concepts, relations, and axioms. Represent-
ing an ontology in OCGL mainly consists
in specifying a domain’s conceptual vo-
cabulary and specifying this vocabulary’s
semantics through axioms.

The conceptual vocabulary consists of
a set of concepts and a set of relations that
can be structured using well-known con-
ceptual properties (schemata axioms) and
domain axioms. Schemata axioms repre-
sent classical concept and relation proper-
ties, whereas domain axioms are totally
specific to a domain. In our work, the term
axiom means the union of these two axiom-
atic properties.

Figure 1 shows the OCGL graph rep-
resenting the axiom “The enemy of my
friend is my enemy.” This is a domain ax-
iom that can’t be represented using clas-
sical properties. Compare it to the axiom
“The friend of my friend is my friend,”
which is an OCGL schemata axiom that’s
represented by the transitivity of the rela-
tion called Friend(Human,Human).

OCGL has been implemented in
TooCom (Tool to Operationalize an Ontol-
ogy with the Conceptual Graph Model), a
tool for editing and operationalizing do-
main ontologies. TooCom is available un-
der the GNU GPL license at http://source-
forge.net/projects/toocom. It supports the
definition of concepts and relations and the
specification of schemata and domain axi-
oms in a graphical way.4

MetaOCGL:
An Ontology of Representation
To detect analogies between axioms rep-
resented as graphs, and then to detect
analogies between the primitives corre-
sponding to the graph nodes, axioms are
transcribed from OCGL to a more abstract
form that preserves the graphs’ topological
structures. These abstract representations
are based on MetaOCGL, an ontology of
representation. MetaOCGL expresses the
OCGL language ontology in OCGL and
is therefore a metalevel ontology.5 Meta-
OCGL includes

MetaOCGL concepts to represent OCGL
primitives,
MetaOCGL relations to represent the
links between OCGL primitives,
MetaOCGL schemata axioms used
mainly to describe the properties of
OCGL relations, and
MetaOCGL domain axioms to express
the formal OCGL semantics.

A MetaOCGL instance—that is, a Meta-
OCGL graph—can represent a domain
ontology, just as OCGL graphs can repre-
sent domain facts. The MetaOCGL graph
representing an ontology contains one part
dedicated to the concept hierarchy’s repre-
sentation, one part dedicated to the relation
hierarchy’s representation, and as many
parts as axioms in the ontology.

Figure 2 shows the MetaOCGL graphs
representing two axioms—“The enemy
of my enemy is my friend” and “The en-
emy of my friend is my enemy”—and
their corresponding metagraphs in Meta-
OCGL. TooCom automatically provides
the MetaOCGL representation of an OCGL
ontology. Correspondences between the do-
main-level and metalevel concepts appear
in gold. The type_identity links denote do-
main-level nodes that are similar—that is,
they have the same type. At the metalevel,
the two graphs are similar without consid-
ering type-identity links; but with these
links, they differ because the relations of
the axiom Enemy-Enemy have the same
type but the relations of the axiom Enemy-
Friend do not.

The CG projection operator performs the
comparisons between axioms represented
in MetaOCGL. The projection operator is a
graph-theoretic operation corresponding to
homomorphism, which is sound and com-
plete with regard to deduction in first-order
logic. A projection from a graph G1 into a
graph G2 is a specific graph morphism that
can restrict the labels of the vertices; it cor-
responds to a logical implication between
G1 and G2.

•

•

•

•

Figure 1. Representation of an axiom
in TooCom.

74	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

Given two graphs G1 and G2,
which represent two axioms A1 and
A2 in MetaOCGL, if two projections
exist from G1 into G2 and from G2
into G1, then A1 and A2 have the
same structure. In this case, A1 and
A2 express the same property type,
and the analogy between the two axi-
oms can extend to the primitives that
appear in the axioms.

Axiom-Based
Semantic Matching
Ontology matching aims to discover
and evaluate semantic links between
conceptual primitives of two given
ontologies supposedly built on re-
lated domains. Our approach relies
on using the ontologies’ axiomatic level to
discover semantic analogies between primi-
tives that will reveal identities between
them and calculate the similarity coeffi-
cient of these identities.

We use both schemata axioms and
domain axioms to evaluate or discover
primitive matchings. Each OCGL sche-
mata axiom owns a predefined weight
that modulates the axiom’s influence on
the matching process. The end user can
modify the set of weights according to
the kinds of ontologies or subjective pref-
erences. Thus, these weights are algo-
rithm parameters that users can change
graphically to improve their results’
precision.

Space limitations prevent us from pre-
senting details on the use of the schemata
and domain axioms to evaluate matchings,
but details are elsewhere.6

Experimental Results
Figure 3 shows an extract from applying our
approach to two ontologies related to family
relationships. This limited domain includes
these notions: father, mother, grandfather,
grandmother, son, daughter, cousin, nephew,
niece, uncle, aunt, sister, brother, wife, hus-
band, friend, and enemy. This example is
easy to understand and necessarily requires
domain axioms for defining such notions
as “An aunt is either a female sibling of
one of one’s parents or the wife of an uncle
who is the male sibling of a parent,” and for
specifying relations between notions such
as “The enemy of my enemy is my friend.”
In other words, schemata axioms aren’t
sufficient for representing all the domain
knowledge. It also means that OWL (Web
Ontology Language) can’t represent the
ontologies (available in the XML storage
format used for OCGL at http://sourceforge.
net/projects/toocom).

In Figure 3, all the weights have
the value 50. The TooCom inter-
face (upper part of Figure 3) makes
it possible to directly visualize
the consequences (on the match-
ings) when modifying the values of
the matching algorithm’s property
weights. This shows that the match-
ing process itself is not sensitive to
the weights assigned to the OCGL
properties.

Moreover, it shows that TooCom
provides a first step toward cogni-
tive support for ontology mapping.7
Indeed, very little research has ad-
dressed cognitive support for ontol-
ogy mappings; researchers have fo-
cused on improving the performance

of the algorithms themselves, largely ignor-
ing the issue of end-user tools.

To deal with this new problem, Sean
Falconer, Natalya Noy, and Margaret-Anne
Storey have identified a set of 13 end-
user tasks for an ontology-mapping tool.7
Although our user-centered interface is
perfectible, the current TooCom version
already supports many of these tasks—for
example, incremental navigation, browsable
list of candidate mappings, and conflict
resolution/inconsistency detection.

Conclusion
Our method has the advantage of incorpo-
rating most descriptive features of a heavy-
weight ontology into the matching process,
whereas current methods usually cover
only subsets of a lightweight ontology. Of
course, we know that our method, although
applicable, isn’t efficient for lightweight on-

role1

222

2

2

11

1
1 1 1

Human: * Human: * Human: *
121 2

21

2
Antecedent_R : * Antecedent_R : *

2

1

Antecedent_C : *

type-identity type-identity

222

2

2

2

2

2

11
1

1 1 1

11

1

2

2

2 11

1

2

2

1

Human: * Human: *
121 2

21

Axiom Enemy-Friend
in MetaOCGL

Axiom Enemy-Friend
in MetaOCGL

Axiom Enemy-Friend
in OCGL

Axiom Enemy-Friend
in OCGL

type-identity

type-identity type-identity

type-identity

type-identity

Consequent_R : *

Human: *

Antecedent_C : *

Antecedent_R : *

Antecedent_C : * Antecedent_C : * Antecedent_C : *Antecedent_C : *

Antecedent_R : *

enemy enemy enemyfriend

enemy

role2 role1

role1 role2 role1 role2 role1 role2role1 role2

friend

type-identity

Consequent_R : * role2

Figure 2. Two axioms represented in MetaOCGL.

Figure 3. Experimental results in TooCom.

November/December 2008	 www.computer.org/intelligent	 75

tologies. However, as the need for develop-
ing heavyweight ontologies increases over
time, so will the need to focus on develop-
ing matching techniques dedicated to the
reasoning power these ontologies can bring
to the Semantic Web.

Acknowledgments

A longer version of this essay appeared in the
Proc. 2nd Int’l Conf. on Complex, Intelligent,
and Software-Intensive Systems (CISIS 08),
IEEE CS Press, pp. 853–858.

References
	 1.	S. Staab and A. Maedche, Axioms Are Ob-

jects Too: Ontology Engineering beyond
the Modeling of Concepts and Relations,
research report 399, Institute AIFB, Uni-
versität Karlsruhe, 2000.

	 2.	F. Fürst, M. Leclère, and F. Trichet, “Op-
erationalizing Domain Ontologies: A
Method and a Tool,” Proc. 16th European
Conf. Artificial Intelligence (ECAI 04),
IOS Press, 2004, pp. 318–322.

	 3.	 J. Sowa, Conceptual Structures: Infor
mation Processing in Mind and Machine,
Addison-Wesley, 1984.

	 4.	 F. Fürst and F. Trichet, “Reasoning on the
Semantic Web Needs to Reason Both on
Ontology-Based Assertions and on Ontolo-
gies Themselves,” Proc. Int’l Workshop on
Reasoning on the Web (RoW 06), 2006;
www.aifb.uni-karlsruhe.de/WBS/phi/
RoW06/

	 5.	A. Gomez-Perez, M. Fernandez-Lopez,
and O. Corcho, Ontological Engineering,
Springer, 2003.

	 6.	F. Fürst and F. Trichet, “Axiom-Based
Ontology Matching,” to be published in
Expert Systems: J. of Knowledge Eng., vol.
25, no. 2, 2008.

	 7.	S.M. Falconer, N.F. Noy, and M. Storey,
“Towards Understanding the Needs of
Cognitive Support for Ontology Mapping,”
Proc. Int’l Workshop on Ontology Match-
ing (OM 06), CEUR-WS, vol. 225, 2006;
http://om2006.ontologymatching.org.

SmartMatcher: Improving
Automatic Matching Quality
Horst Kargl and Manuel Wimmer,
Vienna University of Technology

Information integration deals with the
problem of building a general view on
different kinds of data. Its long history
in computer science is rooted in database
engineering from the early 1980s, when
autonomous databases started to feder-
ate.1 More recently, the Semantic Web
and its schema-based technologies for
describing, storing, and exchanging data
have intensified the need to automate in-
tegration tasks.

Researchers have proposed several auto-
mated matching approaches and tools over
the years. In general, these approaches
fall into one of three categories.2 Schema-
based approaches use only schema infor-
mation as input for the matching process;
instance-based approaches use only in-
stances as input, and hybrid approaches
use schema and instance information.
The typical outputs are simple one-to-
one alignments, mostly based on schema
information such as element name and
structure similarities. These alignments,
however, can’t handle schema heterogene-
ities, which therefore remain problems that
must be resolved manually. Furthermore,
current tools can’t automatically evaluate
the alignment quality at the instance level
because their matching approaches aren’t
bound to a specific integration scenario,
such as transformation, merge, synchroni-
zation, or search.

The main requirement for matching so-
lutions is to produce complete and correct
mappings between schemas. Three prob-
lems complicate meeting this requirement.

Different mapping-execution scenar-
ios. Current matching approaches are
general—that is, they apply to different
kinds of integration problems. Because
each integration scenario entails differ-
ent conditions and interpretation, this
generality makes it hard to cover all
aspects of each scenario. Furthermore,
most approaches lack a binding to an
execution environment, which the actual
integration solution will need.
Schema heterogeneity. Matching ap-
proaches produce alignments that ex-
press correspondences between elements
belonging to different schemas. Most

•

•

schemas share similar semantics but
describe their semantics with different
structures. Current one-to-one align-
ments can’t handle schema heterogene-
ities, so users must interpret and refine
the alignment results manually.
Unreliable matching results. Matching
results are suggestions and not wholly
reliable. In reality, the results often in-
clude mistakes, such as wrong or missed
alignments. Assertions about alignment
quality require quality measures.3 To
calculate these quality measures, the
user must give all correct alignments,
which means the user first has to solve
the integration problem manually.

To tackle these problems, we’ve developed
the SmartMatching approach to extend
existing matching approaches orthogonally
with a self-tuning component and thereby
to improve the quality of automatically
produced alignments for the transforma-
tion scenario. SmartMatcher is a hybrid
approach that uses a real-world example
to develop instances of the schema to be
integrated. The example supports auto-
matic evaluation of matching tools and
improvement of their output results. We’ve
implemented a prototype for schemas de-
fined in the Eclipse Modeling Framework
(EMF) Ecore metalanguage (www.eclipse.
org/modeling/emf).

The SmartMatching Approach
Figure 1 presents an overview of the Smart-
Matcher architecture and its integration
process. Its three core components are the
Initial Matcher, the Mapping Engine, and
the Fitness Function. The workflow is an
eight-step process.

1. Develop example instances. In this
step, the user develops instances of seman-
tically equivalent elements for each of the
schemas to be integrated. Figure 2 shows
the general idea: The user must first define
a real-world example that uses most of the
schema elements. Describing the same real-
world example with both schemas gener-
ates instances of semantically equivalent
schema elements; nonoverlapping schema
elements are filtered out.

Concrete examples are core elements
of improving the mapping quality and
supporting the SmartMatching self-tun-
ing mechanism. The cloud at the bottom
of Figure 2 stands for a real-world example

•

Frédéric Fürst is an associate professor
of computer science at the University of
Picardie–Jules Verne. Contact him at fred-
eric.furst@u-picardie.fr.

Francky Trichet is an associate profes-
sor of informatics and computer science
at the University of Nantes and a mem-
ber of the research institute Laboratoire
d’Informatique de Nantes Atlantique. Con-
tact him at francky.trichet@univ-nantes.fr.

76	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

of a specific domain. The user must de-
scribe this example in natural language and
develop instances representing it for both
schemas.

Other instance-based approaches also
compare instance values to find similarities
between schema elements. However, term
ambiguities such as synonyms and hom-
onyms keep the results of such a compari-
son from being trustworthy. Using the same
real-world example and the same terms for
the same concepts avoids these kinds of
ambiguities.

The SmartMatcher uses the concrete
examples to increase the completeness and
correctness of found alignments. Compar-

ing the actual instances generated by the
transformation to the target instances de-
veloped by the user also supports evalua-
tion of the mappings between two schemas.
At the end of the SmartMatching process,
the actual and target instances should be
the same. If this is the fact, all automati-
cally found mappings are correct.

2. Generate initial matching. We use ex-
isting matching tools to create basic align-
ments between similar schema concepts.
We require the alignments to be expressed
in the INRIA alignment format.4 This lets
us use all matching tools that deliver this
format.

3. Interpret initial mappings. We can
translate the alignments produced in step
2 to an initial mapping model based on
the element types referenced by the align-
ments. The Initial Matcher increases Map-
ping Engine’s performance by reducing the
search space, compared to beginning with
an empty mapping model.

4. Derive transformation. From the map-
ping model a transformation is automati-
cally generated, which transforms instances
of one schema into instances of the other.
In general, it’s possible to generate different
kinds of transformations from the mapping
model to suit the schema languages. In our
case, we generate transformations based on
colored Petri nets5 for transforming EMF-
based models.

5. Transform instances. The execution
environment is responsible for reading the
instances conforming to one schema and
transforming them into instances conform-
ing to the other schema, according to the
derived transformations.

6. Calculate differences. The Fitness
Function compares the actual and target
instances by means of their attribute values.
Then it links and collects the differences in
a diff model, which can be used to evalu-
ate the quality of the mappings between
Schema A and Schema B. Furthermore, in
step 6 we have two termination conditions
for the SmartMatching process. The first
occurs when no further differences exist
between the actual and target instances;
in other words, the mapping is complete.
The second termination condition occurs
if the differences remain the same over
several iterations; in this case, the process
has reached a final point for a certain set of
example instances.

7. Propagate differences. In this step,
SmartMatcher propagates the differences
calculated by the Fitness Function back to
the Mapping Engine. More specifically, it
propagates back missing and wrong values,
expressed in the diff model of the actual
and target instances.

8. Interpret differences and adjust map-
ping model. The Mapping Engine analyzes
the propagated differences and adapts the
current mappings between Schemas A and
B by searching for and applying appropri-

Real-world
example

In
st

an
ce

Sc
he

m
a

instanceOf

Mapping model

Fitness Function
Based on diff-operator

feedback

CAR mapping operators

Mapping
language
repository

target actual

4

8

load

describe

load

instanceOf instanceOf

read

6

2 3
Mapping EngineInitial Matcher

Export to

Execution environment write

7

Example Y´

Schema BSchema A

Example YExample X 1

describe

1

read
5

Figure 1. The SmartMatching approach architecture and process. SmartMatcher
extends matching tools with self-tuning capabilities by providing self-evaluation
(Fitness Function) and self-adaption (Mapping Engine) of mapping models as well as
an iterative eight-step learning process.

Schema A
Schema B

Semantically equivalent parts of
the schemas to be integrated

Schema A Schema B

Real-world example

Figure 2. Building instances from a real-world example. First, the user defines a
real-world example in natural language, which is then described in the schemas to
be integrated.

November/December 2008	 www.computer.org/intelligent	 77

ate mapping operators for missing or wrong
mappings.

After step 8, a new iteration starts at step
4 until step 6. In step 6 the actual and the
target models are compared again. If there
are no more differences, the process is fin-
ished; otherwise the iteration continues un-
til step 8, where a new iteration begins.

Conclusion
Compared with other automatic matching
approaches, SmartMatcher needs more
work in the preparation phase to estab-
lish the example instances. However, we
hypothesize that building the instances
for the real-world example costs less than
manual evaluation and rework of align-
ments produced by other approaches.
Furthermore, the real-world examples be-
come available for reuse in other integra-
tion scenarios.

The SmartMatcher prototype we’ve
implemented for EMF/Ecore implements
a simple Initial Matcher component using
the CAR (classes, attributes, and relation-
ships) mapping language.6 The proto-
type provides an import functionality for
alignment models based on the INRIA
alignment format. It also includes a Fit-
ness Function implementation to compare
the target model with the transformed
actual model. The implementation can
propagate differences between target and
actual models to the Mapping Engine,
which produces CAR mapping models
that can be automatically converted to
transformation definitions based on col-
ored Petri nets.5

Using our first prototype implementa-
tion, we’ve evaluated our hypothesis that
the SmartMatcher preparation is less work
than the standard rework phase. First re-
sults have shown that the hypothesis holds
true, especially in scenarios where the
schemas to be integrated use different lan-
guages, naming conventions, or jargons.
We also plan to conduct empirical experi-
ments to evaluate our approach relative to
completeness and correctness of the map-
pings as well as to verify the performance
in terms of different mapping strategies’
execution times. Furthermore, we’re im
proving our prototype to support the de-
velopment of appropriate test instances
from real-world examples.

For additional information, see the
SmartMatcher project homepage at http://
big.tuwien.ac.at/projects/smartmatcher.

Acknowledgments

A longer version of this essay appeared in the
Proc. 2nd Int’l Conf. on Complex, Intelligent,
and Software-Intensive Systems (CISIS 08),
IEEE CS Press, pp. 879–885.

References
	 1.	A.P. Sheth and J.A. Larson, “Federated Da-

tabase Systems for Managing Distributed,
Heterogeneous, and Autonomous Data-
bases”, ACM Computing Surveys, vol. 22,
no. 3, 1990, pp. 183–236.

	 2.	E. Rahm and P. Bernstein, “A Survey of
Approaches to Automatic Schema Match-
ing”, VLDB J., vol. 10, no. 4, 2001, pp.
334–350.

	 3.	G. Salton and M.J. McGill, Introduction to
Modern Information Retrieval, McGraw-
Hill, 1984.

	 4.	 J. Euzenat, “An API for Ontology Align-
ment,” Proc. Semantic Web Conf. (ISWC
2004), Springer, LNCS 3298, 2004, pp.
698–712.

	 5.	T. Reiter, M. Wimmer, and H. Kargl, “To-
wards a Runtime Model based on Colored
Petri-nets for the Execution of Model
Transformations,” Proc. 3rd Workshop on
Models and Aspects—Handling Cross-
cutting Concerns in MDSD, in conjunc-
tion with ECOOP 07, 2007; http://publik.
tuwien.ac.at/files/PubDat_141077.pdf.

	 6.	G. Kappel et al., “A Framework for Build-
ing Mapping Operators Resolving Struc-
tural Heterogeneities,” Information Sys-
tems and e-Business Technologies, LNBIP
5, Springer, 2008, pp. 158–174.

Ontology Mapping
for the Masses:
A Tagging Approach
Colm Conroy, Declan O’Sullivan,
David Lewis, and Rob Brennan,
Trinity College Dublin

As ontologies become more commonplace,
the need increases for tools to cope with
their diversity and heterogeneity. A variety
of techniques can automatically match a
user’s personal ontology to other domain
models.1 The research challenge lies in how

to derive ontology mappings from the can-
didate matches. Fully automatic derivation
of mappings isn’t yet feasible,2 and most
state-of-the-art ontology-mapping tools rely
on a classic side-by-side presentation of
two ontologies’ class hierarchies and some
means for a user to express the mappings.3
Moreover, most tool interfaces assume the
user is an ontology engineer who performs
the work during long mapping sessions.

We’ve developed an early prototype of
an interface that makes ontology mapping
as unintrusive and natural as possible. We
want to engage casual Web users in ontol-
ogy mapping by designing a process that
doesn’t require ontology-engineering expe-
rience and that, moreover, makes the ben-
efits of mapping clear.

Mapping-Process Design
To make the mapping process less daunt-
ing, we deconstructed it so that it can oc-
cur over multiple sessions. This lets users
see the impact of their decisions between
sessions and correct or enhance their map-
pings over multiple sessions.

The mapping-process design has four
steps with rules for presenting mapping
tasks to the user and a feedback loop to
evaluate the user responses.

Step 1: When to present the mapping
task. Calculating when to present a map-
ping task to the user is a key to making the
process less intrusive. Because mapping
generation occurs over multiple sessions,
the mapping system must determine when
to present each task. Example rules for this
step include specifying regular time inter-
vals, such as once every hour, or specifying
“just-in-time” schedules, such as each time
users want to submit a query but need to
map their own ontology to another one for
the query to work.

In each presentation case, the process
should signal users that a mapping task is
pending and ask if they wish to perform the
task at this time.

Step 2: What mapping task to present.
Deciding which mapping task to present is
the second step. Several strategies are avail-
able. Priority-based rules are one example.
Mapping tasks relevant to the user’s current
Web browsing context is another.

Step 3: How to present the mapping task.
Displaying the mapping information in a

Horst Kargl is an assistant professor at the
Vienna University of Technology’s Institute
for Software Technology and Interactive
Systems. Contact him at kargl@big.tuwien.
ac.at.

Manuel Wimmer is a project assistant at
the Vienna University of Technology’s In-
stitute for Software Technology and Interac-
tive Systems. Contact him at wimmer@big.
tuwien.ac.at.

78	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

way that’s most natural to the user requires
rules that can reflect user preferences. Ex-
ample rules in this area include natural
language versus graphical display and/or
choices among various information filters.

Step 4: How to design the mapping in-
teraction. Given the mapping information
available, what is the best design for the
user interaction that generates mappings?
One example is to ask questions that the
user could answer with a simple yes or no.
Another is to let the user “drag and drop”
graphical connections. A third approach is
to have users add a semantic tag represent-
ing the semantic relationship between the
matching pairs.

Initial Process Implementation
We’ve been experimenting with implemen-
tations of this four-step design process over
the past two years.

Our first experiment focused on the third
and fourth steps.4 To move away from clas-
sical approaches that typically assume a
knowledge engineer, we adopted a natural
language question-and-answer (Q&A) ap-
proach. This lets us introduce small dis-
crete mapping sessions more easily. We
also hypothesized that natural language
would help a nontechnical user under-
stand the information better than graphical
structures.

Our initial implementation’s main

purpose was to test the usability of our
prototype natural-language mapping tool
and compare it to a current state-of-the-art
graphic-based tool—specifically, we se-
lected COMA++ for our experiment.3 We
split the user test group into three distinct
groups: ontology-aware users had ontol-
ogy work experience, technology-aware
users had database or UML modeling ex-
perience but no ontology experience, and
nontechnical users had basic computer
experience but no database modeling or
ontology experience.

On the positive side, results from this
experiment suggested that ordinary users
compared well to ontology-aware users in
mapping effectiveness and efficiency. Us-
ing natural language seemed to help people
understand the mapping information, and
the Q&A approach helped in navigating
through the mapping task.

On the negative side, ordinary users
found the narrow range of mapping ter-
minology to be limiting when answering
questions. In addition, some users were
unclear about the benefit of engaging in the
mapping task.

To address the negative concerns, we fo-
cused the next phase of our research on how
to be less restrictive in the way users could
express mappings and how to overcome
confusion about the rationale for undertak-
ing the mapping task by clearly demonstrat-
ing benefits.

Tagging-Approach Design
Social networking sites like del.icio.us
(http://del.icio.us) have become popular
because people can use their own language
to tag a link and so associate their own
meaning with it. We decided to explore
whether enabling users to map ontologies
by tagging would make the mapping pro-
cess easier and perhaps even lead to more
expressive mappings.

In this approach, once a user chooses a
tag, the system categorizes it according to
top-level categories and their conceptual
subcategories:

Equivalent—the same, subclass
Equivalent sometimes—superclass, one
of, union, intersection
Different—different from, complement
of, disjoint
Corresponds/unknown

These categories align the user tags with
the reasoning primitives typically used
to express and execute mappings. The
decision-making rules for assigning a
matching pair to a top-level category are
configurable. For example, a “majority
rules” configuration would assign a match-
ing pair to the “equivalent” category if
the user submits a tag from each of “the
same,” “subclass,” and “union” subcatego-
ries for the pair.

The fourth category accepts matching
pairs that the system can’t assign to one of
the other three categories.

Tagging-Approach Implementation
The prototype currently uses the same de-
fault rules for each user. It generates the
matches with the INRIA alignment API.5

Presentation: Browser extension. To
make the mapping process as natural as
possible, we used a Firefox browser exten-
sion to display the mapping information.
The mapping question appears on a trans-
parent interface over the Web page the user
is currently browsing, as shown in Figure
1. The concepts appear in a specific type
of natural language that represents their
parents, siblings, and properties via bullet
points and fixed statements, such as “A is a
B” and “C is a type of A.”

We modified the natural language used
in our previous experiment to remove some
confusing ontological terms (for example,
“Thing”). We also limited the number of

•
•

•

•Figure 1. The tagging interface. The concepts appear in a specific type of natural
language, and users characterize their relation by either entering a new tag or
choosing from existing tags.

November/December 2008	 www.computer.org/intelligent	 79

properties shown to avoid cognitive over-
load. Future experiments might use differ-
ent constructions.

Interaction: Tagging interface. The user
has to tag the matching pair relation with
the tags they think represent the relation-
ship. They can either type in a new tag or
choose from an existing list that contains
suggested tags. The top-level categories
are equivalent, equivalent sometimes, and
different. Users can enter multiple tags for
the relationship if they wish.

Evaluate user response: Tag analyzer.
After the user submits tags for a match-
ing pair, a tag analyzer applies rules to the
set of user-specified tags, categorizing the
matching pair. The rules are configurable,
but at present we set the same default
rules for each user—for example, major-
ity wins and a tie goes to the first specified
category.

When a matching pair is categorized
into “correspond/unknown” via undefined
tags, the system checks the tags to see if
the matching pair is an object-property re-
lationship; if so, the system will construct
a new matching pair. In future experi-
ments, we plan to categorize the unknown
matching pairs through observation of
other users and user-interaction patterns.
Thus, if a user isn’t seeing any benefit
from a mapping, we want to flag it as pos-
sibly incorrect.

Conclusion
To clarify the benefits of engaging in the
mapping task, we’re currently testing our
prototype by offering users specific RSS
items selected on the basis of mappings that
the user generates between their personal
ontology and the domain ontology used by
the RSS feeds. The user is alerted to new
RSS feed information via a message in the
browser extension—just like the message
used to alert the user of pending mapping
tasks. Users can ignore the message until
later if they wish. The user test group is
split into the same three group types as in
the initial experiment.

This experiment is nearing completion.
Some initial indications and feedback in-
dicate that users have found the mapping
prototype to be neither disruptive nor in-
terfering. However, they would prefer that
the alerts not display when they’re busy.
Most people think the mapping tasks are

efficient, given their breakdown into small
sessions. They liked the tagging approach
because it was simple enough to use, al-
though the quality of the generated tags has
yet to be analyzed. Our next experiment
will allow the user’s browsing context to
support adaptation of the mapping process.
A wide-scale user trial over the Web is also
planned.

Acknowledgments

A longer version of this essay appeared in the
Proc. 2nd Int’l Conf. on Complex, Intelligent,
and Software-Intensive Systems (CISIS 08),
IEEE CS Press, pp. 886–891. This work is part
funded by the Irish Higher Education Authori-
ty’s Nembes research project grant.

References
	 1.	P. Shvaiko and J. Euzenat, “A Survey of

Schema-Based Matching Approaches,”
J. of Data Semantics, vol. 4, 2005, pp.
146–171.

	 2.	N. Noy, “Semantic Integration: A Survey
of Ontology-Based Approaches,” SIGMOD
Record, vol., no. 4, 2004, pp. 65–70.

	 3.	D. Aumüller et al., “Schema and Ontol-
ogy Matching with COMA++,” Proc. 2005
ACM SIGMOD Int’l Conf. Management of
Data, ACM Press, 2005, pp. 906–908.

	 4.	C. Conroy, D. O’Sullivan, and D. Lewis,
“A Tagging Approach to Ontology Map-
ping,” Proc. 2nd Int’l Workshop on Ontol-
ogy Mapping (ISWC 07); http://om2007.
ontologymatching.org.

	 5.	 J. Euzenat et al., “Ontology Alignment
with OLA,” Proc. 3rd Int’l Workshop
Evaluation of Ontology-Based Tools,
CEUR-WS, 2004; http://ftp.informatik.
rwth-aachen.de/Publications/CEUR-WS/
Vol-128/EON2004_Proceedings.pdf.

Mappings
for the Semantic Web
Asunción Gómez-Pérez
and José Ángel Ramos-Gargantilla,
Universidad Politécnica de Madrid

Mappings usually relate two similar
knowledge representations. Mapping ex-
amples abound in thesauri, databases, and
ontologies. Additionally, mapping systems
can relate two different knowledge repre-
sentations, such as databases and ontolo-
gies. All these mappings are operationally
different and are sometimes named dif-
ferently—for example, correspondences,
semantic bridges, transformations, seman-
tic relations, functions, conversions, and
domain-method relations.

We’ve analyzed some of the existing
mapping definitions and representations in
the ontology world and its semantic neigh-
borhood, and we propose a new definition
and representation to address the Semantic
Web and its needs for format, access, and
formalism heterogeneity.

Knowledge-Representation
Definitions
Drawing on the idea of mappings as a
structured representation, the knowledge-
representation domain has focused map-
ping definitions on ontologies. For example,
in 2002, Xiaomeng Su gave this definition:1

Given two ontologies A and B, mapping one
ontology with another means that for each
concept (node) in ontology A, we try to find
a corresponding concept (node), which has
the same or similar semantics in ontology B
and vice versa.

In Su’s definition, the mapping elements
are ontology concepts. Because mapping
involves only two ontologies, the relation
between elements is bidirectional and the
semantic of the relation is of similarity or
identity. Su’s definition includes no idea of
a conversion or transformation of elements.

In that same year, Alexandre Maedche
and colleagues, proposed a definition that
picked up on the transformation idea. They
also extended the process vocabulary by
introducing the term “semantic bridge” for
mappings in which the transformation was
not equivalent:2

An ontology mapping process is the set of
activities required to transform instances

Colm Conroy is a PhD student in the De-
partment of Computer Science’s Knowl-
edge and Data Engineering Group, Trinity
College Dublin. Contact him at coconroy@
cs.tcd.ie.

Declan O’Sullivan is director of the De-
partment of Computer Science’s Knowledge
and Data Engineering Group and a lecturer
in the School of Computer Science and Sta-
tistics at Trinity College Dublin. Contact
him at declan.osullivan@cs.tcd.ie.

David Lewis is a research lecturer at Trin-
ity College Dublin. Contact him at dave.
lewis@cs.tcd.ie.

Rob Brennan is a research fellow at Trin-
ity College Dublin. Contact him at rob.bren-
nan@cs.tcd.ie

80	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

of a source ontology into
instances of a target ontol-
ogy…. [T]he mapping must
define the two ontologies
being mapped. Additionally,
one may specify top-level se-
mantic bridges which serve as
entry points for the translation
even if they are not mandato-
ry. In this case the translation
engine starts executing the
Individual-Individual bridge.

In 2003, Monica Crubézy
and Mark Musen introduced
yet another new dimension—
namely, mapping between a
domain and a problem-solving
method (PSM) ontology:3

Our mapping ontology pro-
vides the basis for expressing
the adaptation knowledge
needed to configure a PSM
for a certain application.
In that sense, our mapping
ontology extends the notion
of domain-PSM bridges in the
UPML [Unified Problem-
solving Method description
Language] framework by
providing a structured and
operational set of possible
mapping axioms that bridge
the ontologies of both com-
ponents.

This definition isn’t classified into map-
pings or semantic bridges according to the
complexity of axioms. Mappings focus on
configuring a PSM that will execute on
concrete domain elements. The transforma-
tion idea is missing.

In 2004, a specification deliverable for
the EU’s KnowledgeWeb project provided
a new definition of mapping between
ontologies:4

A formal expression that states the seman-
tic relation between two entities belonging
to different ontologies. When this relation
is oriented, this corresponds to a restric-
tion of the usual mathematical meaning of
mapping: a function (whose domain is a
singleton).

Again, mapping is defined here as an ex-
pression, without an explicit transforma-

tion objective. This definition upgrades the
set of ontology components by extending
Su’s restricted mappings (only between
concepts), and covers all complexity levels
of expressions. Additionally, a new element
appears—direction associated to the map-
ping when the relation is a function. This
direction contradicts Su’s bidirectional
definition (because it covers only similarity
and identity relations).

In their 2005 survey, Yannis Kalfoglou
and Marco Schorlemmer defined ontology
mapping as follows:5

A morphism, which usually will consist of
a collection of functions assigning the sym-
bols used in one vocabulary to the symbols
of the other.

They distinguished two mapping types:
one oriented to correspondence between

representation languages and
the other oriented to corre-
spondence between vocabu-
laries. Such mappings have
functions that assign the
terms of one ontology to the
terms of another. Therefore,
their definition covers the
mappings between PSM and
domain ontologies, although
it’s restricted to only two
ontologies.

Semantic Web Mappings
All these definitions between
ontologies apply within the
Semantic Web area, but none
of them covers all Semantic
Web needs. Although on-
tologies are the main knowl-
edge representation of the
Semantic Web, they aren’t the
only one. Integrated in the
Semantic Web are systems
and applications that work
with other formats such as
databases, natural language
documents, annotated docu-
ments, Web pages, semantic
networks, graphs, and naviga-
tion models. These knowl-
edge representations can be
mapped with ontologies or
between them.

Additionally, the Semantic
Web includes systems that ex-
ecute PSMs to obtain differ-

ent results with different domain ontolo-
gies. So, Semantic Web mappings need
to cover directional and not-predefined
functions.

The Ontology Engineering Group of the
Universidad Politécnica de Madrid (UPM)
has developed a mapping definition that
covers the Semantic Web extensions of
ontologies:

A mapping is a formal explicitation of
a relation between elements, or a set of
elements, of different conceptualizations
and/or instantiations.

In this definition, “explicitation” refers to
a relation that’s both explicit and formal,
as in “machine-readable.” This definition
doesn’t limit the relation to a reciprocal
function or declarative transformations.
However, it supports mappings between all

Alignment

AlignmentId: String
OriginalAuthor: String
CreationDate: Date
LastModificationAuthor: String
LastModificationDate: Date

Mapping

MappingId: String
Reference: String
Certainty: Double

MappingRelation

Name: String
Description: String
Formalization: String
Reference: String

*

*

*

ConceptualizationElement

KR: String
Id: String

RelatedElement

ElementGroup

1

Figure 1. Mapping model proposal. Mappings define relations
between knowledge representations and their associate
information (such as certainty, reference, and metadata).

November/December 2008	 www.computer.org/intelligent	 81

Semantic Web knowledge-representations
elements, without restriction to the number
of elements or representations. Moreover, it
encompasses all mappings that are part of
Semantic Web processes, such as ontology
alignment, heterogeneous resources inte-
gration, and annotation.

Mapping Representations
The literature offers several mapping
representations. For example, the Com-
mon Warehouse Model (CWM) repre-
sents mappings that are both generic and
expressive,6 but this representation is also
complex. It’s composed of classes—Trans-
formation, TransformationMap, Classifier-
Map, FeatureMap, ClassifierFeatureMap,
TypeMapping—and their properties and
characteristics.

The RDF Transformation (RDFT) meta-
ontology is based on the CWM. The RDFT
specifies a small language for DTD map-
pings of XML to RDF-Schema and vice
versa.7 Its main class is Bridge, although
it also includes Map, EventMap, Interface,
Roles, Event2Event, DocumentMap, XML-
Bridge, VocabularyMap, and RDFBridge.

OWL defines equivalentClass and equiv-
alentProperty as primitives, both of which
can be considered mapping explicitations.8

C-OWL is a mapping-language proposal
that can express relatively simple align-
ments between ontologies. The constructs
in C-OWL are called bridge rules, and they
can express a family of semantic relations
between concepts/roles and individuals.
C-OWL mappings provide eight seman-
tic relations: equivalence, containments
(contains and is contained in), overlap, and
their negations.9

The SEKT (Semantically Enabled
Knowledge Technologies) mapping lan-
guage provides a set of constructs to ex-
press mappings between ontology classes,
attributes, relations, and instances.10 Sev-
eral other languages express mappings,
though we focus here on the language that
is the most similar to our mapping concept,
that is, the INRIA’s alignment format.11

Mapping Model Proposal
Starting from common elements of these
representations and the generalized defini-
tion for Semantic Web mappings, we de-
signed a simple representation for covering
mappings and their uses in the Semantic
Web. Figure 1 shows this representation.

We chose this simple representation be-

cause a more complex representation, such
as an ontology, needs a manager to handle
instances and models. This representation
is independent of the knowledge represen-
tation; we can therefore use it to represent
mappings between ontologies, between
relational databases and ontologies, be-
tween thesauri, and so on. Furthermore,
mapping managers can define the relations
they need because mapping relations are
not limited. The representation includes
component metadata such as LastModifica-
tionDate and Reference, mainly for tracing
information flow.

For making this representation usable,
we present it as an XML Schema Definition
(http://webode.dia.fi.upm.es/Alighment/
Schema.xsd).

Conclusion
The UPM has a bilateral agreement with
the Spanish National Geographic Institute
(IGN) to integrate current heterogeneous
databases using the definition and repre-
sentation proposals presented here. IGN
has four databases with geographic infor-
mation in different scales. This informa-
tion is classified into phenomena that have
tremendously different granularity—for
example, one catalog has 22 phenomena
and another has 560. UPM and IGN have
jointly developed an ontology of phenom-
ena, called PhenomenOntology, and they
plan to develop an automatic mapping
discoverer between the ontology and the
relational databases.

Additionally, the Ontology Engineering
Group is working on extracting mappings
of concept classification from textual se-
mantic annotations. Such mappings could
be used in ontology-learning or ontology-
alignment applications

Acknowledgements

The Spanish National Project “GeoBuddies”
(TSI2007-65677C02) and the bilateral collabo-
ration UPM-IGN 2007-2008 supported the work
reported here. A longer version of this essay ap-
peared in the Proc. 2nd Int’l Conf. Complex, In-
telligent, and Software-Intensive Systems (CI-
SIS 08), IEEE CS Press, 2008, pp. 907–912.

References
	 1.	X. Su, “A Text Categorization Perspective

for Ontology Mapping,” 2002; http://www.
idi.ntnu.no/~xiaomeng/paper/Position.pdf.

	 2.	A. Maedche et al., “MAFRA—A MAp-

ping FRAmework for Distributed Ontolo-
gies,” Proc. 13th Int’l Conf. Knowledge
Engineering and Knowledge Management
(EKAW 02), LNCS 2473, Springer, 2002,
pp. 235–250.

	 3.	M. Crubézy and M.A. Musen, “Ontologies
in Support of Problem Solving,” Handbook
on Ontologies, S. Staab and R. Studer, eds.,
Springer, 2003, pp. 321–341.

	 4.	P. Bouquet et al., D2.2.1 Specification of
a Common Framework for Characterizing
Alignment, tech. report, Knowledge Web
(FP6-507482), 2004; http://knowledgeweb.
semanticweb.org/semanticportal/deliver-
ables/D2.2.1v1.pdf.

	 5.	Y. Kalfoglou and M. Schorlemmer, “Ontol-
ogy Mapping: The State of the Art,” Proc.
Dagstuhl Seminar on Semantic Interoper-
ability and Integration, 2005.

	 6.	OMG, “CWM: Common Warehouse
Model Specification,” v. 1.1, Object Man-
agement Group, 2003.

	 7.	B. Omelayenko, “RDFT: A Mapping Meta-
Ontology for Business Integration,” Knowl-
edge Transformation for the Semantic Web,
B. Omelayenko and M. Klein, eds., IOS
Press, 2003, pp. 137–153.

	 8.	M. Uschold, “Achieving Semantic In-
teroperability using RDF and OWL,” v. 4,
Knowledge Web Deliverable 2.2.6, 2005.
http://knowledgeweb.semanticweb.org/se-
manticportal/deliverables/D2.2.6.pdf.

	 9.	P. Bouquet et al., “C-OWL: Contextualiz-
ing Ontologies,” Proc. 2nd Int’l Semantic
Web Conf., LNCS 2870, Spring, 2003, pp.
164–179.

	10.	 J. de Bruijn, D. Foxvog, and K. Zimmer-
man, Ontology Mediation Patterns Li-
brary, Knowledge Web Deliverable D4.3.1,
Semantically Enabled Knowledge Tech-
nologies, 2004.

	11.	 J. Euzenat and P. Shvaiko, Ontology
Matching, Springer, 2007.

	12.	P. Haase et al., Updated Version of the Net-
worked Ontology Model, NeOn Deliverable
1.1.2, 2007; http://www.neonproject.org.

Asunción Gómez-Pérez is the founder
and director of the Ontological Engineer-
ing Group at the Universidad Politécnica
de Madrid and a professor at UPM’s Com-
puter Science School. Contact her at: asun@
fi.upm.es.

José Ángel Ramos-Gargantilla is a
member of Ontological Engineering Group
at the Universidad Politécnica de Madrid
and a PhD student in the Artificial Intelli-
gence Department. Contact him at: jarg@
fi.upm.es.

82	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

SPARQL Extensions
for Processing Ontology
Alignments
Jérôme Euzenat, INRIA and Laboratoire
d’Informatique de Grenoble
Axel Polleres, National University
of Ireland, Galway
François Scharffe,
University of Innsbruck, Austria

Heterogeneity between ontologies is often
handled by establishing correspondences
between ontology entities and transforming
data according to these correspondences,
whether for integrating heterogeneous data
sources or exchanging messages between
services. Relations between aligned enti-
ties can be very complex, so we’ve devel-
oped an alignment language for express-
ing such complexities.1 The language is
independent of knowledge-representation
and processing languages, but transform-
ing data requires processing the corre-
spondences expressed in it. In particular,
the transformation requires translating
a source ontology’s data instances to in-
stances of the target ontology. A complete
ontology-mediation scenario thus requires
first designing an alignment between the
ontologies. This alignment, represented in
the alignment language, is then grounded
to the formalism performing the transfor-
mation task.

We expect this scenario to become com-
mon as more ontologies are developed and
used to describe Resource Description
Framework (RDF) data. A query language is
a natural choice for translating data because
it would allow both data extraction and data
transformation. Hence, when RDF Schema
and Web Ontology Language (OWL) are the
standards for describing ontologies and data,
Simple Protocol and RDF Query Language
(SPARQL) seems a natural candidate for
expressing and processing the correspon-
dences.2 However, SPARQL isn’t powerful
enough to cover the full expressivity of the
alignment language we’ve developed.

We therefore propose combining two
recent SPARQL extensions to handle com-
plex alignments:

SPARQL++ provides aggregates, value-
generating built-ins, and (possibly recur-
sive) processing of mappings expressed
in SPARQL,3 and
PSPARQL provides queries on path ex-
pressions (made from regular expression

•

•

patterns),4 which are sufficient for ex-
pressing those in our alignment language.

Here, we illustrate our proposal with a
data-translation problem between two on-
tologies: Friend of a Friend (FOAF, http://
xmlns.com/foaf/0.1) and vCard (www.
w3.org/2006/vcard/ns). Both vocabularies
describe information about persons and or-
ganizations, both are used extensively, and
they cover complementary as well as over-
lapping aspects of this information.

Alignment Representation
The alignment format developed at INRIA
offers an extensible format for expressing
alignments in RDF/XML.6 It supports native
representations of simple correspondences
between ontological entities, and it provides
an interchange format between alignments
created using ontology-matching algorithms.7

The alignment format is organized
around a small set of constructs. Users or
programs describe an alignment through a
set of correspondences, together with related
metadata such as the aligned ontologies’
names, the alignment’s purpose, and the way
it was built. Each correspondence describes
the relation between two ontological entities.
The alignment format includes a measure of
confidence in the correspondence.

Figure 1 shows a sample correspon-
dence, expressing the equivalence between
a vCard and a person.

The expressive alignment language
we’ve developed to extend this format al-
lows the representation of more complex
correspondences.1 Particularly, it includes
the following constructs:

operators to relate an entity in one ontol-
ogy to a combination of entities in the
other,
conditions to restrict an entity’s scope, and
transformations for property values such
as aggregates, functions, and data-type
conversions.

The language provides a high-level descrip-
tion of ontology alignments and a conve-
nient exchange format between matching
algorithms, graphical user interfaces, and
mediation languages.

Grounding
Ontology mediation is a complex mediation
process involving two main phases.8

First, the alignment is constructed at de-

•

•
•

sign time. Ontology engineers use match-
ing algorithms to automatically discover
correspondences between ontologies.
Graphical mapping interfaces assist the
process of refining these correspondences,
which eventually involve correspondence
patterns.9 Our expressive alignment lan-
guage stores the correspondences.

At run time, the previously built align-
ments are executed in a particular me-
diation task using a specific formalism.
Grounding is the term we use for trans-
forming the alignment expressed in an
alignment-representation formalism into
the knowledge-representation formal-
ism executable for a particular task. When
translating queries, a rule language might
be most appropriate. When translat-
ing instance data, a query language such
as SPARQL seems most appropriate.
SPARQL has the advantage of being widely
used for querying RDF Web data. This
makes SPARQL-based data translation
more natural for Semantic Web users com-
pared to rule-based languages or XML-
based extraction techniques.

We can now show how this process
translates the example correspondence be-
tween Foaf files and vCards in Figure 1 to a
corresponding SPARQL expression.

Data Translation Using SPARQL
SPARQL is the W3C recommendation
for querying RDF.2 Typically, SPARQL
queries are used to select bindings of RDF
terms to variables from a set of source
RDF graphs (also called the dataset) ac-
cording to a graph pattern. In a slightly
simplified view, such a query follows the
general structure:

SELECT variables
FROM dataset
WHERE { graph pattern }

Answers to a SPARQL query Q rely on
computing the set of possible homomor-
phisms from the basic graph pattern(s) of Q
into the RDF graph representing the knowl-
edge base.

If we want to exploit instance data de-
scribed under one ontology when our ap-
plication has been designed for another, we
need a translation mechanism. Through
its CONSTRUCT statement, SPARQL
provides the possibility to construct an
RDF graph as the result of a query over
another graph. This is a natural mecha-

November/December 2008	 www.computer.org/intelligent	 83

nism for writing mapping rules between
RDF vocabularies. For instance, the query
in Figure 2a illustrates a Construct query
translating a foaf:Person into a vc:VCard.

We must complete this simple example
to additionally translate—possibly recur-
sively—a person’s properties, such as name,
address, or telephone number. The same
selections apply to Construct queries as ap-
ply to other queries. For example, Figure
2b show how we can modify the Figure 2a
query to map the names in vCard addresses
to FOAF. Figure 2c shows how a simple
Construct statement can model the mapping
in Figure 1.

We can then execute the query on a set of
instance data represented in RDF to yield
the transformed ontology instances in the
target ontology.

However, it turns out that the avail-
able constructs aren’t sufficient for a fully
fledged mapping language.

SPARQL Extensions for Accurate
Translation
Three features that SPARQL lacks would
be particularly useful for processing align-
ments—namely, aggregate computation,
individual generation, and path expressions.

Aggregates. Definition of a Project (DOAP,
http://trac.usefulinc.com/doap) is an open
source project to create an RDF/XML vo-
cabulary to describe software projects. The
DOAP vocabulary contains revision—that
is, version numbers of released project ver-
sions. With an aggregate function MAX, you
can map DOAP information into the RDF
Open Source Software Vocabulary (http://
xam.de/ns/os). This lets you describe a
project’s latest release by picking the maxi-
mum value (numerically or lexicographi-
cally) of the set of revision numbers speci-
fied by a graph pattern as Figure 3a shows.

Other aggregates, such as count, average,
or sum, might be needed for complex and
complete mappings.

Individual generation. Completing the
mapping between vCard and FOAF, if we
try mapping from vc:homeTel to foaf:phone,
we observe that the former is a data-type
property and the latter an object property.
Basically, a mapping needs a conversion
function, generating a new URI:

SPARQL doesn’t allow such value gen-
erations at the moment, but they are defined
and implemented in SPARQL++.3 We con-
sider SPARQL++ to be a valid basis for a
mapping language, but it doesn’t address all
the issues in complex relations.

Paths. Another missing part is path expres-
sions, which aren’t expressible in SPARQL.
This is fairly surprising for a language that
claims to be a graph query language.

PSPARQL extends SPARQL by replac-
ing the atomic SPARQL graph patterns—
that is, RDF graphs with variables—by
RDF graphs with variables and path ex-
pressions in place of relations.4 We can
view paths as complementary to aggrega-
tions: where aggregations join pieces to-
gether, paths extract them individually.

The following example PSPARQL query
exhibits two path expressions in the sec-
ond and third lines of the WHERE clause.
The paths are made from the indefinite
composition (+) and composition (.) opera-
tors. This query returns pairs of person and

company such that the person indirectly
knows someone working in this company
and this company is based in Innsbruck.

Conclusion
We see that an adequate means for trans-
forming data according to some alignment.
However, the current SPARQL specification
isn’t powerful enough for supporting this
task with the expressive alignments that are
necessary for carefully describing relations
between ontologies. The combination of
the SPARQL extensions—SPARQL++ and
PSPARQL—can serve as a basis to ground
expressive ontology alignments in concrete
executable mappings between data RDF
graphs adhering to different, overlapping
ontologies.

To implement a complete alignment
framework, we propose two things: first, an
implementation of a SPARQL data trans-
formation engine integrating PSPARQL
and SPARQL++ and, second, a ground-
ing of an abstract, expressive alignment
language to this new PSPARQL++. We are
currently working on reconciling the differ-
ent proposed extensions toward a common
prototype.

CONSTRUCT { ?x rdf:type vc:VCard }
WHERE { ?x rdf:type foaf:Person }
(a)

CONSTRUCT { ?X foaf:name ?FN . }
WHERE { ?X vc:FN ?FN .
 FILTER isLiteral(?FN) }
(b)

CONSTRUCT { ?X a foaf:Person.
 ?X foaf:based_near “Grenoble”ˆˆxsd:string. }
WHERE { ?X a v:VCard .
 ?X v:workTel ?PH.
 FILTER startsWith(?PH, “+33476”) }
(c)

Figure 2. SPARQL data translation
examples: (a) transform class instances
into instances of another class, (b)
transform name properties and check
that the source property is a literal, and
(c) transform phone number owners
into inhabitants of a region if the phone
number follows the given pattern.
(FROM clauses omitted.)

CONSTRUCT { ?P os:latestRelease
 MAX(?V : ?P doap:release ?R.
 ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }
(a)

CONSTRUCT {?X foaf:phone
 xsd:anyURI(
 fn:concat(“tel:”,fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . }
(b)

SELECT ?X, ?Y
WHERE {?X foaf:knows+ . foaf:worksFor ?Y
 ?Y vc:adr . vc:city “Innsbruck”. }
(c)

Figure 3. SPARQL examples for SPARQL
extensions for accurate translation: (a)
a project’s latest release corresponds
to the version with the highest release
number, (b) a FOAF phone number
is obtained by appending the prefix
“tel:” to the URL-encoded vcard phone
number, (c) example path expression
selecting persons who know somebody
that works in Innsbruck. (FROM clauses
omitted.)

<Cell>
 <entity1 rdf:resource=”&foaf;Person”/>
 <entity2 rdf:resource=”&vc;VCard”/>
 <measure rdf:datatype=”&xsd;float”>1.0
	 </measure>
 <relation>equivalence</relation>
</Cell>

Figure 1. A sample correspondence in
the Alignment format.

84	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

Acknowledgements

A longer version of this essay appeared in the
Proc. 2nd Int’l Conf. on Complex, Intelligent,
and Software-Intensive Systems (CISIS 08),
IEEE CS Press, pp.913–915.

References
	 1.	 J. Euzenat, F. Scharffe, and A. Zimmer-

mann, Expressive Alignment Language
and Implementation, tech. report project
deliverable D2.2.10, Knowledge Web
Network of Excellence (EU-IST-2004-
507482), 2007.

	 2.	SPARQL Query Language for RDF,” E.
Prud’hommeaux and A. Seaborne, eds.,
W3C Proposed Recommendation, 2007;
www.w3.org/TR/2007/PR-rdf-sparql-
query-20071112.

	 3.	A. Polleres, F. Scharffe, and R. Schind-
lauer, “SPARQL++ for Mapping between
RDF Vocabularies,” Part I: Proc. 6th Int’l
Conf. Ontologies, DataBases, and Applica-
tions of Semantics (ODBASE 07), LNCS
4803, Springer, 2007, pp. 878–896; www.
polleres.net/publications/poll-etal-2007.pdf.

	 4.	 F. Alkhateeb, J.-F. Baget, and J. Euzenat,
Extending SPARQL with Regular Expres-
sion Patterns, tech. report 6191, Institut
National de Recherche en Informatique et
Automatique (INRIA), 2007.

	 6.	 J. Euzenat, “An API for Ontology Align-
ment,” Proc. 3rd Int’l Semantic Web Conf.,
Springer, LNCS 3298, 2004, pp. 698–712.

	 7.	 J. Euzenat and P. Shvaiko, Ontology
Matching, Springer, 2007.

	 8.	F. Scharffe et al., Analysis of Knowledge
Transformation and Merging Techniques
and Implementations, tech. report proj-
ect deliverable D2.2.7, Knowledge Web
Network of Excellence (EU-IST-2004-
507482), 2007.

	 9.	F. Scharffe and D. Fensel, “Correspon-
dence Patterns for Ontology Mediation,”
Proc. 16th Int’l Conf. Knowledge Engi-
neering and Knowledge Management
(EKAW 08), Springer, LNCS 5268, pp.
83–92.

Ontology Matching:
Status and Challenges
Konstantinos Kotis,
University of the Aegean
Monika Lanzenberger,
Vienna University of Technology

Ontology matching is a significant Se-
mantic Web research topic and a critical
operation in many domains—for example,
heterogeneous systems interoperability,
data warehouse integration, e-commerce
query mediation, and semantic services
discovery. The matching operation takes
two (sometimes more) ontologies as input,
each consisting of a set of discrete entities
and axioms, and outputs the relationships
between the entities, such as equivalence or
subsumption.

Researchers have proposed many solu-
tions to the ontology-matching problem.1,2
Although it’s a different problem from
schema matching, the techniques developed
for each of them has benefitted the other.
Most research has focused on specific cri-
teria for evaluating and distinguishing be-
tween matching approaches according to

algorithm input—for example, entity la-
bels, internal structures, attribute types,
and relationships with other entities;
matching-process characteristics—for
example, the approximate or exact nature
of its computation or the way it interprets
input data (syntactic, external, semantic);
algorithm output—for example, a one-
to-one matching or a one-to-many or
many-to-many correspondence.

Other significant distinctions in the output
results include the confidence and probabil-
ity percentages of the mapping results and
the kinds of relations provided (equiva-
lence, subsumption, incompatibility, and
so on).

Human involvement during the ontology-
matching process is usually a tradeoff with
the results’ precision and recall percent-
ages. Fully automated tools are still looking
for higher accuracy. International contests
such as the Ontology Alignment Evaluation
Initiative (http://oaei.ontologymatching.
org) provide a forum and benchmarks for
this task.3 Still, both automated and semi-
automated tools need to improve their per-
formance. For instance, most of them can’t
handle large real-domain ontologies such as
those in medicine and biology, although the

•

•

•

research community has developed more
and more realistic test beds to evaluate tool
solutions to the scalability problem.

Beyond ontology-matching methods,
tools, and evaluation initiatives, recent ef-
forts have focused on design frameworks for
ontology-matching tools, such as AUTOMF-
S.4 Such frameworks let developers use
APIs to not only develop ontology-match-
ing methods but also, and more importantly,
synthesize these methods into robust tools
for producing more accurate mappings. Be-
yond this, existing methods need more work
to improve their matching quality.

Dilemmas and Critical Questions
The research community’s efforts to provide
diverse solutions to the matching problem by
developing a variety of tools haven’t yet gen-
erated a dominant set of methods that can
serve as a benchmark for designing other
matching tools. This might reflect the vari-
ety of domain-specific user or application
needs. In fact, we conjecture that the com-
munity couldn’t nominate “the best tool” be-
cause so many critical questions arise within
a specific problem-solving context.

For example, should the tool be fully or
semiautomated? To answer this question
satisfactorily requires knowing the extent
of human-involvement, if any, and how this
influences the accuracy of mapping results.
How much time must users spend validat-
ing mapping results? Can we ensure that
mapping results are valid without their
involvement? Ultimately, the questions
resolve to what is most critical for their ap-
plication: investing in human involvement
to validate resources or automating the
ontology-matching tool? If user interaction
is essential, you must provide the means to
analyze the matching results and under-
stand the source ontologies’ characteristics.

Another important question is whether
the tool should provide very high precision
and indifferent recall or vice versa. What
balance between these parameters does the
user’s application require? What are the
tradeoffs? Is there an optimal tradeoff, and
can users tune the methods to achieve it?

Performance involves another set of
questions. Does the application call for
a tool that supports high computational
complexity and rather slow execution time,
or are rapid results more important? What
percentage of precision and recall are users
willing to sacrifice to speed up the ontol-
ogy-matching process and, consequently,

Jérôme Euzenat is a senior research sci-
entist at INRIA Grenoble Rhone-Alpes and
Laboratoire d’Informatique de Grenoble.
Contact him at jerome.euzenat@inrialpes.
fr.

Axel Polleres is a senior researcher at the
Digital Enterprise Research Institute at Na-
tional Unviersity of Ireland, Galway. Con-
tact him at axel.polleres@deri.org.

François Scharffe is a researcher at the Se-
mantic Technology Institute and PhD candi-
date at the University of Innsbruck. Contact
him at francois.scharffe@uibk.ac.at.

November/December 2008	 www.computer.org/intelligent	 85

their application? In the end, what is more
critical for the application; to achieve the
tool’s highest precision and recall or to ob-
tain the mappings as fast as possible?

All these questions require answers
within the context of specific application
and user needs.

Challenges
Despite many years’ progress toward solv-
ing ontology-matching problems, the re-
search community still reports open issues
that impose challenges and underline new
directions for the future work.

Scalability. Most implemented and evalu-
ated ontology-matching tools suffer perfor-
mance problems in handling large ontolo-
gies. Real problems in specific application
contexts require scalable solutions as a first
priority. Future ontology matching tools
should provide this capability.

Tuning speed, automation, and accu-
racy. Tools currently emphasize maximiz-
ing specific performance parameters such
as speed, automation, or accuracy. Most
commonly, a tool will maximize one pa-
rameter’s performance while neglecting—
or even impeding—the performance of the
others. Future research should support fine
tuning all parameters.

Background knowledge. The ontology-
matching process makes extensive use of do-
main-related background knowledge. Recent
experiments to improve tool recall results
have tried matching one ontology to another
while using a third ontology (or more) that’s
larger and more detailed ontology from the
same domain as background knowledge.3
But this process doesn’t seem to scale well.

The challenge here is to adopt an ap-
proach that doesn’t sacrifice overall tool
performance.

Ontology-matching frameworks. Some
design frameworks for ontology-matching
tools exist,4 but their performance needs
further investigation. Software develop-
ers need support not only for devising
ontology-matching methods but also for
synthesizing them into new tools that pro-
duce more accurate mappings. Scalability,
speed, and compatibility between input
ontology types also require further inves-
tigation to deliver a model framework that
the research community could use to devise

specific ontology-matching tools for spe-
cific user or application preferences.

Ontology-matching visualization. Hu-
mans must perform and decide several is-
sues in ontology matching to ensure the
quality, appropriateness, and relevance of
the matching results. Interpreting an entity
of one ontology in the context of the knowl-
edge of another ontology is a cognitively dif-
ficult task that requires understanding the se-
mantic relations among entities of different
ontologies.5 Visualizing ontology-matching
results could support user understanding.

Conclusion
The challenges in this domain grow with
every advance in IT and the emerging eco-
nomic infrastructure it supports. Ontology-
matching results can manifest the same dif-
ficulties as the source ontologies: they can
be large, complex, and heterogeneous. Yet
so long as the information the ontologies are
organizing continues to expand and differ-
ent ontologies turn up for the same informa-
tion, both academic and industry research-
ers will proceed to address these challenges.

Acknowledgments

We acknowledge the research work on ontol-
ogy alignment conducted by members of the
AI-Lab, University of the Aegean, Greece. This
work is a unique source of experience for real-
izing the work described here.

A longer version of this essay appeared in the
2008 Proc. 2nd Int’l Conf. on Complex, Intel-

ligent, and Software-Intensive Systems (CISIS
08), IEEE CS Press, 2008, pp. 924–927.

References
	 1.	P. Shvaiko and J. Euzenat, “A Survey of

Schema-Based Matching Approaches,” J.
Data Semantics IV, LNCS 3730, Springer,
2005, pp. 146–171.

	 2.	Y. Kalfoglou and M. Schorlemmer: “On-
tology Mapping: The State of the Art,”
Knowledge Eng. Rev., vol. 18, no. 1, 2003,
pp. 1–31.

	 3.	C. Caracciolo et al., “First Results of the
Ontology Alignment Evaluation Initia-
tive 2008,” OAEI, 2008; www.dit.unitn.
it/~p2p/OM-2008/oaei08_paper0.pdf.

	 4.	A. Valarakos et al., “AUTOMS-F: A Java
Framework for Synthesizing Ontology
Mapping Methods,” Proc. Int’l Conf. on
Knowledge Management (I-KNOW 07),
2007; www.icsd.aegean.gr/ai-database/pa-
pers/AutomsF.pdf.

	 5.	S.M. Falconer, N.F. Noy, and M.-A. Storey,
“Ontology Mapping—A User Survey,”
Proc. 2nd Int’l Workshop on Ontology
Matching (OM 07), CEUR-WS, 2007, vol.
304; www.dit.unitn.it/~p2p/OM-2007/
5-446ontology_mapping_survey.pdf.

Konstantinos Kotis is a research scientist
and member of the Department of Commu-
nication and Information Systems’ AI Lab
at the University of the Aegean. Contact
him at kotis@aegean.gr.

Monika Lanzenberger is a member of the
academic faculty of the Institute of Software
Technology and Interactive Systems at the
Vienna University of Technology. Contact
her at lanzenberger@ifs.tuwien.ac.at.

The essays in this issue’s Trends & Controversies appeared originally in longer
versions as part of the First International Workshop on Ontology Alignment and
Visualization (OnAV 2008). Space limitations restricted including all the work-
shop papers here, but they are available in the Proceedings of the Second Inter-
national Conference on Complex, Intelligent, and Software-Intensive Systems
(CISIS 08), IEEE CS Press, 2008.

Other conferences and workshops include the International Semantic Web
Conference (ISWC), which is its eight year this year (http://iswc2008.semanticweb.
org). ISWC is an international forum for Semantic Web research. Its conferences are
organized and managed by the Semantic Web Science Association (SWSA, www.
iswsa.org).

Since 2004, the Ontology Alignment Evaluation Initiative (OAEI, oaei.ontolo-
gymatching.org) has organized competitions aimed at evaluating ontology-
matching technologies and establishing performance benchmarks. The OAEI
2008 campaign is associated to the ISWC Ontology Matching Workshop, which
is in its third year (http://om2008.ontologymatching.org).

A treasure-house for papers and other scholarly information in this field is
available at www.ontologymatching.org.

Further Reading on Ontology Alignment and Matching

