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T r e n d s  &  C o n t r o v e r s i e s

Ontologies offer shared vocab-
ularies. They’re key to agent 
cooperation and seamless 

integration of knowledge systems, and 
they’re fundamental to the Semantic 
Web. They let us precisely define the 
domain of a knowledge-based system. 
And they’re increasing in number. With 
this increase, the need for new tools 
and techniques to reconcile different 
ontologies becomes crucial.

Ontology matching and alignment 
help establish agreement between dif-
ferent knowledge representations. The 
essays here exemplify some of the cre-
ative ways researchers are extending 
the state of the art in algorithms that 
can establish correspondences between 
different but related ontologies. The 
essays are based on six of the 12 papers 
accepted for the First Workshop on On-
tology Alignment and Visualization, held 
in conjunction with the 2008 Interna-
tional Conference on Complex, Intel-
ligent and Software Intensive Systems. 
The approaches described make original 
use of techniques such as queries, tag-
ging, graph theory, and information 
visualization.

Ontology Interoperability 
and Matching Applications

Besides concepts, properties, and in-
stances, axioms are essential ontology 
components. Frédéric Fürst and Francky 
Trichet describe a way for ontology 
matching to effectively take these axi-
oms into account. They introduce the 
Ontology Conceptual Graphs Language, 
a graph-based knowledge representa-
tion and reasoning formalism. Their 
TooCom tool supports the definition of 
concepts and relations and the speci-
fication of axioms in a graphical way. 

They apply graph-theoretic operations 
to detect analogies between axioms of 
different ontologies.

Horst Kargl and Manuel Wimmer 
describe how to improve the quality of 
the simple one-to-one correspondences 
that constitute the typical output from 
automatic schema-matching tools. In an 
effort to address some shortcomings as-
sociated with existing schema-matching 
approaches, the authors present Smart-
Matcher, an orthogonal extension of 
these approaches that uses real-world 
examples to evaluate and improve com-
puted alignments. They also introduce 
their prototype implementation for 
schemas defined in the Eclipse Model-
ing Framework.

For users to see ontology mapping as 
a benefit rather than an inconvenience, 
Colm Conroy, Declan O’Sullivan, David 
Lewis, and Rob Brennan look at interac-
tion processes and user interfaces. Their 
focus is ontology mapping for casual 
Web users. They break the mapping 
process down into small tasks and apply 
a tagging approach. A small user experi-
ment indicates that nonexperts can use 
their approach to produce mapping re-
sults on a par with ontology experts.

Challenges and Visions  
in Ontology Matching:

Asunçion Gómez-Pérez and José Án-
gel Ramos-Gargantilla survey differ-
ent approaches to ontology mapping. 
They have designed an XML schema 
representation for covering mappings 
and their uses in the Semantic Web. Ac-
cordingly, their approach can be used 
to represent mappings that include not 
only ontologies but also other knowl-
edge representations such as relational 
databases, thesauri, and so on.

Jérome Euzenat, Axel Polleres, and 
François Scharffe propose an extended 
SPARQL query language for ontology 
matching. They use SPARQL queries as 
a mechanism for translating RDF data 
of one ontology to another ontology.  
Such functionality lets users exploit in-
stance data described in one ontology 
while they work with an application 
that’s been designed for another. The 
authors present an example translation 
of FOAF files into vCards that shows 
how to use queries to extract data from 
the source ontology and generate new 
data for the target ontology.

Ontology alignment and matching 
still raise more questions than practical 
solutions for a broader audience. With 
the last essay, Konstantinos Kotis and 
Monika Lanzenberger give an overview 
of current dilemmas and crucial chal-
lenges in ontology matching. Their essay 
includes a sidebar for further resources, 
including the Proceedings from which 
these essays originated. 

Although many areas need further 
research and best practices, ontology 
matching offers many ideas for sup-
porting data interoperability. We hope 
you enjoy reading about some of them 
here.
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Strategies for matching ontologies are di-
verse, but most of them consider only align-
ment between lightweight ontologies—that 
is, ontologies composed of concept and re-
lation taxonomies. Heavyweight ontologies 
additionally include axioms to represent a 
domain’s full semantics.1 Not many real-
world ontologies currently make substan-
tial use of axioms, but the full functioning 
of the Semantic Web requires computers 
to have access both to structured collec-
tions of information and to sets of inference 
rules that support automated reasoning. So 
we think the need to develop heavyweight 
ontologies will inevitably increase. The 
World Wide Web Consortium’s work to-
ward standardizing the Semantic Web Rule 
Language, for example, is one instance of 
this trend.

We’re working to define an ontology-
matching approach based on the explicit 
use of all components of a heavyweight on-
tology. Our approach requires the explicit 
representation of axioms at the concep-
tual level, as opposed to the operational 
level, where most ontological engineering 
represents them. For instance, the Protégé 
knowledge-modeling environment uses the 
Protégé Axiom Language (PAL) to repre-
sent axioms directly via rules or constraints 
with fixed and predefined operational 
semantics. 

Semantically speaking, finding a match 
for an axiom’s operational form is difficult. 
At the conceptual level, an axiom has a for-
mal semantics but not an operational one. 
At the operational level, an axiom has both 
formal and operational semantics, and the 
latter clearly limits reuse. An axiom’s oper-
ational semantics, represented through a set 
of rules and constraints, expresses the way 
a computer can use the axiom to reason, 
whereas the formal semantics expresses 
how the axiom constrains the interpretation 
of its primitives—that is, the concepts and 
relations.2

Ontology Conceptual  
Graphs Language
To represent heavyweight ontologies at the 
conceptual level, we use the Ontology Con-

ceptual Graphs Language (OCGL).2 This 
modeling language is based on a graphi-
cal syntax inspired by conceptual graphs 
(CGs). First introduced as an operational 
knowledge-representation model,3 CGs 
belong to the semantic networks field and 
are mathematically grounded in both logics 
and graph theory.

OCGL is based on three building blocks: 
concepts, relations, and axioms. Represent-
ing an ontology in OCGL mainly consists 
in specifying a domain’s conceptual vo-
cabulary and specifying this vocabulary’s 
semantics through axioms.

The conceptual vocabulary consists of 
a set of concepts and a set of relations that 
can be structured using well-known con-
ceptual properties (schemata axioms) and 
domain axioms. Schemata axioms repre-
sent classical concept and relation proper-
ties, whereas domain axioms are totally 
specific to a domain. In our work, the term 
axiom means the union of these two axiom-
atic properties.

Figure 1 shows the OCGL graph rep-
resenting the axiom “The enemy of my 
friend is my enemy.” This is a domain ax-
iom that can’t be represented using clas-
sical properties. Compare it to the axiom 
“The friend of my friend is my friend,” 
which is an OCGL schemata axiom that’s 
represented by the transitivity of the rela-
tion called Friend(Human,Human).

OCGL has been implemented in 
TooCom (Tool to Operationalize an Ontol-
ogy with the Conceptual Graph Model), a 
tool for editing and operationalizing do-
main ontologies. TooCom is available un-
der the GNU GPL license at http://source-
forge.net/projects/toocom. It supports the 
definition of concepts and relations and the 
specification of schemata and domain axi-
oms in a graphical way.4

MetaOCGL:  
An Ontology of Representation
To detect analogies between axioms rep-
resented as graphs, and then to detect 
analogies between the primitives corre-
sponding to the graph nodes, axioms are 
transcribed from OCGL to a more abstract 
form that preserves the graphs’ topological 
structures. These abstract representations 
are based on MetaOCGL, an ontology of 
representation. MetaOCGL expresses the 
OCGL language ontology in OCGL and 
is therefore a metalevel ontology.5 Meta-
OCGL includes

MetaOCGL concepts to represent OCGL 
primitives,
MetaOCGL relations to represent the 
links between OCGL primitives, 
MetaOCGL schemata axioms used 
mainly to describe the properties of 
OCGL relations, and 
MetaOCGL domain axioms to express 
the formal OCGL semantics.

A MetaOCGL instance—that is, a Meta-
OCGL graph—can represent a domain 
ontology, just as OCGL graphs can repre-
sent domain facts. The MetaOCGL graph 
representing an ontology contains one part 
dedicated to the concept hierarchy’s repre-
sentation, one part dedicated to the relation 
hierarchy’s representation, and as many 
parts as axioms in the ontology. 

Figure 2 shows the MetaOCGL graphs 
representing two axioms—“The enemy 
of my enemy is my friend” and “The en-
emy of my friend is my enemy”—and 
their corresponding metagraphs in Meta-
OCGL. TooCom automatically provides 
the MetaOCGL representation of an OCGL 
ontology. Correspondences between the do-
main-level and metalevel concepts appear 
in gold. The type_identity links denote do-
main-level nodes that are similar—that is, 
they have the same type. At the metalevel, 
the two graphs are similar without consid-
ering type-identity links; but with these 
links, they differ because the relations of 
the axiom Enemy-Enemy have the same 
type but the relations of the axiom Enemy-
Friend do not.

The CG projection operator performs the 
comparisons between axioms represented 
in MetaOCGL. The projection operator is a 
graph-theoretic operation corresponding to 
homomorphism, which is sound and com-
plete with regard to deduction in first-order 
logic. A projection from a graph G1 into a 
graph G2 is a specific graph morphism that 
can restrict the labels of the vertices; it cor-
responds to a logical implication between 
G1 and G2.

•

•

•

•

Figure 1. Representation of an axiom  
in TooCom.
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Given two graphs G1 and G2, 
which represent two axioms A1 and 
A2 in MetaOCGL, if two projections 
exist from G1 into G2 and from G2 
into G1, then A1 and A2 have the 
same structure. In this case, A1 and 
A2 express the same property type, 
and the analogy between the two axi-
oms can extend to the primitives that 
appear in the axioms.

Axiom-Based  
Semantic Matching
Ontology matching aims to discover 
and evaluate semantic links between 
conceptual primitives of two given 
ontologies supposedly built on re-
lated domains. Our approach relies 
on using the ontologies’ axiomatic level to 
discover semantic analogies between primi-
tives that will reveal identities between 
them and calculate the similarity coeffi-
cient of these identities.

We use both schemata axioms and 
domain axioms to evaluate or discover 
primitive matchings. Each OCGL sche-
mata axiom owns a predefined weight 
that modulates the axiom’s influence on 
the matching process. The end user can 
modify the set of weights according to 
the kinds of ontologies or subjective pref-
erences. Thus, these weights are algo-
rithm parameters that users can change 
graphically to improve their results’ 
precision.

Space limitations prevent us from pre-
senting details on the use of the schemata 
and domain axioms to evaluate matchings, 
but details are elsewhere.6 

Experimental Results
Figure 3 shows an extract from applying our 
approach to two ontologies related to family 
relationships. This limited domain includes 
these notions: father, mother, grandfather, 
grandmother, son, daughter, cousin, nephew, 
niece, uncle, aunt, sister, brother, wife, hus-
band, friend, and enemy. This example is 
easy to understand and necessarily requires 
domain axioms for defining such notions 
as “An aunt is either a female sibling of 
one of one’s parents or the wife of an uncle 
who is the male sibling of a parent,” and for 
specifying relations between notions such 
as “The enemy of my enemy is my friend.” 
In other words, schemata axioms aren’t 
sufficient for representing all the domain 
knowledge. It also means that OWL (Web 
Ontology Language) can’t represent the 
ontologies (available in the XML storage 
format used for OCGL at http://sourceforge.
net/projects/toocom).

In Figure 3, all the weights have 
the value 50. The TooCom inter-
face (upper part of Figure 3) makes 
it possible to directly visualize 
the consequences (on the match-
ings) when modifying the values of 
the matching algorithm’s property 
weights. This shows that the match-
ing process itself is not sensitive to 
the weights assigned to the OCGL 
properties. 

Moreover, it shows that TooCom 
provides a first step toward cogni-
tive support for ontology mapping.7 
Indeed, very little research has ad-
dressed cognitive support for ontol-
ogy mappings; researchers have fo-
cused on improving the performance 

of the algorithms themselves, largely ignor-
ing the issue of end-user tools. 

To deal with this new problem, Sean 
Falconer, Natalya Noy, and Margaret-Anne 
Storey have identified a set of 13 end-
user tasks for an ontology-mapping tool.7 
Although our user-centered interface is 
perfectible, the current TooCom version 
already supports many of these tasks—for 
example, incremental navigation, browsable 
list of candidate mappings, and conflict 
resolution/inconsistency detection.

Conclusion
Our method has the advantage of incorpo-
rating most descriptive features of a heavy-
weight ontology into the matching process, 
whereas current methods usually cover 
only subsets of a lightweight ontology. Of 
course, we know that our method, although 
applicable, isn’t efficient for lightweight on-
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tologies. However, as the need for develop-
ing heavyweight ontologies increases over 
time, so will the need to focus on develop-
ing matching techniques dedicated to the 
reasoning power these ontologies can bring 
to the Semantic Web.
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SmartMatcher: Improving 
Automatic Matching Quality
Horst Kargl and Manuel Wimmer,  
Vienna University of Technology

Information integration deals with the 
problem of building a general view on 
different kinds of data. Its long history 
in computer science is rooted in database 
engineering from the early 1980s, when 
autonomous databases started to feder-
ate.1 More recently, the Semantic Web 
and its schema-based technologies for 
describing, storing, and exchanging data 
have intensified the need to automate in-
tegration tasks. 

Researchers have proposed several auto-
mated matching approaches and tools over 
the years. In general, these approaches 
fall into one of three categories.2 Schema-
based approaches use only schema infor-
mation as input for the matching process; 
instance-based approaches use only in-
stances as input, and hybrid approaches 
use schema and instance information. 
The typical outputs are simple one-to-
one alignments, mostly based on schema 
information such as element name and 
structure similarities. These alignments, 
however, can’t handle schema heterogene-
ities, which therefore remain problems that 
must be resolved manually. Furthermore, 
current tools can’t automatically evaluate 
the alignment quality at the instance level 
because their matching approaches aren’t 
bound to a specific integration scenario, 
such as transformation, merge, synchroni-
zation, or search.

The main requirement for matching so-
lutions is to produce complete and correct 
mappings between schemas. Three prob-
lems complicate meeting this requirement.

Different mapping-execution scenar-
ios. Current matching approaches are 
general—that is, they apply to different 
kinds of integration problems. Because 
each integration scenario entails differ-
ent conditions and interpretation, this 
generality makes it hard to cover all 
aspects of each scenario. Furthermore, 
most approaches lack a binding to an 
execution environment, which the actual 
integration solution will need.
Schema heterogeneity. Matching ap-
proaches produce alignments that ex-
press correspondences between elements 
belonging to different schemas. Most 

•

•

schemas share similar semantics but 
describe their semantics with different 
structures. Current one-to-one align-
ments can’t handle schema heterogene-
ities, so users must interpret and refine 
the alignment results manually.
Unreliable matching results. Matching 
results are suggestions and not wholly 
reliable. In reality, the results often in-
clude mistakes, such as wrong or missed 
alignments. Assertions about alignment 
quality require quality measures.3 To 
calculate these quality measures, the 
user must give all correct alignments, 
which means the user first has to solve 
the integration problem manually.

To tackle these problems, we’ve developed 
the SmartMatching approach to extend 
existing matching approaches orthogonally 
with a self-tuning component and thereby 
to improve the quality of automatically 
produced alignments for the transforma-
tion scenario. SmartMatcher is a hybrid 
approach that uses a real-world example 
to develop  instances of the schema to be 
integrated. The example supports auto-
matic evaluation of matching tools and 
improvement of their output results. We’ve 
implemented a prototype for schemas de-
fined in the Eclipse Modeling Framework 
(EMF) Ecore metalanguage (www.eclipse.
org/modeling/emf).

The SmartMatching Approach
Figure 1 presents an overview of the Smart-
Matcher architecture and its integration 
process. Its three core components are the 
Initial Matcher, the Mapping Engine, and 
the Fitness Function. The workflow is an 
eight-step process.

1. Develop example instances. In this 
step, the user develops instances of seman-
tically equivalent elements for each of the 
schemas to be integrated. Figure 2 shows 
the general idea: The user must first define 
a real-world example that uses most of the 
schema elements. Describing the same real-
world example with both schemas gener-
ates instances of semantically equivalent 
schema elements; nonoverlapping schema 
elements are filtered out.

Concrete examples are core elements 
of improving the mapping quality and 
supporting the SmartMatching self-tun-
ing mechanism. The cloud at the bottom 
of Figure 2 stands for a real-world example 

•
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of a specific domain. The user must de-
scribe this example in natural language and 
develop instances representing it for both 
schemas. 

Other instance-based approaches also 
compare instance values to find similarities 
between schema elements. However, term 
ambiguities such as synonyms and hom-
onyms keep the results of such a compari-
son from being trustworthy. Using the same 
real-world example and the same terms for 
the same concepts avoids these kinds of 
ambiguities.

The SmartMatcher uses the concrete 
examples to increase the completeness and 
correctness of found alignments. Compar-

ing the actual instances generated by the 
transformation to the target instances de-
veloped by the user also supports evalua-
tion of the mappings between two schemas. 
At the end of the SmartMatching process, 
the actual and target instances should be 
the same. If this is the fact, all automati-
cally found mappings are correct.

2. Generate initial matching. We use ex-
isting matching tools to create basic align-
ments between similar schema concepts. 
We require the alignments to be expressed 
in the INRIA alignment format.4 This lets 
us use all matching tools that deliver this 
format.

3. Interpret initial mappings. We can 
translate the alignments produced in step 
2 to an initial mapping model based on 
the element types referenced by the align-
ments. The Initial Matcher increases Map-
ping Engine’s performance by reducing the 
search space, compared to beginning with 
an empty mapping model.

4. Derive transformation. From the map-
ping model a transformation is automati-
cally generated, which transforms instances 
of one schema into instances of the other. 
In general, it’s possible to generate different 
kinds of transformations from the mapping 
model to suit the schema languages. In our 
case, we generate transformations based on 
colored Petri nets5 for transforming EMF-
based models. 

5. Transform instances. The execution 
environment is responsible for reading the 
instances conforming to one schema and 
transforming them into instances conform-
ing to the other schema, according to the 
derived transformations.

6. Calculate differences. The Fitness 
Function compares the actual and target 
instances by means of their attribute values. 
Then it links and collects the differences in 
a diff model, which can be used to evalu-
ate the quality of the mappings between 
Schema A and Schema B. Furthermore, in 
step 6 we have two termination conditions 
for the SmartMatching process. The first 
occurs when no further differences exist 
between the actual and target instances; 
in other words, the mapping is complete. 
The second termination condition occurs 
if the differences remain the same over 
several iterations; in this case, the process 
has reached a final point for a certain set of 
example instances.

7. Propagate differences. In this step, 
SmartMatcher propagates the differences 
calculated by the Fitness Function back to 
the Mapping Engine. More specifically, it 
propagates back missing and wrong values, 
expressed in the diff model of the actual 
and target instances.

8. Interpret differences and adjust map-
ping model. The Mapping Engine analyzes 
the propagated differences and adapts the 
current mappings between Schemas A and 
B by searching for and applying appropri-
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ate mapping operators for missing or wrong 
mappings.

After step 8, a new iteration starts at step 
4 until step 6. In step 6 the actual and the 
target models are compared again. If there 
are no more differences, the process is fin-
ished; otherwise the iteration continues un-
til step 8, where a new iteration begins.

Conclusion
Compared with other automatic matching 
approaches, SmartMatcher needs more 
work in the preparation phase to estab-
lish the example instances. However, we 
hypothesize that building the instances 
for the real-world example costs less than 
manual evaluation and rework of align-
ments produced by other approaches. 
Furthermore, the real-world examples be-
come available for reuse in other integra-
tion scenarios.

The SmartMatcher prototype we’ve 
implemented for EMF/Ecore implements 
a simple Initial Matcher component using 
the CAR (classes, attributes, and relation-
ships) mapping language.6 The proto-
type provides an import functionality for 
alignment models based on the INRIA 
alignment format. It also includes a Fit-
ness Function implementation to compare 
the target model with the transformed 
actual model. The implementation can 
propagate differences between target and 
actual models to the Mapping Engine, 
which produces CAR mapping models 
that can be automatically converted to 
transformation definitions based on col-
ored Petri nets.5

Using our first prototype implementa-
tion, we’ve evaluated our hypothesis that 
the SmartMatcher preparation is less work 
than the standard rework phase. First re-
sults have shown that the hypothesis holds 
true, especially in scenarios where the 
schemas to be integrated use different lan-
guages, naming conventions, or jargons. 
We also plan to conduct empirical experi-
ments to evaluate our approach relative to 
completeness and correctness of the map-
pings as well as to verify the performance 
in terms of different mapping strategies’ 
execution times. Furthermore, we’re im
proving our prototype to support the de-
velopment of appropriate test instances 
from real-world examples. 

For additional information, see the 
SmartMatcher project homepage at http://
big.tuwien.ac.at/projects/smartmatcher.

Acknowledgments

A longer version of this essay appeared in the 
Proc. 2nd Int’l Conf. on Complex, Intelligent, 
and Software-Intensive Systems (CISIS 08), 
IEEE CS Press, pp. 879–885.

References
	 1.	A.P. Sheth and J.A. Larson, “Federated Da-

tabase Systems for Managing Distributed, 
Heterogeneous, and Autonomous Data-
bases”, ACM Computing Surveys, vol. 22, 
no. 3, 1990, pp. 183–236.

	 2.	E. Rahm and P. Bernstein, “A Survey of 
Approaches to Automatic Schema Match-
ing”, VLDB J., vol. 10, no. 4, 2001, pp. 
334–350.

	 3.	G. Salton and M.J. McGill, Introduction to 
Modern Information Retrieval, McGraw-
Hill, 1984.

	 4.	 J. Euzenat, “An API for Ontology Align-
ment,” Proc. Semantic Web Conf. (ISWC 
2004), Springer, LNCS 3298, 2004, pp. 
698–712.

	 5.	T. Reiter, M. Wimmer, and H. Kargl, “To-
wards a Runtime Model based on Colored 
Petri-nets for the Execution of Model 
Transformations,” Proc. 3rd Workshop on 
Models and Aspects—Handling Cross-
cutting Concerns in MDSD, in conjunc-
tion with ECOOP 07, 2007; http://publik.
tuwien.ac.at/files/PubDat_141077.pdf.

	 6.	G. Kappel et al., “A Framework for Build-
ing Mapping Operators Resolving Struc-
tural Heterogeneities,” Information Sys-
tems and e-Business Technologies, LNBIP 
5, Springer, 2008, pp. 158–174.

Ontology Mapping  
for the Masses:  
A Tagging Approach
Colm Conroy, Declan O’Sullivan,  
David Lewis, and Rob Brennan, 
Trinity College Dublin

As ontologies become more commonplace, 
the need increases for tools to cope with 
their diversity and heterogeneity. A variety 
of techniques can automatically match a 
user’s personal ontology to other domain 
models.1 The research challenge lies in how 

to derive ontology mappings from the can-
didate matches. Fully automatic derivation 
of mappings isn’t yet feasible,2 and most 
state-of-the-art ontology-mapping tools rely 
on a classic side-by-side presentation of 
two ontologies’ class hierarchies and some 
means for a user to express the mappings.3 
Moreover, most tool interfaces assume the 
user is an ontology engineer who performs 
the work during long mapping sessions.

We’ve developed an early prototype of 
an interface that makes ontology mapping 
as unintrusive and natural as possible. We 
want to engage casual Web users in ontol-
ogy mapping by designing a process that 
doesn’t require ontology-engineering expe-
rience and that, moreover, makes the ben-
efits of mapping clear.

Mapping-Process Design
To make the mapping process less daunt-
ing, we deconstructed it so that it can oc-
cur over multiple sessions. This lets users 
see the impact of their decisions between 
sessions and correct or enhance their map-
pings over multiple sessions.

The mapping-process design has four 
steps with rules for presenting mapping 
tasks to the user and a feedback loop to 
evaluate the user responses.

Step 1: When to present the mapping 
task. Calculating when to present a map-
ping task to the user is a key to making the 
process less intrusive. Because mapping 
generation occurs over multiple sessions, 
the mapping system must determine when 
to present each task. Example rules for this 
step include specifying regular time inter-
vals, such as once every hour, or specifying 
“just-in-time” schedules, such as each time 
users want to submit a query but need to 
map their own ontology to another one for 
the query to work.

In each presentation case, the process 
should signal users that a mapping task is 
pending and ask if they wish to perform the 
task at this time.

Step 2: What mapping task to present. 
Deciding which mapping task to present is 
the second step. Several strategies are avail-
able. Priority-based rules are one example. 
Mapping tasks relevant to the user’s current 
Web browsing context is another.

Step 3: How to present the mapping task. 
Displaying the mapping information in a 
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way that’s most natural to the user requires 
rules that can reflect user preferences. Ex-
ample rules in this area include natural 
language versus graphical display and/or 
choices among various information filters.

Step 4: How to design the mapping in-
teraction. Given the mapping information 
available, what is the best design for the 
user interaction that generates mappings? 
One example is to ask questions that the 
user could answer with a simple yes or no. 
Another is to let the user “drag and drop” 
graphical connections. A third approach is 
to have users add a semantic tag represent-
ing the semantic relationship between the 
matching pairs.

Initial Process Implementation 
We’ve been experimenting with implemen-
tations of this four-step design process over 
the past two years.

Our first experiment focused on the third 
and fourth steps.4 To move away from clas-
sical approaches that typically assume a 
knowledge engineer, we adopted a natural 
language question-and-answer (Q&A) ap-
proach. This lets us introduce small dis-
crete mapping sessions more easily. We 
also hypothesized that natural language 
would help a nontechnical user under-
stand the information better than graphical 
structures.

Our initial implementation’s main 

purpose was to test the usability of our 
prototype natural-language mapping tool 
and compare it to a current state-of-the-art 
graphic-based tool—specifically, we se-
lected COMA++ for our experiment.3 We 
split the user test group into three distinct 
groups: ontology-aware users had ontol-
ogy work experience, technology-aware 
users had database or UML modeling ex-
perience but no ontology experience, and 
nontechnical users had basic computer 
experience but no database modeling or 
ontology experience.

On the positive side, results from this 
experiment suggested that ordinary users 
compared well to ontology-aware users in 
mapping effectiveness and efficiency. Us-
ing natural language seemed to help people 
understand the mapping information, and 
the Q&A approach helped in navigating 
through the mapping task.

On the negative side, ordinary users 
found the narrow range of mapping ter-
minology to be limiting when answering 
questions. In addition, some users were 
unclear about the benefit of engaging in the 
mapping task.

To address the negative concerns, we fo-
cused the next phase of our research on how 
to be less restrictive in the way users could 
express mappings and how to overcome 
confusion about the rationale for undertak-
ing the mapping task by clearly demonstrat-
ing benefits.

Tagging-Approach Design
Social networking sites like del.icio.us 
(http://del.icio.us) have become popular 
because people can use their own language 
to tag a link and so associate their own 
meaning with it. We decided to explore 
whether enabling users to map ontologies 
by tagging would make the mapping pro-
cess easier and perhaps even lead to more 
expressive mappings.

In this approach, once a user chooses a 
tag, the system categorizes it according to 
top-level categories and their conceptual 
subcategories:

Equivalent—the same, subclass 
Equivalent sometimes—superclass, one 
of, union, intersection
Different—different from, complement 
of, disjoint
Corresponds/unknown

These categories align the user tags with 
the reasoning primitives typically used 
to express and execute mappings. The 
decision-making rules for assigning a 
matching pair to a top-level category are 
configurable. For example, a “majority 
rules” configuration would assign a match-
ing pair to the “equivalent” category if 
the user submits a tag from each of “the 
same,” “subclass,” and “union” subcatego-
ries for the pair.

The fourth category accepts matching 
pairs that the system can’t assign to one of 
the other three categories.

Tagging-Approach Implementation
The prototype currently uses the same de-
fault rules for each user. It generates the 
matches with the INRIA alignment API.5

Presentation: Browser extension. To 
make the mapping process as natural as 
possible, we used a Firefox browser exten-
sion to display the mapping information. 
The mapping question appears on a trans-
parent interface over the Web page the user 
is currently browsing, as shown in Figure 
1. The concepts appear in a specific type 
of natural language that represents their 
parents, siblings, and properties via bullet 
points and fixed statements, such as “A is a 
B” and “C is a type of A.” 

We modified the natural language used 
in our previous experiment to remove some 
confusing ontological terms (for example, 
“Thing”). We also limited the number of 

•
•

•

•Figure 1. The tagging interface. The concepts appear in a specific type of natural 
language, and users characterize their relation by either entering a new tag or 
choosing from existing tags.



November/December 2008	 www.computer.org/intelligent	 79

properties shown to avoid cognitive over-
load. Future experiments might use differ-
ent constructions.

Interaction: Tagging interface. The user 
has to tag the matching pair relation with 
the tags they think represent the relation-
ship. They can either type in a new tag or 
choose from an existing list that contains 
suggested tags. The top-level categories 
are equivalent, equivalent sometimes, and 
different. Users can enter multiple tags for 
the relationship if they wish.

Evaluate user response: Tag analyzer. 
After the user submits tags for a match-
ing pair, a tag analyzer applies rules to the 
set of user-specified tags, categorizing the 
matching pair. The rules are configurable, 
but at present we set the same default 
rules for each user—for example, major-
ity wins and a tie goes to the first specified 
category. 

When a matching pair is categorized 
into “correspond/unknown” via undefined 
tags, the system checks the tags to see if 
the matching pair is an object-property re-
lationship; if so, the system will construct 
a new matching pair. In future experi-
ments, we plan to categorize the unknown 
matching pairs through observation of 
other users and user-interaction patterns. 
Thus, if a user isn’t seeing any benefit 
from a mapping, we want to flag it as pos-
sibly incorrect.

Conclusion
To clarify the benefits of engaging in the 
mapping task, we’re currently testing our 
prototype by offering users specific RSS 
items selected on the basis of mappings that 
the user generates between their personal 
ontology and the domain ontology used by 
the RSS feeds. The user is alerted to new 
RSS feed information via a message in the 
browser extension—just like the message 
used to alert the user of pending mapping 
tasks. Users can ignore the message until 
later if they wish. The user test group is 
split into the same three group types as in 
the initial experiment.

This experiment is nearing completion. 
Some initial indications and feedback in-
dicate that users have found the mapping 
prototype to be neither disruptive nor in-
terfering. However, they would prefer that 
the alerts not display when they’re busy. 
Most people think the mapping tasks are 

efficient, given their breakdown into small 
sessions. They liked the tagging approach 
because it was simple enough to use, al-
though the quality of the generated tags has 
yet to be analyzed. Our next experiment 
will allow the user’s browsing context to 
support adaptation of the mapping process. 
A wide-scale user trial over the Web is also 
planned.
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Mappings 
for the Semantic Web
Asunción Gómez-Pérez  
and José Ángel Ramos-Gargantilla,  
Universidad Politécnica de Madrid

Mappings usually relate two similar 
knowledge representations. Mapping ex-
amples abound in thesauri, databases, and 
ontologies. Additionally, mapping systems 
can relate two different knowledge repre-
sentations, such as databases and ontolo-
gies. All these mappings are operationally 
different and are sometimes named dif-
ferently—for example, correspondences, 
semantic bridges, transformations, seman-
tic relations, functions, conversions, and 
domain-method relations.

We’ve analyzed some of the existing 
mapping definitions and representations in 
the ontology world and its semantic neigh-
borhood, and we propose a new definition 
and representation to address the Semantic 
Web and its needs for format, access, and 
formalism heterogeneity.

Knowledge-Representation 
Definitions
Drawing on the idea of mappings as a 
structured representation, the knowledge-
representation domain has focused map-
ping definitions on ontologies. For example, 
in 2002, Xiaomeng Su gave this definition:1

Given two ontologies A and B, mapping one 
ontology with another means that for each 
concept (node) in ontology A, we try to find 
a corresponding concept (node), which has 
the same or similar semantics in ontology B 
and vice versa.

In Su’s definition, the mapping elements 
are ontology concepts. Because mapping 
involves only two ontologies, the relation 
between elements is bidirectional and the 
semantic of the relation is of similarity or 
identity. Su’s definition includes no idea of 
a conversion or transformation of elements.

In that same year, Alexandre Maedche 
and colleagues, proposed a definition that 
picked up on the transformation idea. They 
also extended the process vocabulary by 
introducing the term “semantic bridge” for 
mappings in which the transformation was 
not equivalent:2

An ontology mapping process is the set of 
activities required to transform instances 
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of a source ontology into 
instances of a target ontol-
ogy…. [T]he mapping must 
define the two ontologies 
being mapped. Additionally, 
one may specify top-level se-
mantic bridges which serve as 
entry points for the translation 
even if they are not mandato-
ry. In this case the translation 
engine starts executing the 
Individual-Individual bridge.

In 2003, Monica Crubézy 
and Mark Musen introduced 
yet another new dimension—
namely, mapping between a 
domain and a problem-solving 
method (PSM) ontology:3

Our mapping ontology pro-
vides the basis for expressing 
the adaptation knowledge 
needed to configure a PSM 
for a certain application. 
In that sense, our mapping 
ontology extends the notion 
of domain-PSM bridges in the 
UPML [Unified Problem-
solving Method description 
Language] framework by 
providing a structured and 
operational set of possible 
mapping axioms that bridge 
the ontologies of both com-
ponents.

This definition isn’t classified into map-
pings or semantic bridges according to the 
complexity of axioms. Mappings focus on 
configuring a PSM that will execute on 
concrete domain elements. The transforma-
tion idea is missing.

In 2004, a specification deliverable for 
the EU’s KnowledgeWeb project provided 
a new definition of mapping between 
ontologies:4

A formal expression that states the seman-
tic relation between two entities belonging 
to different ontologies. When this relation 
is oriented, this corresponds to a restric-
tion of the usual mathematical meaning of 
mapping: a function (whose domain is a 
singleton).

Again, mapping is defined here as an ex-
pression, without an explicit transforma-

tion objective. This definition upgrades the 
set of ontology components by extending 
Su’s restricted mappings (only between 
concepts), and covers all complexity levels 
of expressions. Additionally, a new element 
appears—direction associated to the map-
ping when the relation is a function. This 
direction contradicts Su’s bidirectional 
definition (because it covers only similarity 
and identity relations).

In their 2005 survey, Yannis Kalfoglou 
and Marco Schorlemmer defined ontology 
mapping as follows:5

A morphism, which usually will consist of 
a collection of functions assigning the sym-
bols used in one vocabulary to the symbols 
of the other.

They distinguished two mapping types: 
one oriented to correspondence between 

representation languages and 
the other oriented to corre-
spondence between vocabu-
laries. Such mappings have 
functions that assign the 
terms of one ontology to the 
terms of another. Therefore, 
their definition covers the 
mappings between PSM and 
domain ontologies, although 
it’s restricted to only two 
ontologies.

Semantic Web Mappings
All these definitions between 
ontologies apply within the 
Semantic Web area, but none 
of them covers all Semantic 
Web needs. Although on-
tologies are the main knowl-
edge representation of the 
Semantic Web, they aren’t the 
only one. Integrated in the 
Semantic Web are systems 
and applications that work 
with other formats such as 
databases, natural language 
documents, annotated docu-
ments, Web pages, semantic 
networks, graphs, and naviga-
tion models. These knowl-
edge representations can be 
mapped with ontologies or 
between them. 

Additionally, the Semantic 
Web includes systems that ex-
ecute PSMs to obtain differ-

ent results with different domain ontolo-
gies. So, Semantic Web mappings need 
to cover directional and not-predefined 
functions.

The Ontology Engineering Group of the 
Universidad Politécnica de Madrid (UPM) 
has developed a mapping definition that 
covers the Semantic Web extensions of 
ontologies:

A mapping is a formal explicitation of 
a relation between elements, or a set of 
elements, of different conceptualizations 
and/or instantiations.

In this definition, “explicitation” refers to 
a relation that’s both explicit and formal, 
as in “machine-readable.” This definition 
doesn’t limit the relation to a reciprocal 
function or declarative transformations. 
However, it supports mappings between all 

Alignment

AlignmentId: String
OriginalAuthor: String
CreationDate: Date
LastModificationAuthor: String
LastModificationDate: Date

Mapping

MappingId: String
Reference: String
Certainty: Double

MappingRelation

Name: String
Description: String
Formalization: String
Reference: String

*

*

*

ConceptualizationElement

KR: String
Id: String

RelatedElement

ElementGroup

1

Figure 1. Mapping model proposal. Mappings define relations 
between knowledge representations and their associate 
information (such as certainty, reference, and metadata).
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Semantic Web knowledge-representations 
elements, without restriction to the number 
of elements or representations. Moreover, it 
encompasses all mappings that are part of 
Semantic Web processes, such as ontology 
alignment, heterogeneous resources inte-
gration, and annotation.

Mapping Representations
The literature offers several mapping 
representations. For example, the Com-
mon Warehouse Model (CWM) repre-
sents mappings that are both generic and 
expressive,6 but this representation is also 
complex. It’s composed of classes—Trans-
formation, TransformationMap, Classifier-
Map, FeatureMap, ClassifierFeatureMap, 
TypeMapping—and their properties and 
characteristics.

The RDF Transformation (RDFT) meta-
ontology is based on the CWM. The RDFT 
specifies a small language for DTD map-
pings of XML to RDF-Schema and vice 
versa.7 Its main class is Bridge, although 
it also includes Map, EventMap, Interface, 
Roles, Event2Event, DocumentMap, XML-
Bridge, VocabularyMap, and RDFBridge.

OWL defines equivalentClass and equiv-
alentProperty as primitives, both of which 
can be considered mapping explicitations.8

C-OWL is a mapping-language proposal 
that can express relatively simple align-
ments between ontologies. The constructs 
in C-OWL are called bridge rules, and they 
can express a family of semantic relations 
between concepts/roles and individuals. 
C-OWL mappings provide eight seman-
tic relations: equivalence, containments 
(contains and is contained in), overlap, and 
their negations.9

The SEKT (Semantically Enabled 
Knowledge Technologies) mapping lan-
guage provides a set of constructs to ex-
press mappings between ontology classes, 
attributes, relations, and instances.10 Sev-
eral other languages express mappings, 
though we focus here on the language that 
is the most similar to our mapping concept, 
that is,  the INRIA’s alignment format.11

Mapping Model Proposal
Starting from common elements of these 
representations and the generalized defini-
tion for Semantic Web mappings, we de-
signed a simple representation for covering 
mappings and their uses in the Semantic 
Web. Figure 1 shows this representation.

We chose this simple representation be-

cause a more complex representation, such 
as an ontology, needs a manager to handle 
instances and models. This representation 
is independent of the knowledge represen-
tation; we can therefore use it to represent 
mappings between ontologies, between 
relational databases and ontologies, be-
tween thesauri, and so on. Furthermore, 
mapping managers can define the relations 
they need because mapping relations are 
not limited. The representation includes 
component metadata such as LastModifica-
tionDate and Reference, mainly for tracing 
information flow.

For making this representation usable, 
we present it as an XML Schema Definition 
(http://webode.dia.fi.upm.es/Alighment/
Schema.xsd).

Conclusion
The UPM has a bilateral agreement with 
the Spanish National Geographic Institute 
(IGN) to integrate current heterogeneous 
databases using the definition and repre-
sentation proposals presented here. IGN 
has four databases with geographic infor-
mation in different scales. This informa-
tion is classified into phenomena that have 
tremendously different granularity—for 
example, one catalog has 22 phenomena 
and another has 560. UPM and IGN have 
jointly developed an ontology of phenom-
ena, called PhenomenOntology, and they 
plan to develop an automatic mapping 
discoverer between the ontology and the 
relational databases. 

Additionally, the Ontology Engineering 
Group is working on extracting mappings 
of concept classification from textual se-
mantic annotations. Such mappings could 
be used in ontology-learning or ontology-
alignment applications 
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Heterogeneity between ontologies is often 
handled by establishing correspondences 
between ontology entities and transforming 
data according to these correspondences, 
whether for integrating heterogeneous data 
sources or exchanging messages between 
services. Relations between aligned enti-
ties can be very complex, so we’ve devel-
oped an alignment language for express-
ing such complexities.1 The language is 
independent of knowledge-representation 
and processing languages, but transform-
ing data requires processing the corre-
spondences expressed in it. In particular, 
the transformation requires translating 
a source ontology’s data instances to in-
stances of the target ontology. A complete 
ontology-mediation scenario thus requires 
first designing an alignment between the 
ontologies. This alignment, represented in 
the alignment language, is then grounded 
to the formalism performing the transfor-
mation task. 

We expect this scenario to become com-
mon as more ontologies are developed and 
used to describe Resource Description 
Framework (RDF) data. A query language is 
a natural choice for translating data because 
it would allow both data extraction and data 
transformation. Hence, when RDF Schema 
and Web Ontology Language (OWL) are the 
standards for describing ontologies and data, 
Simple Protocol and RDF Query Language 
(SPARQL) seems a natural candidate for 
expressing and processing the correspon-
dences.2 However, SPARQL isn’t powerful 
enough to cover the full expressivity of the 
alignment language we’ve developed.

We therefore propose combining two 
recent SPARQL extensions to handle com-
plex alignments:

SPARQL++ provides aggregates, value-
generating built-ins, and (possibly recur-
sive) processing of mappings expressed 
in SPARQL,3 and 
PSPARQL provides queries on path ex-
pressions (made from regular expression 

•

•

patterns),4 which are sufficient for ex-
pressing those in our alignment language.

Here, we illustrate our proposal with a 
data-translation problem between two on-
tologies: Friend of a Friend (FOAF, http://
xmlns.com/foaf/0.1) and vCard (www.
w3.org/2006/vcard/ns). Both vocabularies 
describe information about persons and or-
ganizations, both are used extensively, and 
they cover complementary as well as over-
lapping aspects of this information.

Alignment Representation
The alignment format developed at INRIA 
offers an extensible format for expressing 
alignments in RDF/XML.6 It supports native 
representations of simple correspondences 
between ontological entities, and it provides 
an interchange format between alignments 
created using ontology-matching algorithms.7 

The alignment format is organized 
around a small set of constructs. Users or 
programs describe an alignment through a 
set of correspondences, together with related 
metadata such as the aligned ontologies’ 
names, the alignment’s purpose, and the way 
it was built. Each correspondence describes 
the relation between two ontological entities. 
The alignment format includes a measure of 
confidence in the correspondence. 

Figure 1 shows a sample correspon-
dence, expressing the equivalence between 
a vCard and a person.

The expressive alignment language 
we’ve developed to extend this format al-
lows the representation of more complex 
correspondences.1 Particularly, it includes 
the following constructs: 

operators to relate an entity in one ontol-
ogy to a combination of entities in the 
other, 
conditions to restrict an entity’s scope, and 
transformations for property values such 
as aggregates, functions, and data-type 
conversions.

The language provides a high-level descrip-
tion of ontology alignments and a conve-
nient exchange format between matching 
algorithms, graphical user interfaces, and 
mediation languages.

Grounding
Ontology mediation is a complex mediation 
process involving two main phases.8 

First, the alignment is constructed at de-

•

•
•

sign time. Ontology engineers use match-
ing algorithms to automatically discover 
correspondences between ontologies. 
Graphical mapping interfaces assist the 
process of refining these correspondences, 
which eventually involve correspondence 
patterns.9 Our expressive alignment lan-
guage stores the correspondences.

At run time, the previously built align-
ments are executed in a particular me-
diation task using a specific formalism. 
Grounding is the term we use for trans-
forming the alignment expressed in an 
alignment-representation formalism into 
the knowledge-representation formal-
ism executable for a particular task. When 
translating queries, a rule language might 
be most appropriate. When translat-
ing instance data, a query language such 
as SPARQL seems most appropriate. 
SPARQL has the advantage of being widely 
used for querying RDF Web data. This 
makes SPARQL-based data translation 
more natural for Semantic Web users com-
pared to rule-based languages or XML-
based extraction techniques. 

We can now show how this process 
translates the example correspondence be-
tween Foaf files and vCards in Figure 1 to a 
corresponding SPARQL expression.

Data Translation Using SPARQL
SPARQL is the W3C recommendation 
for querying RDF.2 Typically, SPARQL 
queries are used to select bindings of RDF 
terms to variables from a set of source 
RDF graphs (also called the dataset) ac-
cording to a graph pattern. In a slightly 
simplified view, such a query follows the 
general structure: 

SELECT variables 
FROM dataset 
WHERE { graph pattern } 

Answers to a SPARQL query Q rely on 
computing the set of possible homomor-
phisms from the basic graph pattern(s) of Q 
into the RDF graph representing the knowl-
edge base. 

If we want to exploit instance data de-
scribed under one ontology when our ap-
plication has been designed for another, we 
need a translation mechanism. Through 
its CONSTRUCT statement, SPARQL 
provides the possibility to construct an 
RDF graph as the result of a query over 
another graph. This is a natural mecha-
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nism for writing mapping rules between 
RDF vocabularies. For instance, the query 
in Figure 2a illustrates a Construct query 
translating a foaf:Person into a vc:VCard. 

We must complete this simple example 
to additionally translate—possibly recur-
sively—a person’s properties, such as name, 
address, or telephone number. The same 
selections apply to Construct queries as ap-
ply to other queries. For example, Figure 
2b show how we can modify the Figure 2a 
query to map the names in vCard addresses 
to FOAF. Figure 2c shows how a simple 
Construct statement can model the mapping 
in Figure 1. 

We can then execute the query on a set of 
instance data represented in RDF to yield 
the transformed ontology instances in the 
target ontology. 

However, it turns out that the avail-
able constructs aren’t sufficient for a fully 
fledged mapping language.

SPARQL Extensions for Accurate 
Translation
Three features that SPARQL lacks would 
be particularly useful for processing align-
ments—namely, aggregate computation, 
individual generation, and path expressions.

Aggregates. Definition of a Project (DOAP, 
http://trac.usefulinc.com/doap) is an open 
source project to create an RDF/XML vo-
cabulary to describe software projects. The 
DOAP vocabulary contains revision—that 
is, version numbers of released project ver-
sions. With an aggregate function MAX, you 
can map DOAP information into the RDF 
Open Source Software Vocabulary (http://
xam.de/ns/os). This lets you describe a 
project’s latest release by picking the maxi-
mum value (numerically or lexicographi-
cally) of the set of revision numbers speci-
fied by a graph pattern as Figure 3a shows.

Other aggregates, such as count, average, 
or sum, might be needed for complex and 
complete mappings. 

Individual generation. Completing the 
mapping between vCard and FOAF, if we 
try mapping from vc:homeTel to foaf:phone, 
we observe that the former is a data-type 
property and the latter an object property. 
Basically, a mapping needs a conversion 
function, generating a new URI: 

SPARQL doesn’t allow such value gen-
erations at the moment, but they are defined 
and implemented in SPARQL++.3 We con-
sider SPARQL++ to be a valid basis for a 
mapping language, but it doesn’t address all 
the issues in complex relations.

Paths. Another missing part is path expres-
sions, which aren’t expressible in SPARQL. 
This is fairly surprising for a language that 
claims to be a graph query language. 

PSPARQL extends SPARQL by replac-
ing the atomic SPARQL graph patterns—
that is, RDF graphs with variables—by 
RDF graphs with variables and path ex-
pressions in place of relations.4 We can 
view paths as complementary to aggrega-
tions: where aggregations join pieces to-
gether, paths extract them individually.

The following example PSPARQL query 
exhibits two path expressions in the sec-
ond and third lines of the WHERE clause. 
The paths are made from the indefinite 
composition (+) and composition (.) opera-
tors. This query returns pairs of person and 

company such that the person indirectly 
knows someone working in this company 
and this company is based in Innsbruck. 

Conclusion
We see that an adequate means for trans-
forming data according to some alignment. 
However, the current SPARQL specification 
isn’t powerful enough for supporting this 
task with the expressive alignments that are 
necessary for carefully describing relations 
between ontologies. The combination of 
the SPARQL extensions—SPARQL++ and 
PSPARQL—can serve as a basis to ground 
expressive ontology alignments in concrete 
executable mappings between data RDF 
graphs adhering to different, overlapping 
ontologies. 

To implement a complete alignment 
framework, we propose two things: first, an 
implementation of a SPARQL data trans-
formation engine integrating PSPARQL 
and SPARQL++ and, second, a ground-
ing of an abstract, expressive alignment 
language to this new PSPARQL++. We are 
currently working on reconciling the differ-
ent proposed extensions toward a common 
prototype.

CONSTRUCT { ?x rdf:type vc:VCard } 
WHERE { ?x rdf:type foaf:Person } 
(a)

CONSTRUCT { ?X foaf:name ?FN . } 
WHERE { ?X vc:FN ?FN . 
    FILTER isLiteral(?FN) } 
(b)

CONSTRUCT { ?X a foaf:Person.
    ?X foaf:based_near “Grenoble”ˆˆxsd:string. } 
WHERE { ?X a v:VCard .
        ?X v:workTel ?PH.
    FILTER startsWith(?PH, “+33476”) } 
(c)

Figure 2. SPARQL data translation 
examples: (a) transform class instances 
into instances of another class, (b) 
transform name properties and check 
that the source property is a literal, and 
(c) transform phone number owners 
into inhabitants of a region if the phone 
number follows the given pattern. 
(FROM clauses omitted.)

CONSTRUCT { ?P os:latestRelease
                MAX(?V : ?P doap:release ?R.
                               ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }
(a)

CONSTRUCT {?X foaf:phone
  xsd:anyURI( 
    fn:concat(“tel:”,fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . } 
(b)

SELECT ?X, ?Y 
WHERE {?X foaf:knows+ . foaf:worksFor ?Y 
              ?Y vc:adr . vc:city “Innsbruck”. } 
(c)

Figure 3. SPARQL examples for SPARQL 
extensions for accurate translation: (a) 
a project’s latest release corresponds 
to the version with the highest release 
number, (b) a FOAF phone number 
is obtained by appending the prefix 
“tel:” to the URL-encoded vcard phone 
number, (c) example path expression 
selecting persons who know somebody 
that works in Innsbruck. (FROM clauses 
omitted.)

<Cell>
  <entity1 rdf:resource=”&foaf;Person”/>
  <entity2 rdf:resource=”&vc;VCard”/>
  <measure  rdf:datatype=”&xsd;float”>1.0 
	    </measure>
  <relation>equivalence</relation> 
</Cell>

Figure 1. A sample correspondence in 
the Alignment format. 
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Ontology Matching:  
Status and Challenges
Konstantinos Kotis,  
University of the Aegean
Monika Lanzenberger,  
Vienna University of Technology

Ontology matching is a significant Se-
mantic Web research topic and a critical 
operation in many domains—for example, 
heterogeneous systems interoperability, 
data warehouse integration, e-commerce 
query mediation, and semantic services 
discovery. The matching operation takes 
two (sometimes more) ontologies as input, 
each consisting of a set of discrete entities 
and axioms, and outputs the relationships 
between the entities, such as equivalence or 
subsumption. 

Researchers have proposed many solu-
tions to the ontology-matching problem.1,2 
Although it’s a different problem from 
schema matching, the techniques developed 
for each of them has benefitted the other. 
Most research has focused on specific cri-
teria for evaluating and distinguishing be-
tween matching approaches according to

algorithm input—for example, entity la-
bels, internal structures, attribute types, 
and relationships with other entities;
matching-process characteristics—for 
example, the approximate or exact nature 
of its computation or the way it interprets 
input data (syntactic, external, semantic); 
algorithm output—for example, a one-
to-one matching or a one-to-many or 
many-to-many correspondence.

Other significant distinctions in the output 
results include the confidence and probabil-
ity percentages of the mapping results and 
the kinds of relations provided (equiva-
lence, subsumption, incompatibility, and 
so on).

Human involvement during the ontology-
matching process is usually a tradeoff with 
the results’ precision and recall percent-
ages. Fully automated tools are still looking 
for higher accuracy. International contests 
such as the Ontology Alignment Evaluation 
Initiative (http://oaei.ontologymatching.
org) provide a forum and benchmarks for 
this task.3 Still, both automated and semi-
automated tools need to improve their per-
formance. For instance, most of them can’t 
handle large real-domain ontologies such as 
those in medicine and biology, although the 

•

•

•

research community has developed more 
and more realistic test beds to evaluate tool 
solutions to the scalability problem.

Beyond ontology-matching methods, 
tools, and evaluation initiatives, recent ef-
forts have focused on design frameworks for 
ontology-matching tools, such as AUTOMF-
S.4 Such frameworks let developers use 
APIs to not only develop ontology-match-
ing methods but also, and more importantly, 
synthesize these methods into robust tools 
for producing more accurate mappings. Be-
yond this, existing methods need more work 
to improve their matching quality.

Dilemmas and Critical Questions
The research community’s efforts to provide 
diverse solutions to the matching problem by 
developing a variety of tools haven’t yet gen-
erated a dominant set of methods that can 
serve as a benchmark for designing other 
matching tools. This might reflect the vari-
ety of domain-specific user or application 
needs. In fact, we conjecture that the com-
munity couldn’t nominate “the best tool” be-
cause so many critical questions arise within 
a specific problem-solving context.

For example, should the tool be fully or 
semiautomated? To answer this question 
satisfactorily requires knowing the extent 
of human-involvement, if any, and how this 
influences the accuracy of mapping results. 
How much time must users spend validat-
ing mapping results? Can we ensure that 
mapping results are valid without their 
involvement? Ultimately, the questions 
resolve to what is most critical for their ap-
plication: investing in human involvement 
to validate resources or automating the 
ontology-matching tool? If user interaction 
is essential, you must provide the means to 
analyze the matching results and under-
stand the source ontologies’ characteristics.

Another important question is whether 
the tool should provide very high precision 
and indifferent recall or vice versa. What 
balance between these parameters does the 
user’s application require? What are the 
tradeoffs? Is there an optimal tradeoff, and 
can users tune the methods to achieve it?

Performance involves another set of 
questions. Does the application call for 
a tool that supports high computational 
complexity and rather slow execution time, 
or are rapid results more important? What 
percentage of precision and recall are users 
willing to sacrifice to speed up the ontol-
ogy-matching process and, consequently, 
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their application? In the end, what is more 
critical for the application; to achieve the 
tool’s highest precision and recall or to ob-
tain the mappings as fast as possible?

All these questions require answers 
within the context of specific application 
and user needs.

Challenges
Despite many years’ progress toward solv-
ing ontology-matching problems, the re-
search community still reports open issues 
that impose challenges and underline new 
directions for the future work.

Scalability. Most implemented and evalu-
ated ontology-matching tools suffer perfor-
mance problems in handling large ontolo-
gies. Real problems in specific application 
contexts require scalable solutions as a first 
priority. Future ontology matching tools 
should provide this capability.

Tuning speed, automation, and accu-
racy. Tools currently emphasize maximiz-
ing specific performance parameters such 
as speed, automation, or accuracy. Most 
commonly, a tool will maximize one pa-
rameter’s performance while neglecting—
or even impeding—the performance of the 
others. Future research should support fine 
tuning all parameters.

Background knowledge. The ontology-
matching process makes extensive use of do-
main-related background knowledge. Recent 
experiments to improve tool recall results 
have tried matching one ontology to another 
while using a third ontology (or more) that’s 
larger and more detailed ontology from the 
same domain as background knowledge.3 
But this process doesn’t seem to scale well. 

The challenge here is to adopt an ap-
proach that doesn’t sacrifice overall tool 
performance. 

Ontology-matching frameworks. Some 
design frameworks for ontology-matching 
tools exist,4 but their performance needs 
further investigation. Software develop-
ers need support not only for devising 
ontology-matching methods but also for 
synthesizing them into new tools that pro-
duce more accurate mappings. Scalability, 
speed, and compatibility between input 
ontology types also require further inves-
tigation to deliver a model framework that 
the research community could use to devise 

specific ontology-matching tools for spe-
cific user or application preferences.

Ontology-matching visualization. Hu-
mans must perform and decide several is-
sues in ontology matching to ensure the 
quality, appropriateness, and relevance of 
the matching results. Interpreting an entity 
of one ontology in the context of the knowl-
edge of another ontology is a cognitively dif-
ficult task that requires understanding the se-
mantic relations among entities of different 
ontologies.5 Visualizing ontology-matching 
results could support user understanding. 

Conclusion
The challenges in this domain grow with 
every advance in IT and the emerging eco-
nomic infrastructure it supports. Ontology-
matching results can manifest the same dif-
ficulties as the source ontologies: they can 
be large, complex, and heterogeneous. Yet 
so long as the information the ontologies are 
organizing continues to expand and differ-
ent ontologies turn up for the same informa-
tion, both academic and industry research-
ers will proceed to address these challenges.
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