
ABSTRACT
Object matching or object consolidation is a crucial task for data in-
tegration and data cleaning. It addresses the problem of identifying
object instances in data sources referring to the same real world
entity. We propose a flexible framework called MOMA for map-
ping-based object matching. It allows the construction of match
workflows combining the results of several matcher algorithms on
both attribute values and contextual information. The output of a
match task is an instance-level mapping that supports information
fusion in P2P data integration systems and can be re-used for other
match tasks. MOMA utilizes further semantic mappings of different
cardinalities and provides merge and compose operators for map-
ping combination. We propose and evaluate several strategies for
both object matching between different sources as well as for dupli-
cate identification within a single data source.

1. MOTIVATION
Object matching (also known as object consolidation, duplicate
identification, record linkage, entity resolution or reference recon-
ciliation) is a crucial task for data integration and data cleaning [9,
18, 27] and its history goes back over 20 years [3, 19] . It addresses
the problem of identifying object instances referring to the same
real world entity. The instances may reside in different, typically
heterogeneous data sources or may already be stored in a single data
source, e.g., in a structured database or a search engine store. The
instances to be consolidated may be physically materialized or dy-
namically be requested from sources, e.g. by database queries or
keyword searches.

The high importance and difficulty of the object matching problem
has triggered a huge amount of research on different variations of
the problem. Most previously proposed approaches focus on match-
ing relational records and apply what we call attribute matching,
i.e., they use the values of selected attributes to determine the simi-
larity between instances. These approaches have also been called
“fuzzy join“ or “fuzzy match“ [6, 7] and considered different simi-
larity functions (e.g., different types of string similarity) [10] and
their efficient implementation. More recently, authors have recog-
nized the value of considering additional information for object
consolidation, in particular semantic relationships or mappings. For

instance, [4] uses the co-authorship relationship to match author in-
stances, i.e., two authors are considered as highly similar if they
have the same co-authors. Several studies proposed graph matching
algorithms to consider such contextual information, e.g., [4, 8, 11,
35]. The use of relationship information is especially promising
when the effectiveness of attribute matching is low, e.g. for sources
with only few attributes or in the presence of dirty or highly differ-
ent value representations (e.g., “CIDR 2007“ vs. “3rd Biennial Con-
ference on Innovative Data Systems Research“).

We propose a flexible and domain-independent framework called
MOMA for mapping-based object matching. The design of MOMA
is inspired by our previous work on schema matching, especially
the COMA approach [13] which allows the combined use of multi-
ple match algorithms for a given schema match problem. MOMA
also uses an extensible library of match algorithms, both attribute
and context matchers, and the combination of their results to im-
prove match quality. Of course, the focus now is on matching real,
dirty data which may not have a rich schema (e.g., web data) and
typically is much more voluminous than metadata / schemas.

A key feature of MOMA is that it is massively based on the notion
of instance mappings. The output of a match task is represented as
a so-called same-mapping indicating which input objects are con-
sidered semantically equivalent. Automatically generating such
mappings is especially useful for peer-to-peer (P2P) data integra-
tion to map a new data source to already integrated peers. The gen-
erated mappings allow us to traverse between peers and to fuse
together and enhance information on equivalent objects for data
analysis and query answering.

To solve a particular match problem and generate a corresponding
same-mapping MOMA allows the specification of a workflow of
several steps each of which combines several existing mappings or
matcher executions. Hence, already existing same-mappings and
the output of previous match steps can be iteratively refined during
a match workflow. MOMA’s neighborhood matcher additionally
utilizes so-called association mappings representing semantic rela-
tionships between different objects, such as publications of authors
or publications of a conference. For instance, we can consider two
conferences at different data sources as equivalent if the majority of
their publications match with each other. MOMA also provides
self-tuning capabilities to automatically find optimal configurations
for a match task.

A first version of MOMA has been implemented based on our P2P
data integration platform iFuice [30]. The use of iFuice for a large-
scale citation analysis involving automatically generated web
sources like Google Scholar [29] revealed the strong need for a sys-

MOMA - A Mapping-based Object Matching System
Andreas Thor

University of Leipzig, Germany
thor@informatik.uni-leipzig.de

Erhard Rahm
University of Leipzig, Germany

rahm@informatik.uni-leipzig.de

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/). You may copy, distribute,
display, and perform the work, make derivative works and make commer-
cial use of the work, but you must attribute the work to the author and
CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

247

tem like MOMA to achieve high-quality object matching with little
or no manual data cleaning activities. In this paper, we will also use
examples from the bibliographic domain for illustration.

The main contributions of this paper are the presentation of the new
MOMA architecture for mapping-based object matching and the
specification of several match strategies to combine match results
and existing mappings. Furthermore we present results of an exten-
sive evaluation on real data sources (including Google Scholar) in-
dicating the high effectiveness of MOMA for both object matching
between different sources as well as within a single data source.

The next section introduces some definitions and outlines the
MOMA architecture. Section 3 describes the mapping combination
techniques and Section 4 presents typical workflows for object
matching and duplicate detection. Section 5 provides an initial
evaluation on real-world bibliographic datasets. We review related
work in Section 6 before we conclude in Section 7.

2. OVERVIEW OF MOMA
2.1 Definitions and Problem Statement
MOMA’s model for sources and mappings follow the assumptions
of the iFuice data integration platform [30]. We differentiate be-
tween physical data sources (e.g., DBLP, ACM Digital Library or
Google Scholar) and logical data sources. Each logical data source
(LDS) belongs to one physical data source (PDS) and consists of
object instances of a particular semantic object type (e.g., Publica-
tion or Author). Each object instance is identified by an id value and
may have additional attribute values. Figure 1 shows some object
instances from the sources DBLP and ACM.

Mappings interconnect LDS and have a specific semantic mapping
type, e.g. publications of author. We focus on instance mappings
which consist of correspondences between two LDS. PDS, LDS
and mappings are represented in a so-called source-mapping model
(SMM) as illustrated in Figure 2.

Definition 1 (Mapping and correspondence): A mapping m be-
tween LDSA and LDSB consists of a set of correspondences { (a, b,
s) | a!LDSA, b!LDSB, s! [0,1] }. The similarity value s indicates
the similarity or strength of the correspondence between a domain
object a!LDSA, and a range object b!LDSB.

Like [20] we represent mappings by a mapping table with three col-
umns. Each row represents a correspondence consisting of the ids
of the domain and range objects and the corresponding similarity
value.

We distinguish between same-mappings and association mappings.
Same-mappings connect instances of the same object type and rep-

resent a semantic equality relationship. Figure 1 illustrates an exam-
ple of a same-mapping for publications. The shown similarity
values could be a result of combining two attribute matchers on
publication title and year. All mappings that are not same-mappings
are called association mappings, e.g. of type publication-author or
publication-venue. The publication-venue mapping is of cardinality
n:1 so that we could have simply represented the venue information
as an attribute per publication object. The advantage of introducing
the object type venue and an explicit mapping representation is two-
fold. First, we can easily determine and use the inverse mapping,
i.e., to get all publications for venues. Second, we gain flexibility
for mapping combination. For example, we can compose the publi-
cation-author and publication-venue mappings to determine all au-
thors publishing at a certain venue. As we will see we can also
utilize these association mappings to determine same-mappings.

The SMM of Figure 2 only shows association mappings for sim-
plicity. Since same-mappings can be established between all LDS
of the same object type, there may be up to 8 same-mappings (3 for
publications, 3 for authors, 2 for venues). The goal of object match-
ing is to identify the correspondences for such same-mappings.

Definition 2 (Problem statement: object matching): Object
matching is a process which takes as input two sets of objects A "
LDSA and B " LDSB of the same object type. The output is a same-
mapping between A and B containing correspondences between ob-
jects of A and B representing the same real-world entity. The goal
is to achieve a high-quality mapping with respect to recall and pre-
cision, i.e. all real correspondences but no other object pairs should
be included in the result.

Note that the inputs need not be entire LDS but only subsets of LDS.
This is because web sources like Google Scholar do not support
downloading all their data but only support querying selected sub-
sets. Hence, object matching needs to be performed on the results
of such queries. Furthermore, we are aiming at supporting both ex-
tensive offline matching of large data sets (e.g. for physical integra-
tion such as data warehousing) and small-sized online matching
(e.g. during query processing in virtual data integration scenarios).

MOMA also supports duplicate detection within a single source by
matching instances of the same LDS with each other. We refer to
the resulting same-mappings as self-mappings; they represent all
duplicate records within the source. Google scholar uses sophisti-
cated clustering to determine matching documents and correspond-
ing citations. However their matching is not perfect and can lead to
wrong (citation) analysis results without additional object match-
ing. One goal of MOMA is to improve the duplicate identification
within such sources by utilizing additional matchers and mappings.

Figure 1. Examples for object instances (left and middle) and same-mapping (right)

0.6P-641272conf/VLDB/ChirkovaHS01
1P-672216conf/VLDB/ChirkovaHS01

P-641272
P-672216

P-672191
Publication@ACM

1journals/VLDB/ChirkovaHS02
0.6journals/VLDB/ChirkovaHS02

1conf/VLDB/MadhavanBR01
SimPublication@DBLP

0.6P-641272conf/VLDB/ChirkovaHS01
1P-672216conf/VLDB/ChirkovaHS01

P-641272
P-672216

P-672191
Publication@ACM

1journals/VLDB/ChirkovaHS02
0.6journals/VLDB/ChirkovaHS02

1conf/VLDB/MadhavanBR01
SimPublication@DBLP

200159-68A formal perspective on the view ...conf/VLDB/ChirkovaHS01

2002216-237A formal perspective on the view ...journals/VLDB/ChirkovaHS02

200149-58Generic Schema Matching with Cupidconf/VLDB/MadhavanBR01
YearPagesTitleKey

200159-68A formal perspective on the view ...conf/VLDB/ChirkovaHS01

2002216-237A formal perspective on the view ...journals/VLDB/ChirkovaHS02

200149-58Generic Schema Matching with Cupidconf/VLDB/MadhavanBR01
YearPagesTitleKey

200110A formal perspective on the view ...P-672216

20021A formal perspective on the view ...P-641272

200169Generic Schema Matching with CupidP-672191
YearCitationsNameId

200110A formal perspective on the view ...P-672216

20021A formal perspective on the view ...P-641272

200169Generic Schema Matching with CupidP-672191
YearCitationsNameId

Pubclication@DBLP Pubclication@ACM Same-mapping

248

2.2 MOMA Architecture and Match Workflow
Figure 3 illustrates components of the MOMA architecture as well
as the process of object matching. A mapping repository is used to
materialize both association and same-mappings. Given the simple
structure of our mappings they can efficiently be maintained in re-
lational mapping tables. Many mappings already exist in data
sources and can thus be utilized for object matching. For instance,
DBLP data on publication lists for venues and for authors are kept
as association mappings. Similarly, some same-mappings exist al-
ready, e.g., Google Scholar links its publications to ACM. MOMA
also maintains a mapping cache for storing intermediate same-map-
pings derived during a match workflow. Hence, MOMA not only
processes the input instances but also utilizes the mappings of the
repository and the cache for object matching.

There is an extensible library of matcher algorithms that can be used
for a specific match task. Matchers conform to the same interfaces
as a match process, in particular they generate a same-mapping.
Otherwise there is no restriction on the implementation of matchers,
e.g., they can be attribute matchers or context matchers like graph-
based matching algorithms (e.g., [11]). Furthermore, they may uti-
lize a variety of similarity computations, e.g. based on string match-
ing, use of auxiliary information like dictionaries or use of query
functionality to access data sources. Certainly powerful text match-
ing algorithms are especially important for web objects / docu-
ments. In our current implementation, we use a generic attribute
matcher that is provided with a pair of attributes to be matched, a
similarity function to be evaluated (e.g. n-gram, TF/IDF or affix)
and a similarity threshold to be exceeded by result correspondences.
A multi-attribute matcher is also supported which directly evaluates
and combines the similarity for multiple attribute pairs, e.g., for
publication title and publication year.

The MOMA match process is a workflow consisting of a sequence
of steps. Each such step generates a same-mapping that can be re-
fined by additional steps. Selected workflows can be added to the
matcher library for use in other match tasks. The final same-map-
ping determined by a match process is stored in the mapping repos-
itory and can be re-used in other workflows.

Each workflow step consists of two parts: matcher execution and
mapping combination. The execution of selected matchers is actu-
ally optional, i.e., a step may only combine existing or previously
computed mappings from the mapping repository or mapping
cache. The combination of mappings in a step is processed by a spe-
cific mapping combiner. The input of a mapping combiner is a list
of mappings, either from the mapping cache or mapping repository,
the output is a same-mapping. A combiner is specified by a map-
ping operator followed by an optional selection. The mapping oper-
ator specifies how the resulting correspondences are determined
from the input mappings, e.g. by a merge or compose operation (see
Section 3). The selection step filters the correspondences to restrict
the mapping to the most similar instances. Selections are typically
specified by constraints on the similarity values, e.g., a Threshold
constraint returns all correspondences above a given similarity val-
ue. Additionally the selection step can consider domain-specific
constraints, e.g., to require that the publication year of matching
publications should not differ by more than one year.

MOMA provides a high flexibility to determine a tailored workflow
for a given match task. In particular, it allows selection and combi-
nation of several matchers and the re-use and refinement of previ-
ously determined mappings. Several match strategies will be
described in more detail in the next section. On the other hand, the
high flexibility can make it difficult even for experts to specify a
suitable workflow and configuration. Similar to the E-Tuner ap-
proach for schema matching [31], MOMA therefore will provide
self-tuning capabilities to automatically select matchers and map-
pings and to find optimal configuration parameters. Initially the fo-
cus is on optimizing individual matchers and combination schemes.
For example, for attribute matching choices must be made on which
attributes to match, and which similarity function and similarity
threshold to apply. For suitable training data these parameters can
be optimized by standard machine learning schemes, e.g. using de-
cision trees.

3. Mapping Operators
We propose two types of mapping combination namely merging
and composition. Merging is applicable for mappings between two
LDS of the same object type, LDSA and#LDSB, and determines a

Figure 3. Schematic overview of MOMA and match workflowsFigure 2. Source mapping model for
bibliographic domain

DBLP

Author

Publication

Venue

ACM

Author

Publication

GoogleScholar

Publication

LDSPDS

Legend

LDSPDS

Legend

Venue

Author
Mapping types
1. Publications of author /

Authors of publication
2. Venue of publication /

Publications of venue
3. Co-Authors

!

"
!

#

#

!

SelectionMapping
Operator

Mapping Combiner

SelectionMapping
Operator

Mapping Combiner

Match workflow

B

LDSB

B

LDSB

A

LDSA

A

LDSA

Same
mapping

Matcher 1
Matcher 2

Matcher n
...

Match workflows

Matcher Library

Matcher implementation
(e.g., Attribute based)

Match workflowsMatch workflows

Matcher Library

Matcher implementation
(e.g., Attribute based)

Matcher implementation
(e.g., Attribute based)

Mapping
Cache

• Association Mappings
• Same Mappings

Mapping Repository
• Association Mappings
• Same Mappings

Mapping Repository
• Matcher parameters
• Matcher selection
• Mapping combination

Self-Tuning

249

combined mapping between these sources. Mapping composition
aims at deriving a mapping from LDSA to LDSB with the help of two
mappings from LDSA to LDSC and from LDSC to LDSB. Note that
the operators need to process and generate “fuzzy“ mappings, i.e.,
we need methods to determine the similarity values for the corre-
spondences in the output mappings. In MOMA merging is only
needed for combining same-mappings while compose is used for
both same-mappings and association mappings.

In the following we define the operators for merging and compos-
ing mappings. Afterwards we briefly present our selection operator.

3.1 Merging Mappings
Our framework supports a general n-ary merge operator to unify the
correspondences of mappings of the same type. Given n mappings
mapi between LDSA and LDSB, the merge operator returns a com-
bined mapping between these sources. An additional input parame-
ter for merge is a combination function f. It determines how the
similarity values si of input correspondences (a,b,si) should be com-
bined for the merged correspondence (a,b,s). We currently provide
the following functions:

- Avg / Min / Max: average / minimum / maximum value of the
input similarities si

- Weighted: Weighted average
- PreferMapi: This approach prefers one of the input mappings,

e.g., if it is known to provide good quality.

For Min, Average and Weighted Average we can also specify how
to deal with correspondences that are missing in some of the input
mappings. The default strategy ignores such missing correspon-
dences and only considers the available similarity values. This ap-
proach is especially useful for input mappings containing
correspondences only for a small fraction of the objects. Such in-
complete mappings are quite common when sources overlap only
partially or have many missing values (e.g. for optional attributes
such as publication year in Google Scholar). By ignoring missing
correspondences incomplete mappings can contribute to the com-
bined mapping result (and thus improving recall) without reducing
the similarity values for correspondences of other input mappings.

On the other hand we may choose to assume a similarity value of 0
for a missing correspondence in order to improve precision of the
result mapping. Figure 4 illustrates the effect of different similarity
functions f for two input mappings. Min-0 and Avg-0 refer to the
variants where missing similarity values are assumed to be 0; Avg
only considers existing correspondences. Note that Min-0 has the
semantics of a mapping intersection filtering away all correspon-

dences which are not present in all input mappings. Such a restric-
tive merge approach is expected to improve the precision of same-
mappings at the expense of a reduced recall.

The PreferMap similarity function aims at providing both good re-
call and precision by preferring one mapping which is known to
provide good quality. It includes all correspondences from the pre-
ferred mapping and adds only such correspondences from the other
mapping(s) for domain instances that do not have any correspon-
dence in the preferred mapping. In the example of Figure 4, the
merged mapping contains all correspondences of the preferred
mapping map1. Since map1 already „covers“ domain instances a1
and a2 only the correspondence (a3,b3) from map2 is added to the
result mapping. The intuition behind this is that the non-preferred
mappings should only contribute non-conflicting matches for oth-
erwise uncovered objects (thus improving recall) but not reduce the
precision for the correspondences of the preferred mapping.

3.2 Mapping Composition
Another combination strategy involves the composition of map-
pings. Assume we have a mapping map1 from LDSA to LDSC and
a second mapping map2 from LDSC to LDSB. The composition of
these two mappings will relate LDSA and LDSB.

The compose result contains all correspondences (a,b,s) for which
exists at least one object ci so that (a,ci,si1) and (ci,b,si2) occur in
the initial mappings. The computation of the similarity value s of
the output correspondences is somewhat more complex than for the
merge operator. This is because a composed correspondence may
be reached via different compose paths, and each compose path
with two mappings provides two similarity values, si1 and si2. We
use a combination function f to first combine the two confidence
values si1 and si2 per compose path to a combined value si. For f we
have the same alternatives as for the merge operator. A second com-
bination function g is used to aggregate the similarity values si for
all compose paths (a,ci,b) for the resulting correspondence (a,b,s).
For g we support the following alternatives (see Figure 5 for the de-
finition of n(a), n(b), and s(a,b)):

- Avg / Min / Max: Average, minimum, maximum value of all
compose path similarity values si

(a) Input mappings (b) Merge results for different similarity functions

Figure 4. Example execution of merge operator

0.8b2a2
a1 1b1

map1

0.8b2a2
a1 1b1

map1

0.9b3a3
1b5a1

a1 0.6b1
map2

0.9b3a3
1b5a1

a1 0.6b1
map2

a1 0.6b1
merge (Min-0)

a1 0.6b1
merge (Min-0)

0.8b2a2
1b5a1

0.9b3a3

a1 0.8b1
merge (Avg)

0.8b2a2
1b5a1

0.9b3a3

a1 0.8b1
merge (Avg)

0.4b2a2
0.5b5a1

0.45b3a3

a1 0.8b1
merge (Avg-0)

0.4b2a2
0.5b5a1

0.45b3a3

a1 0.8b1
merge (Avg-0)

0.8b2a2
0.9b3a3

a1 1b1
merge (Prefer map1)

0.8b2a2
0.9b3a3

a1 1b1
merge (Prefer map1)

$ % $ %& '
$ % $ %& '
$ % $ % $ % $ %& '(!)!*+

!*+

!*+

221121

2

1

,,,,:,,

,,:

,,:

mapsbcmapscacssfbas

mapsbcscbn

mapscascan

iiiiiii

iiii

iiii

Figure 5. Auxillary values for Relative similarity functions

250

- RelativeLeft = s(a,b) / n(a) = ratio of the sum of all compose
path similarity values si and the number of correspondences for
object a in the first (left) input mapping map1

- RelativeRight = s(a,b) / n(b)
- Relative = 2·s(a,b) / (n(a)+n(b)) = harmonic mean of Relative-

Left and RelativeRight, i.e., twice the sum of all si values divi-
ded by the sum of correspondences for a and b in map1 and
map2, respectively.

The Relative approaches consider the number of compose paths to
prefer correspondences that are reached via multiple paths. This is
illustrated by the composition example of Figure 6 using the f=Min
and g=Relative functions. The goal is to derive a venue same-map-
ping by composing a venue-publication with a publication-venue
mapping. Consider the result correspondence between venues v1
and v’1 which can be reached via two publications p1 and p2. Both
compose paths contribute with their path similarity of min(1,1)=1.
The Relative function divides twice the sum of all path similarity
values, i.e. 2*2=4, by the number of correspondences for v1 in
map1 (=3) and the number of correspondences of v’1 in map2 (=2).
Hence, we obtain a final similarity value of s= 4/(3+2)= 0.8. The
example illustrates that the Relative similarity function takes into
account the number of compose paths as well as the sum of the com-
pose path similarity values. In the example, the output correspon-
dence (v1,v’1) receives a higher similarity value than (v1, v’2)
since it is supported by more compose paths (2 matching publica-
tions vs. 1).

3.3 Selection of Correspondences
Selection is the second step of a mapping combiner MC to eliminate
less likely correspondences from a same-mapping. MOMA sup-
ports the following techniques:

- Threshold: All correspondences above a given similarity value
are selected.

- Best-n: The n correspondences having the highest similarity
value are selected for each domain (range) instance.

- Best-1+Delta: The correspondence with maximal similarity
value is determined for all domain (range) instances plus all
correspondences with a similarity differing at most by a tole-
rance value d. The delta d can be specified either as an absolute
or relative value. The idea is to return multiple results when
there are several correspondences with almost the same top
similarity value.

- Object value constraint: Only correspondences that fulfil a cer-
tain domain-specific constraint are considered. For example, a
publication same-mapping may have to satisfy the constraint

that the publication years of matching objects must not differ
by more than one year.

4. MATCH STRATEGIES
The MOMA framework has been implemented within the iFuice
data integration platform. In addition to the introduced mapping op-
erators, iFuice supports other operators for querying data sources,
accessing object instances based on their ids, traversing mappings,
and aggregating objects interconnected by same-mappings [30].
Same-mappings generated by the MOMA approach can thus be
used in iFuice applications for aggregating (or fusing) information
from different sources. For example, DBLP publications can be
combined with their matching publications in ACM DL and Google
Scholar to obtain additional attribute values like the number of ci-
tations or author institutions. In iFuice, operators can be used within
script programs to perform data access and mapping execution. We
use this script facility to implement our match workflows based on
the introduced mapping operators.

To illustrate the power of the MOMA framework we outline sample
match workflows (or workflow steps) in this section. We first dis-
cuss the combination of several same-mappings based on the merge
and compose operators. We then discuss the utilization of associa-
tion mappings within a so-called neighborhood matcher. We will
see that the quality of neighborhood matcher depends on the cardi-
nality of the association mappings and propose different match
workflows to deal with them. Finally, we consider the special case
of duplicate detection within a single data source.

4.1 Combination of Same-Mappings
4.1.1 Independently executed matchers
The simplest form of a match workflow is the execution of n inde-
pendent matchers on the two input sources followed by merging the
n same-mappings. Merging aims at complementing the results of
individual matchers and overcoming shortcomings of different
matchers for certain instances. For example, we may execute sever-
al attribute matchers on one or several attributes. In the bibliograph-
ic application, the DBLP and ACM publications can be match based
on their titles and years. Merging both same-mappings leads to a
combined match result (e.g., as in Figure 1).

4.1.2 Compose Paths of Same-Mappings
A promising way to generate a same-mapping is the composition of
existing same-mappings thereby re-using these mappings. Since
same-mappings conceptually represent 1:1 mappings their compo-
sition should also result into 1:1 mappings, i.e., the composition of
same-mappings should be transitive. In the simplest case, only two

0.6p3v1
1p2v1

v2
v2

v1

0.6p2
1p3

1p1
map1

0.6p3v1
1p2v1

v2
v2

v1

0.6p2
1p3

1p1
map1

1v‘2p3
1v‘1p2

p1 1v‘1
map2

1v‘2p3
1v‘1p2

p1 1v‘1
map2

0.3 = 2 * 0.6 / (2+2)v‘1v2
0.67 = 2 * 1 / (2+1)v‘2v2

0.3 = 2 * 0.6 / (3+1)v‘2v1
v1 0.8 = 2 * (1+1) / (3+2)v‘1

compose

0.3 = 2 * 0.6 / (2+2)v‘1v2
0.67 = 2 * 1 / (2+1)v‘2v2

0.3 = 2 * 0.6 / (3+1)v‘2v1
v1 0.8 = 2 * (1+1) / (3+2)v‘1

compose

Figure 6. Example execution of compose operator using the
similarity functions f = Min and g = Relative

Figure 7. Composing
same-mappings

Figure 8. Hub infrastructure-
for composing same-mappings

DBLP GS ACM

p1 p‘‘1
p2 p‘‘2
p3
p4

p‘1
p‘2
p‘3
p‘4

DBLP

GS

ACM

Springer

IEEE

251

same-mappings are composed. For example, a same-mapping map3
between LDSA and LDSB can be determined by composing two
same-mappings map1 between LDSA and LDSC and map2 between
LDSC#and LDSB. Similarly, more than two mappings can be com-
posed to derive a desired same-mapping. Furthermore, there may be
several applicable compose paths so that their results may be
merged to derive a combined same-mapping.

The quality of a compose result is largely influenced by the cleanli-
ness and coverage of the sources involved. For example, same-map-
pings may relate an instance to several object instances (duplicates)
at another source, e.g. a DBLP publication may have several corre-
sponding entries at Google Scholar (GS) or vice versa. The cover-
age of data sources may be vastly different so that many instances
may not have a counterpart in another data source. Fig. 7 illustrates
how these factors can impair match quality when composing two
publication same-mappings between DBLP-GS and GS-ACM.
Publications p2 and p3 are assumed to have the same title, e.g., a
conference and a journal version of a paper. DBLP and ACM cor-
rectly differentiate these two publications while the same-mappings
with GS are assumed to map them to a single publication object.
Hence composing the two same-mappings would not cleanly match
the DBLP with the ACM publications (4 instead of 2 correspon-
dences) so that match precision is impaired. Even worse, the corre-
spondence between p4 and p’4 cannot be derived by the
composition (thus lowering recall) since they have no correspond-
ing object in the intermediate source GS.

We propose two general ways to deal with such problems. First,
combining an imperfect compose result with the results of other
compose paths and other matchers, e.g. attribute matchers, is likely
to help in many cases. Secondly, the intermediate sources within
compose paths should be carefully selected and provide high qual-
ity with respect to their coverage and cleanliness (lack of dupli-
cates). In the bibliographic domain for Computer Science the
manually curated DBLP source is a good candidate for an interme-
diate source or even a hub source to which many other sources
should be connected with a same-mapping (see Fig. 8). All data
sources connected with the hub can efficiently be matched with
each other. Generating a same-mapping between any two sources
only requires the composition of two same-mappings via the hub.

4.2 Utilizing Association Mappings
The generation of same-mappings can also be achieved by utilizing
association mappings with other data sources for which a same-
mapping has already been established. For example, assume we
have already a same-mapping for publications between DBLP and
ACM as well as association mappings of type publications of ven-
ue. Starting from a DBLP venue we can then traverse to the associ-

ated DBLP publications, utilize the same-mapping to find the
corresponding ACM publications, and traverse the association
mapping to reach the ACM venue. We can thus generate a venue
same-mapping by composing the association mappings with the
publication same-mapping.

We generalize this idea by proposing the so-called neighborhood
matcher using the iFuice script language [30]:

1: PROCEDURE nhMatch ($Asso1, $Same, $Asso2)
2: $Temp = compose ($Asso1 , $Same , Min, Average)
3: $Result = compose ($Temp , $Asso2 , Min, Relative)
4: RETURN $Result
5: END

The inputs are the two association mappings of inverse semantic
mapping type (e.g., VenuePub and PubVenue) and a same-map-
ping. The matcher is simply a sequence of two compose operations.
We start with composing the first association mapping and the
same-mapping. In a second step we compose the resulting mapping
with the second association mapping. For the second composition
we use the similarity function Relative to prefer correspondences
reached via multiple compose paths.

Figure 9 gives a concrete example for the execution of the neighbor-
hood matcher using the same-mapping of Fig. 1. The first compose
operator generates a mapping from Venue@DBLP to Publica-
tion@ACM. The execution of the second compose operator is al-
ready illustrated in Figure 6 and leads to a venue same-mapping.
Although both DBLP venues have correspondences to both consid-
ered ACM venues, the similarity values indicate the confidence of
such correspondences. The Relative combination function thus pre-
fers correspondences reached via multiple compose paths and re-
duces the influence of wrong correspondences in the underlying
publication same-mapping. Therefore a threshold-based selection
could be applied afterwards to determine the desired venue map-
ping.

The potential usefulness of the neighborhood matcher depends on
the cardinality of the utilized association mapping: 1:n, n:1, and

Figure 9. Sample execution of neighborhood matcher for DBLP venues based on publication same-mapping

conf/VLDB/2001

journals/VLDB/2002

conf/VLDB/MadhavanBR01
conf/VLDB/ChirkovaHS01

journals/VLDB/ChirkovaHS02

P-672191
P-672216

P-641272

V-645927

V-641268

$Asso1 $Same $Asso2Venue@DBLP Publication@DBLP Publication@ACM Venue@ACM

0.6
0.6

conf/VLDB/2001

journals/VLDB/2002

V-645927

V-641268

Venue@DBLP Venue@ACM$Result
0.8 = 2*(1+1)/(3+2)

0.67 = 2*1/(2+1)

0.3 = 2*0.6/(2+2) 0.3 = 2*0.6/(3+1)

p2

v1 v‘1

p1 ... pn p‘2p‘1 ... p‘np2

v1 v‘1

p1 ... pn p‘2p‘1 ... p‘n
v1

p1 p2... pn

v‘1

p‘1p‘2p‘n ...

v1

p1 p2... pn

v‘1

p‘1p‘2p‘n ...

a1

p1 p2... pm

a‘1

p‘1p‘2p‘m ...

a2 a‘2.. an .. a‘na1

p1 p2... pm

a‘1

p‘1p‘2p‘m ...

a2 a‘2.. an .. a‘n

 (a) 1:n (b) n:1 (c) n:m

 (Venue-Publication) (Publication-Venue) (Author-Publication)

Figure 10. Neighborhood matching w.r.t.semantic cardinality

252

n:m. Figure 10 shows examples for these three cases. The previous-
ly discussed example used the mapping from venues to publications
and thus illustrates the 1:n case (see also Figure 10a). We can expect
good match results in this case because each venue is likely to be
mapped to only one (or few) corresponding venue(s) at the other
source.

While the prospects are less positive in the n:1 and n:m cases the
neighborhood matcher is still promising since it can restrict the
number of match candidates. In the n:1 example of Figure 10b pub-
lications cannot perfectly be matched but the resulting correspon-
dences refer to publications published at the same venue so that the
match candidates are confined compared to all publications. Even
in the n:m case the search space for match candidates can be re-
duced. The example in Figure 10c illustrates this case for the asso-
ciation mapping author-publication, i.e., we want to derive an
author same-mapping by utilizing an existing publication same-
mapping. The result of the neighborhood matcher returns a corre-
spondence between two authors if they share at least one publica-
tion. Due to the combination function Relative author
correspondences reached via multiple paths (publications) achieve
a higher similarity value.

The examples show that the neighborhood matcher alone is insuffi-
cient to determine a useful same-mapping for the n:1 and n:m cases.
However the result is still useful as it can be refined by applying an
additional matching, e.g. by using an attribute match on author
name (see Figure 11). These matchers can work on rather small in-
put data. As our evaluation has showed this helps to significantly
improve match quality compared to the usage of attribute matching
on the complete input data sets.

4.3 Duplicate Detection with Self-Mappings
The MOMA framework can also be used to determine self-map-
pings, i.e. same-mappings within one LDS. We observe that all pre-
viously discussed match strategies can also be applied for this
special case to detect duplicates within a source. In particular, we
can combine multiple attribute matchers on one source and re-use
existing same-mappings and association mappings by composing
them in a useful order.

For example, the study in [23] focused on identifying duplicate au-
thors based on the co-authorship relationship. The underlying as-
sumption is that two authors are likely duplicates if they share a
significant number of co-authors. In our framework such an ap-
proach corresponds to the n:m case for the neighborhood matcher
with an identity mapping on authors as a trivial same-mapping.

The following script implements such a match strategy to detect du-
plicate authors in DBLP. The first line uses the neighborhood
matcher on the existing DBLP co-authorship mapping to generate a
same-mapping between authors. The similarity values indicate the
overlap of the co-author lists. Since the neighborhood matcher is
executed within only one data source, the second parameter is an
identity mapping of DBLP authors. The second line generates an
author same-mapping based on name similarity of authors that is
computed by the trigram metric. Both mappings are merged (line 3)
to identify duplicate candidates. The final selection step eliminates
“trivial duplicates“, i.e., correspondences between equal authors.

1: $CoAuthSim = nhMatch (DBLP.CoAuthor, DBLP.AuthorAuthor,
 DBLP.CoAuthor)
2: $NameSim = attrMatch (DBLP.Author, DBLP.Author,
 Trigram, 0.5, “[name]“, “[name]“)
3: $Merged = merge ($CoAuthSim, $NameSim, Average)
4: $Result = select ($Merged, “[domain.id]<>[range.id]“)

Duplicate detection is especially important for automatically gener-
ated data collections like Google Scholar. This source clusters al-
ready publications together, presumably based on attribute values
like paper title and author names. In our framework, we can repre-
sent these clusters as a self-mapping and use additional matchers to
refine it for improved duplicate detection. For example, we may im-
prove the existing self-mapping by composing it with a publication
same-mapping to DBLP.

5. EVALUATION
To demonstrate the practicality and usefulness of the MOMA
framework we have applied it for object consolidation on compara-
tively large bibliographic data sets. After describing the evaluation
setup we describe the effectiveness of various match strategies in-
troduced in Section 4, in particular merging several same-mappings
(5.2), composing same-mappings (), neighborhood matching (5.4)
and duplicate detection (5.5). Finally we summarize the main obser-
vations from the evaluation (5.6).

5.1 Evaluation Setting
Our evaluation refers to three physical data sources already consid-
ered so far: the DBLP bibliography1, ACM Digital Library2 and
Google Scholar3. Each of them provides information about publica-
tions, authors and venues (see source-mapping model of Fig. 2) but
they are very different in terms of data quality, coverage and acces-
sibility. DBLP is manually curated and of high quality. It can be
completely downloaded, and we store it in a relational database.

Figure 11. Example match workflow for n:m case

nhMatch

attrMatch

merge select
Author Author‘

Publ. Publ.‘

Sources & Mappings

Match Workflow

1.http://www.informatik.uni-trier.de/~ley/db/index.html
2.http://portal.acm.org/portal.cfm
3.http://scholar.google.com

Table 1. Number of instances for the
considered data sources

(81.296)64.263-Google Scholar
3.5472.294128ACM DL

3.3192.616130DBLP
AuthorsPublicationsVenues

(81.296)64.263-Google Scholar
3.5472.294128ACM DL

3.3192.616130DBLP
AuthorsPublicationsVenues

253

ACM Digital Library and Google scholar are web data sources
which cannot be downloaded. They can both be accessed by que-
ries. Like DBLP, ACM DL also provides complete lists of publica-
tions per venue. Google Scholar covers a huge number of
documents automatically crawled from the web but also includes
the papers from digital libraries including ACMDL. GS automati-
cally extracts the bibliographic data from the reference sections of
the documents which may lead to quality problems.

Our evaluation considers database publications from 1994 to 2003
which appeared in the conferences VLDB and SIGMOD as well as
in the journals TODS, VLDB Journal and SIGMOD Record. A
comprehensive citation analysis based on this data can be found in
[29]. Table 1 shows the number of involved venues, authors, and
publications. For Google Scholar we had to send numerous queries
for generating the relevant Google Scholar references. Those que-
ries contain the publication titles as well as venue names from the
considered DBLP publications. While our datasets may seem small
they are significantly larger than the ones used in previous object
consolidation evaluations. For example, [11] utilizes a single
dataset, Cora, consisting of 6.107 bibliographic references for only
338 publications. Furthermore, we consider three real data sources
with rather different characteristics.

The goal for object consolidation in the considered setting is the au-
tomatic determination of same-mappings for publications between
the three sources and for authors and venues between DBLP and
ACM. We measure the quality of different match workflows with
the standard metrics precision, recall and F-measure with respect to
manually determined „perfect“ mappings. These manually con-
firmed mappings were also used in the citation analysis [29].

5.2 Merging Same-Mappings
In our first experiment we use three attribute matchers to determine
a publication same-mapping between DBLP and ACM. The first
two matchers perform string (trigram) matching on the publication
titles and author names, whereas the last matchers compares publi-
cation years. Table 2 shows the precision, recall and F-measure re-
sults obtained for these matchers as well as for their combinations
using the merge operator (using the Avg function and 80% thresh-
old selection).

We observe that the title matcher outperforms the other matchers
and achieves already a rather high match quality leaving compara-
tively little room for improvement. Still we can increase match
quality by merging multiple same-mappings thus confirming the
usefulness of combining matchers. We will also show the benefit of
merging mappings in the following sections where we utilize the
merge operators within other match strategies.

5.3 Composing Same-Mapping
In this experiment we want to analyze the usefulness of composing
existing same-mappings to derive new same-mappings. Reusing
such mappings is also attractive since the composition can be com-
puted very efficiently in our implementation by joining the mapping
tables. We consider the generation of publication same-mappings
between all three sources. For any two sources we determine a di-
rect same-mapping. We utilize the string-based attribute matcher on
publication title for mappings between DBLP-ACM and DBLP-
GS. For the same-mapping between GS and ACM we utilize an ex-
isting mapping by extracting existing links in the GS publication
entries linking to ACM. In Table 3 we compare the quality of these
direct mappings with the composed mapping via the third data
source.

We observe that in one of the three cases, GS-ACM, the composed
mapping is much more effective than the direct match result. This
is influenced by a poor recall (21.6%) of the existing GS-ACM
links. The poor GS-ACM mapping also deteriorated the quality of
the compose paths DBLP-GS-ACM and DBLP-ACM-GS making
them much less effective than applying a direct attribute matching.
The compose path DBLP-ACM-GS also suffered from the fact that
ACM DL is incomplete since it misses all publications for VLDB
2002/2003. The results show that the compose approach is very de-
pendent on the chosen compose path and that the intermediary
source should be of high quality such as DBLP.

Users may not always know the quality of the available sources and
mappings. Fortunately, the risk of choosing a poor mapping (com-
pose path) can be reduced by combining several mappings. In our
example we merged both the direct mappings and the composed
mappings for each pair of data sources. As can be seen from Table
3, in all cases the merged mapping retains the match quality level of
the best alternative (either direct matching or using compose).

5.4 Neighborhood Matcher
We evaluate the neighborhood matcher introduced in Section 4 for
association mappings of different cardinalities. For the 1:n case we
determine a venue same-mapping between DBLP and ACM by uti-
lizing a publication same-mapping. Subsequently we use the deter-
mined venue same-mapping for a n:1 neighborhood matching to
improve the previous publication same-mapping. Finally we con-
sider the n:m case for author matching using the publication same-
mapping.

5.4.1 Venue - Publication (1:n)
In this experiment we use the publication same-mapping between
DBLP and ACM determined by the trigram-based attribute match-

Table 2. Matching DBLP-ACM publications
using attribute matchers

95.5%0.8%53.1%91.9%F-Measure
93.9%100%87.9%97.7%Recall
97.3%0.4%38.0%86.7%Precision
MergeYearAuthorTitle

95.5%0.8%53.1%91.9%F-Measure
93.9%100%87.9%97.7%Recall
97.3%0.4%38.0%86.7%Precision
MergeYearAuthorTitle

Table 3. Matching publications via different compose paths
(F-Measure)

83.7%91.6%81.3%Merge
83.9%63.7%33.9%Compose
35.3%

GS - ACM
(Compose via DBLP)

91.9%

DBLP - ACM
(Compose via GS)

81.3%

DBLP - GS
(Compose via ACM)

Direct

Matcher

83.7%91.6%81.3%Merge
83.9%63.7%33.9%Compose
35.3%

GS - ACM
(Compose via DBLP)

91.9%

DBLP - ACM
(Compose via GS)

81.3%

DBLP - GS
(Compose via ACM)

Direct

Matcher

254

er. We also use the venue-publication association mappings for
DBLP and ACM within the neighborhood matcher to find a venue
same-mapping. Note that the use of attribute matchers based on
general string matching is ineffective for finding venue same-map-
pings. This is because of the high diversity in the value representa-
tions of venues, e.g. “VLDB2002“ vs. “28th International
Conference on Very Large Data Bases“4.

Table 4 indicates that neighborhood matching very effectively
solves this difficult match problem and achieves excellent F-mea-
sure values of up to 98.8%, without relying on the combination with
other matchers. We also observe that match quality differs between
conferences and journals and is also influenced by the selection
strategy. For threshold-based selection strategies, conferences can
be perfectly matched. This is favored by the fact that the considered
conferences have many publications (about 60-120) so that the
neighborhood matcher can utilize a large neighborhood for which
the majority is correctly matched. The best-1 selection approach
does not consider the similarity values and suffered from the miss-
ing conference entries for VLDB2002/2003 in ACM DL. We dis-
tinguish for the venues between conferences and journals.
Conversely, the neighborhood matcher was generally less effective
for journals due to their smaller neighborhood, i.e. fewer papers (2-
26 per issue). Permissive selection strategies helped to still achieve
good match quality in this case since ACM DL covered all relevant
journal issues.

5.4.2 Publication - Venue (n:1)
For this experiment we utilize the venue same-mapping determined
with the 1:n neighborhood matching and best-1 selection (F-mea-

sure 98.8%). The goal is to improve a publication same-mapping
between DBLP and ACM. As already discussed in Section 4 the
neighborhood matcher determines the corresponding publications
of the same venue and is thus alone not adequate for a same-map-
ping (on average we achieve a recall of 100% and precision of 2%).
However, as Table 5 shows the neighborhood matcher can substan-
tially improve the quality of the publication same-mapping. While
attribute matching achieves a F-Measure of about 92% the com-
bined use with neighborhood matching raises this value to 98.6%,
an excellent result. The improvements are especially large for jour-
nals. This is because now the small neighborhoods of journals are
positive since they limit the potential match candidates for a publi-
cation more than for conferences. In addition, string-based attribute
matchers suffer from recurring titles in newsletters like Sigmod
Record like editorials, reminiscences on influential papers or inter-
views. These similarly titled publications appear in different journal
issues and can thus be well matched by the neighborhood matcher.
The combined use of attribute and neighborhood matcher can very
effectively solve almost all such problems.

5.4.3 Author - Publication (n:m)
In this experiment we apply the neighborhood matcher to determine
an author same-mapping between DBLP and ACM. The utilized
author-publication association is n:m with relatively small but high-
ly variable neighborhoods (about 3 authors per paper on average,
variations from 1 author to 27 authors).

Table 5 shows our results for the attribute matcher, neighborhood
matcher and their combination by merge (using the Min function).
We realize that attribute matching performs already reasonably
well. As expected, the neighborhood matcher alone provides rather
poor quality. However, as for the n:1 case we can again substantial-4.Attribute matchers using domain specific knowledge such as conference

abbreviations could match venues based on their names.

Table 5. Matching DBLP-ACM publications using
neighborhood matcher based on venue same-mapping (n:1)

Table 4. Matching DBLP-ACM venues using neighborhood
matcher based on publication same-mapping (1:n)

Overall

Journal publications

Conference publications

99.7%6.5%72.8%Precision
95.9%100%95.9%Recall

97.8%12.2%82.8%F-Measure

98.8%100%99.8%Recall
99.2%1.2%96.7%Precision

98.6%3.36%91.9%F-Measure

99.0%2.4%97.7%F-Measure

MergeNeighborhood
(Venue)

Attribute
(Title)

Matcher

Overall

Journal publications

Conference publications

99.7%6.5%72.8%Precision
95.9%100%95.9%Recall

97.8%12.2%82.8%F-Measure

98.8%100%99.8%Recall
99.2%1.2%96.7%Precision

98.6%3.36%91.9%F-Measure

99.0%2.4%97.7%F-Measure

MergeNeighborhood
(Venue)

Attribute
(Title)

Matcher

Overall

Journals
98.2%99.0%100%Precision

97.3%100%100%F-Measure
100%100%100%Recall
94.7%100%100%Precision

Conferences

98.8%93.4%

Best-150%

80.9%F-Measure

80%Selection

100%86.4%62.7%Recall
99.1%92.2%77.1%F-Measure

Neighborhood (Publication)Matcher

Overall

Journals
98.2%99.0%100%Precision

97.3%100%100%F-Measure
100%100%100%Recall
94.7%100%100%Precision

Conferences

98.8%93.4%

Best-150%

80.9%F-Measure

80%Selection

100%86.4%62.7%Recall
99.1%92.2%77.1%F-Measure

Neighborhood (Publication)Matcher

Table 6. Matching DBLP-ACM authors
with the help of neighborhood matcher

based on publication same-mapping (n:m)

Table 7. Matching DBLP-GS publications
with the help of neighborhood matcher
based on author same-mapping (n:m)

Table 8. Matching GS-ACM publications
with the help of neighborhood matcher
based on author same-mapping (n:m)

96.9%39.7%89.4%F-Measure
94.0%99.3%81.3%Recall
99.9%24.8%99.3%Precision

MergeNeighborhood
(Publication)

Attribute
(Name)

Matcher

96.9%39.7%89.4%F-Measure
94.0%99.3%81.3%Recall
99.9%24.8%99.3%Precision

MergeNeighborhood
(Publication)

Attribute
(Name)

Matcher

88.9%25.4%81.3%F-Measure
92.9%76.0%81.6%Recall
85.1%15.2%81.1%Precision

MergeNeighborhood
(Author)

Attribute
(Title)

Matcher

88.9%25.4%81.3%F-Measure
92.9%76.0%81.6%Recall
85.1%15.2%81.1%Precision

MergeNeighborhood
(Author)

Attribute
(Title)

Matcher

88.2%26.7%84.1%F-Measure
92.1%75.6%81.7%Recall
84.6%16.2%86.7%Precision

MergeNeighborhood
(Author)

Attribute
(Title)

Matcher

88.2%26.7%84.1%F-Measure
92.1%75.6%81.7%Recall
84.6%16.2%86.7%Precision

MergeNeighborhood
(Author)

Attribute
(Title)

Matcher

255

ly increase the overall match quality by combining both attribute
and neighborhood matcher to an F-measure of about 97%.

We also applied the n:m neighborhood matcher for improving the
publication same-mapping between DBLP and GS based on author-
publication associations. For this case, we first had to determine an
author same-mapping between GS and DBLP for which we applied
an attribute matcher. Note that GS reduces authors’ first names to
their first letter leading to ambiguous author representations. An-
other difficulty we observed is that the author lists for GS publica-
tions are not always complete, i.e., we have no perfect association
mapping. We therefore applied RelativeLeft instead of the symmet-
ric Relative function for the neighborhood matcher to reduce the in-
fluence of missing GS authors. The neighborhood matcher helped
to substantially improve the quality of the publications same-map-
ping from an F-measure of about 81% for attribute matching to al-
most 89% for the combined use with the neighborhood matching
(see Table 7). This is primarily due to the recall increase whereas
the precision remains the same. Obviously the author information
cannot be used to increase precision, i.e., to distinguish between dif-
ferent publications having the same or a similar title. But on the oth-
er hand GS instances with erroneous titles (due to the automatic
data extraction process) can still be matched when taking into ac-
count the author lists. Similarly, we generated a publication same-
mapping between ACM and GS that shows comparative results
(Table 8).

5.5 Duplicate Detection
To examine the usefulness of MOMA for the special case of object
consolidation within one data source we also experimented with du-
plicate detection. Although DBLP is curated it contains duplicate
authors. As illustrated in Section 4.3 we utilize the co-authorship
mapping to identify authors which share a significant number of co-
authors.

Table 9 shows the top candidates for being duplicates we found
with the co-authorship approach (which is a special case of neigh-
borhood matching). We additionally present the number of com-
pose paths for the neighborhood matcher, i.e., the number of shared
co-authors. This value describes the size of the neighborhood and
therefore indicates the support by the associated objects. The Trig-
oni duplicate is already handled by the DBLP website but the un-
derlying publications still contain both notations. The authors
Catalina Fan and Catalina Wei are an example for the complexity
of identifying author candidates. They share the same list of co-au-
thors and have similar names but we can not determine whether
these two authors are the same. Nevertheless, the MOMA frame-
work enabled us to automatically identify such problem cases by

combining the co-authorship mapping with author’s name string
similarity.

5.6 Evaluation Summary
The evaluation has shown that the considered data sources make
object consolidation quite challenging due to their different charac-
teristics regarding completeness, dirtiness and accessibility. The
MOMA framework proved to be very effective in that we could
achieve very high match quality for almost all match tasks, i.e., for
matching publications, venues and authors between the considered
sources (see Table 10 for a brief summary of the achieved match re-
sults). The match strategies proposed in Section 4 were shown to be
effective. In particular the combination of several matchers and
mappings can compensate weaknesses of individual strategies and
are decisive for achieving good quality. The neighborhood matcher
proved to be very powerful for association mappings of all cardinal-
ities.

However, the publication match results involving Google Scholar
are not yet satisfying. This is influenced by a restrictive evaluation
for precision and recall. We required that not only one match per
DBLP or ACM publication is found in GS but that all duplicate en-
tries of GS are matched. In future work we will therefore explore
match workflows which first determine the duplicates within dirty
sources such as Google Scholar and represent them as self-map-
pings (identifying clusters of duplicate entries). These self-map-
pings can then be composed with same-mappings between GS and
other sources such as DBLP and ACM to find more correspondenc-
es.

6. RELATED WORK
Many previous approaches were proposed for object consolidation
based on attribute matching. The similarity comparisons between
objects typically use generic string distance metrics [2, 10] or do-
main specific metrics [25]. For example, matching names and ad-
dresses is an important aspect for customer relationship
management and is therefore supported by many commercial tools
[27]. For classifying object pairs as matching or non-matching dif-
ferent techniques have been applied, e.g., rule-based approaches
[18] or adaptive learning approaches [34].

Metadata-based mappings have recently found much interest. Espe-
cially in P2P systems such mappings and their composition are im-
portant for data integration [5]. Systems like Piazza [17]
reformulate queries based on metadata mappings. By contrast, our
work focuses on instance-level mappings.

In [20] mapping tables are proposed to relate objects from different
data sources. By considering mapping tables as constraints new
mapping tables can be inferred. Our framework provides semantic
mapping types to describe the role of associated objects. Moreover,

Table 9. Top-5 author duplicate candidates within DBLP

67%
67%
73%
75%

100%
Co-Author

65%(2)62%Joe YuenJoe Chun-Hung Yuen
71%(4)75%Niki TrigoniAgathoniki Trigoni
74%(10)75%M. BarczycM. Barczyk
79%(3)84%Amir ZarkeshAmir M. Zarkesh
82%(4)64%Catalina WeiCatalina Fan

MergeNameAuthorAuthor

67%
67%
73%
75%

100%
Co-Author

65%(2)62%Joe YuenJoe Chun-Hung Yuen
71%(4)75%Niki TrigoniAgathoniki Trigoni
74%(10)75%M. BarczycM. Barczyk
79%(3)84%Amir ZarkeshAmir M. Zarkesh
82%(4)64%Catalina WeiCatalina Fan

MergeNameAuthorAuthor

-88.2%-GS - ACM
-88.9%-DBLP - GS

96.9%98.8%98.6%DBLP - ACM
AuthorsPublicationsVenues

-88.2%-GS - ACM
-88.9%-DBLP - GS

96.9%98.8%98.6%DBLP - ACM
AuthorsPublicationsVenues

Table 10. Summary of matching results (F-Measure)

256

MOMA assigns a similarity value to each correspondence and is
able to propagate this information by different mapping combiners.

Several authors have recently described approaches for context-
based object consolidation. [11] proposes a generic duplicate detec-
tion algorithm exploiting information on all associated objects
(stored in a dependency graph). Similar approaches can be found in
[8, 24, 4]. The key idea is the use of iterative graph algorithms that
propagate information about the evidence on matching objects (e.g.,
represented as edge weights or auxiliary nodes) to related objects.
In contrast to this algorithmic work our approach is a framework al-
lowing the specification of match processes and to use of different
types of matchers.

In [32] a constraint-based approach for object consolidation is pre-
sented. Here, constraints like "If authors X and Y share similar
names and some co-authors, they are likely to match" are utilized to
match similar objects. Constraints are modeled as conditional prob-
abilities and the proposed algorithms learn a "matching model" to
optimize the probabilities. Such constraints refer to associations to
other objects in a declarative way, whereas our work leverages this
information within a data integration workflow. However, a con-
straint-based higher level specification could select a cost-based op-
timized workflow out of the match library.

In [23] the authors utilize amongst others the co-author relationship
to identify duplicate authors in DBLP. They apply association rule
mining to determine relevant context attributes which are compared
afterwards. Similarly, value mappings represent co-occurring at-
tribute values [21]. User feedback and statistical methods like en-
tropy are applied within an iterative procedure. Similar to our work,
their approaches generate similarity information from the context of
data records. However both are relational approaches in contrast to
our mapping based framework.

A special case of associations are hierarchies which are exploited
for identifying duplicates [1, 35, 22]. The underlying idea is that
matching similarity between two objects also affects the matching
similarity of their parents and children. In our work we extended
this idea to general association mappings, i.e., hierarchies can be
seen as special type of mappings in our framework.

Combining different matchers has shown to be effective for schema
matching [13] as well as for object matching. For instance, in [12]
so-called profilers incorporating domain or expert knowledge are
used to match objects. The combination of their results (e.g.,
weighted sum of confidence) may overcome the singular weakness-
es of each profiler and improve matching accuracy.

Commercial ETL tools [27] support data cleaning workflows but
typically do not focus on object matching techniques. Moreover,
they typically do not cope with the challenges of matching web doc-
uments [33] and perform an offline data cleaning. By contrast,
MOMA supports matching of web objects and their dynamic que-
rying from large web sites such as Google Scholar. Furthermore,
the mapping-oriented framework supports workflows which reuse
existing mappings and utilize associations between objects.

A number of research prototypes of data cleaning / integration

frameworks where proposed during the last years, e.g. AJAX [16],
TAILOR [15] and Potter's Wheel [28]. Similar to our approach
these frameworks allow specifications on how data should be trans-
formed or matched, but they do not make use of instance-based
mappings and the reuse of previously determined mappings. More-
over, the frameworks focus on relational databases and offline data
cleaning. TAILOR [15] offers a broad variety of tools (e.g., com-
parison functions or decision models) to build new matchers where-
as MOMA provides capabilities for match workflows involving
different matchers and reusing match results. Potter's Wheel focus-
es on interactive data cleaning.

7. SUMMARY & OUTLOOK
We proposed a new framework called MOMA for mapping-based
object consolidation. It allows the construction of match workflows
combining the results of several matcher algorithms and existing
mappings. Different operators for combining fuzzy mappings are
supported. Several match strategies including a powerful neighbor-
hood matcher have been proposed to re-use existing mappings of
different types and cardinality. A comprehensive evaluation on real
data sources demonstrated the flexibility and high effectiveness of
the MOMA framework and the proposed match workflows. We
also showed that the approaches are applicable for distributed and
centralized object matching tasks, e.g. for data integration and du-
plicate detection.

In future work, we will apply our framework to additional domains
such as e-commerce or bioinformatics data sources. We will inves-
tigate different match strategies w.r.t. to the underlying applica-
tions. For example, small-size online matching strategies are
required for ad-hoc data integration applications (possibly accept-
ing lower data quality) whereas large-scale offline matching strate-
gies may utilize multiple matchers to achieve high data quality. In
addition we plan to develop approaches for automatically tuning
match workflows, in particular to select existing mappings, match-
ers and combiners and their parameters. For example, machine
learning techniques could be utilized to adjust appropriate similari-
ty combination functions for our mapping combination operators
automatically.

8. REFERENCES
[1] Ananthakrishna, R., Chaudhuri, S., and Ganti, V.: Eliminating

Fuzzy Duplicates in Data Warehouses. Proc. of Int. Conf. on
Very Large Databases (VLDB), 2002

[2] Bilenko, M., and Mooney, R.: Adaptive duplicate detection
using learnable string similarity measures. Proc. of Int. Conf.
on Knowledge Discovery and Data Mining (SIGKDD), 2003

[3] Bitton, D., and DeWitt, D.J.: Duplicate Record Elimination in
Large Data Files. In ACM Transactions on Database Systems
(TODS) 8(2), 1983

[4] Bhattacharya, I., and Getoor, L.: Iterative record linkage for
cleaning and integration. Proc. of Workshop on Research Is-
sues in Data Mining and Knowledge Discovery (DMKD),
2004

[5] Bernstein, P. A., Giunchiglia, A., Kementsietsidis, F., Mylo-
poulos, J., Serafini, L., and Zaihrayeu, I.: Data Management

257

for Peer-to-Peer Computing : A Vision. Proc. of Int. Work-
shop on the Web & Databases (WebDB), 2002

[6] Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R.: Ro-
bust and Efficient Fuzzy Match for Online Data Cleaning.
Proc. of Int. Conf. on Management of Data (SIGMOD), 2003

[7] Chaudhuri, S., Ganti, V., and Motwani, R.: Robust Identifica-
tion of Fuzzy Duplicates. Proc. of Int. Conf. on Data Enginee-
ring (ICDE), 2005

[8] Chen, Z., Kalashnikov, D. V., and Mehrotra, S.: Exploiting re-
lationships for object consolidation. Proc. of Int. Workshop
on Information Quality in Information Systems (IQIS), 2005

[9] Cohen, W. W., Kautz, H. A., and McAllester, D. A.: Harde-
ning soft information sources. Proc. of Int. Conf. on Know-
ledge Discovery and Data Mining (KDD), 2000

[10] Cohen, W. W., Ravikumar, P., and Fienberg, S. E.: A Compa-
rison of String Distance Metrics for Name-Matching Tasks.
Proc. of Workshop on Information Integration on the Web
(IIWeb), 2003

[11] Dong, X., Halevy, A., and Madhaven, J.: Reference Reconcil-
liation in Complex Information Spaces. Proc. of Int. Conf. on
Management of Data (SIGMOD), 2005

[12] Doan, A., Lu, Y., Lee, Y., and Han, J.: Object Matching for In-
formation Integration: A Profile-Based Approach. Proc. of
Workshop on Information Integration on the Web (IIWeb),
2003

[13] Do, H.-H., and Rahm, E.: COMA - A System for Flexible Com-
bination of Schema Matching Approaches. Proc. of Int. Conf.
on Very Large Databases (VLDB), 2002

[14] Do, H.-H., and Rahm, E.: Flexible Integration of Molecular-
Biological Annotation Data: The GenMapper Approach.
Proc. of Int. Conf. on Extending Database Technology
(EDBT), 2004

[15] Elfeky, M. G., Elmagarmid, A. K., and Verykios, V. S.: TAI-
LOR: A Record Linkage Tool Box. Proc. of Int. Conf. on Data
Engineering (ICDE), 2002

[16] Galhardas, H., Florescu, D., Shasha, D., and Simon, E.: AJAX:
An Extensible Data Cleaning Tool. Proc. of Int. Conf. on Ma-
nagement of Data (SIGMOD), 2000

[17] Halevy, A. Y., Ives, Z. G., Mork, P., and Tatarinov, I.: Piazza:
data management infrastructure for semantic web applicati-
ons. Proc. of International World Wide Web Conference
(WWW), 2003

[18] Hernandez, M. A., and Stolfo, S. J.: The Merge/Purge Pro-
blem for Large Databases. Proc. of Int. Conf. on Management
of Data (SIGMOD), 1995

[19] Jonas, J.: Identity resolution: 23 years of practical experience
and observations at scale. Proc. of Int. Conf. on Management
of Data (SIGMOD), 2006

[20] Kementsietsidis, A., Arenas, M., and Miller, R.J.: Mapping
Data in Peer-to-Peer Systems: Semantics and Algorithmic Is-

sues. Proc. of Int. Conf. on Management of Data (SIGMOD),
2003

[21] Kang, J., Han T.S., Lee, D., and Mitra, P.: Establishing value
mappings using statistical models and user feedback. In Proc.
of Int. Conf. on Information and Knowledge Management
(CIKM), 2005

[22] Kailing, K., Kriegel, H.-P., Schönauer, S., and Seidl, T.: Ef-
ficient Similarity Search for Hierarchical Data in Large Da-
tabases. Proc. of Int. Conf. on Extending Database
Technology (EDBT), 2004

[23] Lee, M.-L., Hsu, W., and Kothari, V.: Cleaning the Spurious
Links in Data. In IEEE Intelligent Systems 19(2), 2004.

[24] Parag, and Domingos, P.: Multi-Relational Record Linkage.
Proc. of Workshop on Multi-Relational Data Mining
(MRDM), 2004

[25] Quass, D., and Starkey, P.: Record Linkage for Genealogical
Databases. Prof. of Workshop on Data Cleaning, Record Lin-
kage, and Object Consolidation, 2003

[26] Rahm, E., and Bernstein, P.A.: A Survey of Approaches to Au-
tomatic Schema Matching. In VLDB Journal 10(4), 2001

[27] Rahm, E., and Do, H.-H.: Data Cleaning: Problems and Cur-
rent Approaches. In IEEE Data Engineering Bulletin, 23(4),
2000

[28] Raman, V., and Hellerstein, J. Potter's Wheel: An Interactive
Data Cleaning System. Proc. of Int. Conf. on Very Large Data
Bases (VLDB), 2001

[29] Rahm, E., and Thor, A.: A citation analysis for database pu-
blications. In SIGMOD Record 34(4), 2005

[30] Rahm, E., Thor, A., Aumueller, D., Do, H.-H., Golovin, N.,
and Kirsten, T.: iFuice - Information Fusion utilizing Instance
Correspondences and Peer Mappings. Proc. of Int. Workshop
on the Web & Databases (WebDB), 2005

[31] Sayyadian, M., Lee, Y., Doan, A., Rosenthal:, A. Tuning
Schema Matching Software using Synthetic Scenarios. Proc.
of Int. Conf. on Very Large Databases (VLDB), 2005

[32] Shen, W., Li, X., and Doan, A.: Constraint-Based Entity
Matching. Proc. of National Conf. on Artificial Intelligence
(AAAI), 2005

[33] Sismanis, Y., Reinwald, B., and Pirahesh, H.: Document-Cen-
tric OLAP in the Schema-Chaos World. Proc. of Int. Work-
shop on Business Intelligence for the Real Time Enterprise
(BIRTE), 2006

[34] Tejada, S., Knoblock, C.A., and Minton, S.: Learning domain-
independent string transformation weights for high accuracy
object identification. Proc. of Int. Conf. on Knowledge Disco-
very and Data Mining (SIGKDD), 2002

[35] Weis, M., and Naumann, F.: DogmatiX tracks down Duplica-
tes in XML. Proc. of Int. Conf. on Management of Data (SIG-
MOD), 2005

258

