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1 Introduction

In the last years, we have witnessed an increasing complexity of database
applications, especially when several, possibly autonomous data sources need
to be accessed, transformed and combined. There is a consequent growing
need for advanced tools and flexible techniques supporting the management,
the exchange, and the integration of different and heterogeneous sources of
information.

In this trend, the data exchange problem has received recently great atten-
tion, both from a theoretical [12,14] and a practical point of view [27]. In a
data exchange scenario, given a mapping between a schema, called the source
schema, and another schema, called the target schema, the goal is to take data
structured under the source schema and transform it into a format conforming
to the target schema.

In this paper, we address the novel problem of schema exchange, which nat-
urally extends the data exchange process to sets of similar schemas: while
the data exchange process operates over specific source and target schemas,
the goal of schema exchange is rather the definition of generic transforma-
tions of data under structurally similar schemas. To this aim, we introduce
the notion of schema template, which is used to represent a class of different
database schemas sharing the same structure. Then, given a mapping between
the components of a source and a target template, the goal is the translation
of any database whose schema conforms to the source template into a format
conforming to the target template.

This framework can be used to support several activities involved in the man-
agement of heterogeneous data sources. First, it allows the definition, once for
all, of “generic” transformations that work for different but similar schemas,
such as the denormalization of a pair of relation tables based on a foreign
key between them. Then, it can support the reuse of a data exchange setting,
since a mapping between templates can be derived from a mapping between
schemas for later use in similar scenarios. Finally, it can be used to implement
model translations, that is, translations of schemas and data from one data
model to another (e.g., from relational to XML), a problem largely studied in
recent years [1,4,24].

As has been done for data exchange [14], we introduce a formal notion of
solution for the schema exchange problem and present a technique for the
automatic generation of solutions. This is done by representing constraints
over templates and mappings between them with a special class of first order
formulas. These dependencies are used to generate the solution by applying the
chase procedure [2] to an “encoding” of the source schema. Then, we propose
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Fig. 1. An example of data exchange.

an algorithm for deriving automatically a data exchange setting from a schema
exchange solution and we show that this setting reflects the semantics of the
mappings defined over templates at a higher level of abstraction. In this way, it
is possible to migrate data from a source database into the database obtained
as a result of the schema exchange.

The final goal of our research is the development of a design tool in which
the user can: (i) describe data collections presenting structural similarities, by
means of a source template T1, (ii) define the structure of a possible transfor-
mation of the source by means of a target template T2 and a set of correspon-
dences over T1 and T2, graphically represented by lines between T1 and T2,
(iii) translate any data source over a schema matching with T1 into a format
described by a schema matching with T2, (iv) make use of a set of prede-
fined schema exchange settings as design patterns for the development of new
data exchange settings, and (v) convert a data exchange setting into a schema
exchange one for its reuse.

The structure of the paper is as follows. In Section 2 we illustrate and motivate
the schema exchange problem by means of a number of practical examples.
In Section 3 we set the basic definitions and recall some useful results on
the data exchange problem. In Section 4 we introduce formally the notion of
template and show how templates and schemas are related. In Section 5, we
define the problem of schema exchange and show how “correct” solutions can
be generated and, in Section 6, we present a method for converting a schema
exchange into a data exchange setting. Finally, in Section 7 we compare our
work to existing literature and in Section 8 we draw some conclusions and
sketch future directions of research.
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Fig. 2. Another example of data exchange.

2 Motivating Examples

A graphical example of a data exchange scenario is reported in Figure 1. On
the left hand side there is a source schema involving the relations Emp and
Dept linked by a foreign key and, on the right hand side, a target schema that
involves the single relation Employee. The correspondences between the source
and the target, expressed by means of arrows, suggest that the target can be
obtained from the source by joining the relations Emp and Dept according to
the foreign key, projecting the result on the attributes involved by the arrows,
and storing the result into the relation Employee. This transformation can be
specified, in a precise way, by means of the following first order rule, called
source-to-target dependency :

Emp(e, n, s, d), Dept(d, dn, b) → Employee(e, n, s, dn, b)

The goal of the given scenario is indeed to derive in an automatic way the
queries needed to translate data structured under the source schema into a
format conforming to the target schema, according to the given source-to-
target dependencies.

Let us now consider the data exchange setting reported graphically in Fig-
ure 2. The example is different (we now have students and courses) but the
underlying transformation to obtain the target is indeed similar: again, we
need to “denormalize” the source by joining two relations using a referential
constraint between them.

The basic idea of our approach is that this transformation can be conveniently
represented, in general terms, by means of a framework, which we have called
schema exchange, reported graphically in Figure 3. In this scenario we have
templates of schema, that is, generic structures representing a set of database
schemas with a similar configuration, and a mapping between them, again
informally represented by means of arrows. The aim is to represent a generic
transformation that can be applied to different, but structurally similar, data
sources.
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Fig. 3. An example of schema exchange that generalizes the data exchanges in
Figures 1 and 2.

Intuitively, the semantics of this scenario, in the example at hand, is the
following. Given a relational schema involving at least two relations related
by a foreign key, for each pair of relations R and R′ such that: (i) R has a key, a
non-empty set of non-key, non-foreign-key attributes and at least a foreign key
attribute that refers to (the key of) R′, and (ii) R′ has a key and a non-empty
set of non-key, non-foreign-key attributes, generate a target relation with the
same attributes and the same key attributes of R, and with the attributes of
R′ not involved in the key.

Also in this case, the semantics can be precisely specified by a source-to-target
dependency defined over templates, as follows:

Relation(nR),Key(nK , nR),Attribute(nA, nR),FKey(nF , nR, n
′

R),

Relation(n′

R),Key(n′

K , n
′

R),Attribute(n′

A, n
′

R) →

Relation(n′′

R),Key(nK , n
′′

R),Attribute(nA, n
′′

R),Attribute(n′

A, n
′′

R)

We will make clear syntax and semantics of this rule later. Intuitively, it
specifies that given a pair of (generic) relations in the source named nR and
n′

R, linked by a foreign key named nF , there exists a relation in the target
named n′′

R with the same key as nR and the attributes of both nR and n′

R.
Actually, we will show that this rule: (i) captures both the data exchange
settings reported in Figures 1 and 2, and (ii) can be used to generate the
source-to-target dependencies reflecting the semantics of the mappings at the
schema exchange level, described graphically in Figure 3.

The notion of schema exchange can be used to support several practical prob-
lems related to the exchange of information between heterogeneous repositories
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of data:

• First, it can be used to support the design of a data exchange setting, since
a schema exchange models naturally a design pattern for data exchange,
that is, a general repeatable solution to a commonly occurring data trans-
formation from a format into another;

• Moreover, it can support the reuse of a data exchange setting, since a schema
exchange that generalizes a given data exchange mapping can be derived
and later used to implement a transformation similar to the original one;

• Finally, a schema exchange framework can be used to represent and tackle
the problem of model translation [1,4,24], in which the goal is the translation
of schemas and data between heterogeneous data models. In fact, even if
we mainly refer to the relational model, our notion of schema template can
represent indeed schemas of a large variety of data models.

The rest of this paper is devoted to the precise definition of this notion of
schema exchange, and the investigation of its general properties.

We point out that, as we have said in the introduction, the final goal of our
research is the design of a practical tool, based on schema exchange, supporting
the user in the design, reuse and maintenance of data exchange settings. The
aim of the present study is providing a solid, theoretical basis for this tool.

3 Background

In this section we illustrate the notions that are at the basis of our work:
schemas of the relational model, data dependencies and the problem of data
exchange. We note that, in this paper, we make use of “database” termi-
nology in which a schema is the description of the database structure and
a (data) model provides a set of constructs for the specification of schemas
(e.g., schemas are defined as relations in the relational model). In other con-
texts (for instance in OMG [22]) schemas are called models, and models are
called metamodels.

3.1 Schemas and dependencies

A schema S is composed by a set of relations R(A1, . . . , An), where R is
the name of the relation and A1, . . . , An are its attributes. Each attribute is
associated with a set of values called the domain of the attribute. An instance

of a relation R(A1, . . . , An) is a finite set of tuples, each of which associates
with each Ai a value taken from its domain. An instance I of a schema S
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contains an instance of each relation in S.

A dependency over a schema S is a first order formula of the form: ∀x(φ(x) →
χ(x)) where φ(x) and χ(x) are formulas over S, and x are the free variables
of the formula, ranging over the domains of the attributes occurring in S.

We will focus on two special kind of dependencies: the tuple generating depen-
dencies (tgd) and the equality generating dependencies (egd), as it is widely
accepted that they include all of the naturally-occurring constraints on rela-
tional databases. A tgd has the form: ∀x(φ(x) → ∃y(ψ(x,y)) where φ(x) and
ψ(x,y) are conjunctions of atomic formulas. If y is empty (no existentially
quantified variables), then we speak about a full tgd. An egd has the form:
∀x(φ(x) → (x1 = x2)) where φ(x) is a conjunction of atomic formulas and x1,
x2 are variables in x. For simplicity, hereinafter we will omit all the quantifiers
in formulas assuming that variables occurring in the left hand size of a formula
are universally quantified and those occurring only in the right hand size are
existentially quantified.

Example 1 Given a schema composed by the relations:

Department(Did,DeptName),Employee(Empno,Name,Dept)

a dependency of the form: Department(x1, x2),Department(x1, x
′

2
) → (x2 = x′

2
)

is an egd stating that Did is a key for Department, whereas a dependency of
the form: Employee(x1, x2, x3) → Department(x3, x4) is a tgd stating that there
is a foreign key from the attribute Dept of Employee to the attribute Did of
Department.

3.2 Data Exchange

In the relational-to-relational data exchange framework [12], a data exchange

setting is described by a four-tuple M = (S,T,Σst,Σt), where:

• S is a source schema,
• T is a target schema,
• Σst is a finite set of s-t (source-to-target) tgds φ(x) → χ(x,y) where φ(x)

is a conjunction of atomic formulas over S and χ(x,y) is a conjunction of
atomic formulas over T, and

• Σt is a finite set of tgds or egds over T.

Given an instance I of S, a solution for I under M is an instance J of T such
that (I, J) satisfies Σst and J satisfies Σt. A solution may have distinct labeled
nulls denoting unknown values.
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Example 2 The transformation described graphically in Figure 1 is precisely
captured by the following data exchange setting:

• S = { Emp(EmpNo,Name,Salary,Dept), Dept(DId,DeptName,Building) }
• T = { Employee(EmpNo,Name,Salary,DeptName,Building) }
• Σst = { Emp(x1, x2, x3, x4),Dept(x4, x5, x6) → Employee(x1, x2, x3, x5, x6) }
• Σt = { Employee(x1, x2, x3, x5, x6),Employee(x1, x

′

2
, x′

3
, x′

5
, x′

6
) →

(x2 = x′
2
), (x3 = x′

3
), (x5 = x′

5
), (x6 = x′

6
) }

Given the following instance I of the source schema S:

Emp

EmpNo Name Salary Dept

234 John 50K D2

Dept

DId DeptName Building

D2 Management Harrison

A solution for I under the above schema exchange setting is the following
instance J of T:

Employee

EmpNo Name Salary DeptName Building

234 John 50K Management Harrison

Note that, according to the definition, other tuples can occur in the target,
possibly involving values that do not occur in the source.

According to the final observation in the example above, there are in general
many possible solutions for I under M . A solution J is universal if there is
a homomorphism from J to every other solution for I under M . A homo-
morphism from an instance J to an instance J ′ is a function h from constant
values and nulls occurring in J to constant values and nulls occurring in J ′

such that: (i) it is the identity on constants (that is, on the values occurring
in the instance), and (ii) for each tuple t = (a1, . . . , ak) of J we have that
h(t) = (h(a1), . . . , h(ak)) is a tuple of J ′.

In [14] it was shown that, when a solution for an instance I under M exists
and the dependencies in Σt are either egds or weakly-acyclic tgds (a class of
tgds which admits limited forms of cycles among different relation arguments)
a universal solution for I under M can be computed in polynomial time by
applying the chase procedure to I using Σst ∪ Σt. This procedure requires a
preliminary notion: a substitution is a function s from constant values and
variables to variables, constant values, and nulls that is the identity on con-
stants. The chase takes as input an instance I and generates another instance
by applying chase steps based on the given dependencies. There are two kinds
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of chase steps:

• a tgd φ(x) → ψ(x,y) can be applied to I if there is a substitution s such
that the application of s to variables and constants occurring in each atom
of φ(x) produces a tuple in I; in this case, the result of its application is
I ∪ s′(A), for each atom A occurring in ψ(x,y), where s′ is the extension of
s to y obtained by assigning fresh labeled nulls to the variables in y;

• an egd φ(x) → (x1 = x2) can be applied to I if there is a substitution s

such that: (i) the application of s to variables and constants occurring in
each atom of φ(x) produces a tuple in I and (ii) s(x1) 6= s(x2); in this case,
the result of its application is the following: if one of s(x1) and s(x2) is a
constant and the other is a null, then the null is changed to the constant,
otherwise the nulls are equated unless they are both constants, since in this
case the process fails.

The chase of I is obtained by applying all applicable chase steps exhaustively
to I.

Example 3 It is easy to see that the tgd in Σst of Example 2 can be applied
to the instance I since there is a substitution that maps x1 to 234, x2 to John,
x3 to 50K, x4 to D2, x5 to Management, and x6 to Harrison. The result of
the application is the tuple in the target instance J . This is indeed the only
applicable chase step.

Universal solutions are particularly important also for query answering, since
Fagin et al. [14] have shown that the (certain) answers to a query q over the
target schema can be obtained by evaluating q over any universal solution.

The problem is that, in general, there may exist multiple, different universal
solutions for a data exchange problem. However, in [12] it has been shown
that there is one particular universal solution, called the core, which is the
most compact one. More specifically, the core of a universal solution J is (up
to isomorphism) the smallest subset J∗ of J such that J∗ is homomorphically
equivalent to J . Gottlob and Nash [16] have shown that the core of a universal
solution of a data exchange problem whose source-to-target constraints are
tgds and whose target constraints consist of egds and weakly acyclic tgds can
be computed in polynomial time.

4 Schema Templates and Encoding of Schemas

In this section we introduce the notion of schema template, which is used to
encode database schemas sharing the same structure. We also show how in-
stances of templates, called e-schemas, can be converted to relational schemas
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and vice versa.

4.1 Schema templates

We fix a finite set C of construct names. A construct C(p1, . . . pk) has a name C
in C and a finite set p1, . . . , pk of distinct properties, each of which is associated
with a set of values called the domain of the property. In principle, the set
C can contain constructs from several data models so that we can include in
our framework schemas of different models. In this paper however, for sake of
simplicity, we focus on the relational model; the approach can be extended to
richer data models, but challenging issues already arise in this setting.

Therefore, given a set R of relation names, we fix the following relational
constructs and properties. For each construct, the properties that allow the
identification of the construct are underlined.

Construct Names Properties (domain)

Relation name (R)

Attribute name (string), nullable (boolean), in (R)

Key name (string), in (R)

FKey name (string), in (R), refer (R)

The Relation construct has only the name property, whose domain is R. The
constructs Key and FKey denote attributes that belong to a primary key and
to a foreign key, respectively. The property in of the constructs Attribute, Key
and FKey has R as domain and is used to specify the relation that includes
the construct. Finally, the property refer of the construct FKey has also R as
domain and is used to specify the relation it refers to. Clearly, other properties
can be considered for every construct and have not been included to keep the
notation simple. For instance, we could associate the properties basic type and
default value with the construct Attribute.

Basically, a template is a set of constructs with a set of dependencies associated
with them, which are used to specify constraints over single constructs and
semantic associations between different constructs.

Definition 1 (Template) A (schema) template is a pair (C,ΣC), where C
is a finite collection of constructs and ΣC is a set of dependencies over C.

Example 4 An example of a template T = (C,ΣC) contains the following
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set of constructs:

C = { Relation(name),Key(name, in),Attribute(name, nullable, in),

FKey(name, in, refer) }

and the dependencies:

ΣC = { d1 = Key(nK , nR) → Relation(nR),

d2 = Attribute(nA, u, nR) → Relation(nR),

d3 = FKey(nF , nR, n
′

R) → Relation(nR),Relation(n′

R),

d4 = Attribute(nA, u, nR) → (u = true) }

The tgds d1 and d2 state the membership of keys and attributes to relations,
respectively. The dependency d3 states the membership of a foreign key to a
relation and its reference to another relation. Finally, the egd d4 states that
we are considering only relations with attributes that allow null values.

Note that the dependencies d1, d2 and d3 in Example 4 should always hold in a
relational schema. Actually, they can be considered as axioms of the relational
model. For this reason, in the following we will call them relational dependen-
cies and assume that they always belong to the dependencies associated with
a relational template.

Let us now introduce the notion of e-schemas. Basically, an e-schema corre-
sponds to the encoding of a (relational) schema and is obtained by instantiat-
ing a template.

Definition 2 (E-schemas) An e-schema component S over a construct C

is a function that associates with each property of C a value taken from its

domain. A e-schema S over a template (C,ΣC) is a finite set of e-schema

components over constructs in C that satisfy ΣC.

Example 5 A valid e-schema for the template of Example 4 is the following:

Relation

name

EMP

DEPT

Key

name in

EmpName EMP

DeptNo DEPT
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Attribute

name nullable in

Salary true EMP

Building true DEPT

FKey

name in refer

Dept EMP DEPT

It is easy to see that this e-schema represents a relational table EMP with
EmpName as key, Salary as attribute and Dept as foreign key, and a relational
table DEPT with DeptNo as key and Building as attribute.

Note that e-schemas in Example 5 is similar to the way in which commercial
databases store metadata in catalogs. We can therefore easily verify whether
a relational schema stored in a DBMS matches a given template definition:
this can be done by querying the catalog of the system and checking the
satisfaction of the dependencies.

In the following, an e-schema component over a construct C(p1, . . . , pk) will
be called a relation component if C = Relation, an attribute component if
C = Attribute, a key component if C = Key, a foreign key component if
C = FKey. Moreover, we will denote an e-schema component over a construct
C(p1, . . . , pk) by C(p1 : a1, . . . , pk : ak). Alternatively, we will use, for each
construct, a tabular notation with a column for each property.

In the next sections, we describe how the notion of e-schema can be converted
into a “standard” relational schema, and vice versa.

4.2 Relational decoding

Basically, in order to convert an e-schema into a relational schema we need to
define the formulas describing the semantics of the various e-schema compo-
nents, according to the intended meaning of the corresponding constructs.

Let S be an e-schema over a template T = (C,ΣC). The relational decoding

of S is a pair (S,ΣS) where:

• S contains a relation R(K1, . . . , Km, A1, . . . , An, F1, . . . , Fp) for each relation
component r ∈ S such that:
· R = r(name);
· Ki = ki(name) (1 ≤ i ≤ m) for each key component ki ∈ S such that
ki(in) = R,

· Aj = aj(name) (0 ≤ j ≤ n) for each attribute component aj ∈ S such that
aj(in) = R,

· Fk = fk(name) (0 ≤ k ≤ p) for each foreign key component fk ∈ S such
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that fk(in) = R.
• ΣS contains an egd over the relation R(K1, . . . , Km, A1, . . . , An) ∈ S of the

form:

R(x1, . . . , xm, y1, . . . , yn), R(x1, . . . , xm, y
′

1
, . . . , y′n) →

(y1 = y′
1
, . . . , yn = y′n)

for each relation component r ∈ S such that:
· R = r(name);
· Ki = ki(name) (1 ≤ i ≤ m) for each key component ki ∈ S such that
ki(in) = R

• ΣR contains a tgd over a pair of relation schemas R(A1, . . . , Am, F1, . . . , Fn)
and R′(K1, . . . , Kn, A

′

1
, . . . , A′

p) in S of the form:

R(x1, . . . , xm, y1, . . . , yn) → R′(y1, . . . , yn, z1, . . . , zp)

for each pair of relation components r and r′ in S such that:
· R = r(name) and R′ = r′(name);
· Fi = fi(name) (1 ≤ i ≤ n) for each foreign key component fi ∈ S such

that fi(in) = R and fi(refer) = R′.

Example 6 Let us consider the e-schema S of Example 5, which is repeated
here for convenience:

Relation

name

EMP

DEPT

Key

name in

EmpName EMP

DeptNo DEPT

Attribute

name nullable in

Salary true EMP

Building false DEPT

FKey

name in refer

Dept EMP DEPT

The relational representation of S is the pair (S,ΣS) where:

S = { EMP(EmpName, Salary, Dept), DEPT(DeptNo, Building) }

ΣS = { EMP(x1, x2, x3), EMP(x1, x
′

2
, x′

3
) → (x2 = x′

2
, x3 = x′

3
),

DEPT(x1, x2), DEPT(x1, x
′

2
) → (x2 = x′

2
),

EMP(x1, x2, x3) → DEPT(x3, x
′

2
) }
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In the same line, a procedure for the encoding of a relational schema, that is
for the transformation of a relational schema (S,ΣS) into an e-schema S, can
also be defined. This procedure will be illustrated in the following section.

4.3 Relational encoding

Let S be a relational schema with a set of dependencies ΣS including, as usual,
egds and tgds. The encoding of S is an e-schema S such that:

• S contains a relation component r for each relation R(A1, . . . , An) ∈ S such
that r(name) = R;

• S contains an attribute component a for each attribute A of a relation R ∈ S
not involved in an egd or in a tgd ΣS over R such that: a(name) = Ai and
a(in) = R;

• S contains a key component ki (1 ≤ i ≤ m) for each egd in ΣS over a
relation schema R(K1, . . . , Km, A1, . . . , An) ∈ S of the form:

R(x1, . . . , xm, y1, . . . , yn), R(x1, . . . , xm, y
′

1
, . . . , y′n) →

(y1 = y′
1
, . . . , yn = y′n)

such that: ki(name) = Ki and ki(in) = R;
• S contains a foreign key component fi (1 ≤ i ≤ n) for each tgd over a pair of

relation schemas R(A1, . . . , Am, F1, . . . , Fn) and R′(K1, . . . , Kn, A
′

1
, . . . , A′

p)
in S of the form:

R(x1, . . . , xm, y1, . . . , yn) → R′(y1, . . . , yn, z1, . . . , zp)

such that: fi(name) = Fi, f(in) = R, and f(refer) = R′.

Example 7 Let us consider the relational schema (S,ΣS) where:

S = { ORDER(OrderNo, Item, Quantity), PRODUCT(ProdNo, Price) }

ΣS = { ORDER(x1, x2, x3), ORDER(x1, x
′

2
, x′

3
) → (x2 = x′

2
, x3 = x′

3
),

PRODUCT(x1, x2), PRODUCT(x1, x
′

2
) → (x2 = x′

2
),

ORDER(x1, x2, x3) → PRODUCT(x2, x
′

2
) }
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The encoding of (S,ΣS) is the following e-schema:

Relation

name

ORDER

PRODUCT

Key

name in

OrderNo ORDER

ProdNo PRODUCT

Attribute

name in

Quantity ORDER

Price PRODUCT

FKey

name in refer

Item ORDER PRODUCT

5 Schema Exchange

In this section we define the schema exchange problem as the application of
the data exchange problem to templates of schemas.

5.1 Source-to-target template dependency

In order to investigate the problem of data and metadata translation between
templates we introduce the following notion.

Definition 3 (s-t template dependency) Given a source template T1 and

a target template T2, a source-to-target (s-t) template dependency is a tuple

generating dependency of the form: φ(x) → ψ(x,y), where φ(x) is a conjunc-

tion of atomic formulas over the components of C1 and ψ(x,y) is a conjunc-

tion of atomic formulas over the components of C2.

There are two different but equivalent semantics that can be associated with s-
t template dependencies. In a declarative semantics, they represent constraints
required to hold on pairs of instances over the source and the target template.
Under this semantics, multiple pairs of e-schemas may satisfy the relation-
ship. Alternatively, under the transformational semantics, the dependencies
are viewed as transformations from the source to the target: given a source
e-schema S over the source template, there is a procedural way of computing a
target e-schema S′ over the target template. This transformational semantics
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follows the data exchange line of work and it is the one we adopt in the schema
exchange definition we introduce next.

5.2 The problem of schema exchange

Given a source template T1 = (C1,ΣC1
), a target template T2 = (C2,ΣC2

),
and a set ΣC1C2

of s-t template dependencies, we denote a schema exchange

setting by the triple (T1, T2,ΣC1C2
).

Definition 4 (Schema exchange) Let (T1, T2,ΣC1C2
) be a schema exchange

setting and S1 a source e-schema over (C1,ΣC1
). The schema exchange prob-

lem consists in finding a finite target e-schema S2 over (C2,ΣC2
) such that

S1 ∪ S2 satisfies ΣC1C2
. In this case S2 is called a solution for S1 or, simply a

solution.

Example 8 Consider a schema exchange problem in which the source tem-
plate T1 = (C1,ΣC1

) and the target template T2 = (C2,ΣC2
) are the following:

C1 = { Relation(name),Key(name, in),Attribute(name, in) }

C2 = { Relation(name),Key(name, in),Attribute(name, in),

FKey(name, in, refer) }

with the relational dependencies in ΣC1
and in ΣC2

shown in Example 4.

Assume now that we would like to split each relation over T1 into a pair
of relations over T2 related by a foreign key and assigning to the resulting
relation the same name of the first relation. This scenario is graphically shown
(informally) in Figure 4 and is precisely captured by the following set of tgds
ΣC1,C2

:

ΣC1,C2
= { Relation(nR),Key(nK , nR),Attribute(nA, nR) →

Relation(nR),Key(nK , nR),FKey(nF , nR, n
′

R),

Relation(n′

R),Key(nF , n
′

R),Attribute(nA, n
′

R) }

We stress the fact that Figure 4 just describes, in an easy-to-understand but
informal way, a transformation that is instead precisely represented by the
above dependency. Other representations could be used in a practical tool
with a user friendly interface. This subject is however outside the goal of this
paper which is rather devoted to the study of the fundamental properties of

16



Relation(
Name
Key(

Name )
FKey(

Name ) 
) 
Relation(

Name
Key(

Name )
Attribute(

Name )
)

Relation (
Name
Key(

Name )
Attribute(

Name )

)

Fig. 4. Schema exchange setting for Example 8.

the schema exchange framework. We also point out that the construct names
in the preconditions and in the conclusions have different meanings, since they
refer to the source and the target respectively.

Consider now the following e-schema S for the template T1:

Relation

name

EMP

Key

name in

EmpName EMP

Attribute

name in

DeptName EMP

Floor EMP

According to the decoding procedure described in Section 4.2, this e-schema
encodes the relational schema: S = { EMP(EmpName, DeptName, Floor)} in
which EmpName is the key. A possible solution S′

1
for this setting is:

Relation

name

EMP

R1

R2

Key

name in

EmpName EMP

K1 R1

K2 R2

17



Attribute

name in

DeptName R1

Floor R2

FKey

name in refer

K1 EMP R1

K2 EMP R2

where R1, R2, K1, K2 are labelled nulls. The decoding of this solution contains
three relations: EMP(EmpName, K1, K2), R1(K1, DeptName), and R2(K2, Floor), in
which the attributes K1, K2 of relation EMP are foreign keys for R1 and R2,
respectively. There are several null values because the dependencies in ΣC1,C2

do not allow the complete definition of the target e-schema.

Actually many other solutions for the same schema exchange problem exist.
For instance the following e-schema S′

2
:

Relation

name

EMP

R1

Key

name in

EmpName EMP

K1 R1

Attribute

name in

DeptName R1

Floor R1

FKey

name in refer

K1 EMP R1

where R1 and K1 are labelled nulls. By decoding this solution we obtain two
relations: EMP(EmpName, K1) and R1(K1, DeptName, Floor), where K1 of relation
EMP is a foreign key for R1.

Two issues arise from Example 8: which solution to choose and how to generate
it. Solution S′

2
in the example seems to be less general than S′

1
. This is captured

precisely by the notion of homomorphisms. In fact, it is easy to see that, while
there is a homomorphism from S′

1
to S′

2
(R2 7→ R1, K2 7→ K1), there is no

homomorphism from S′

2
to S′

1
. It follows that S′

2
contains “extra” information

whereas S′

1
is a more general solution. As in data exchange [12,14], we argue

that the “correct” solution is the most general one, in the sense above. This
solution is called universal, as illustrated in the next section.
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5.3 Universal solutions and core

The discussion on the possible solutions for a schema exchange problem leads
to the following definition.

Definition 5 (Universal solution) A solution S of the schema exchange

problem is universal if there exists a homomorphism from S to all the other

solutions.

The next result provides a method for the generation of a universal solution
of a given schema exchange problem. It follows from an analogous result for
the data exchange problem.

Theorem 1 Let (T1, T2,ΣC1C2
) be a data exchange setting and S1 be an e-

schema over T1 and assume that ΣC2
includes only weakly acyclic tgds. The

chase procedure over S1 using ΣC1C2
∪ ΣC2

terminates and generates a uni-

versal solution if a solution exists and fails otherwise.

Proof: A schema exchange setting can be viewed as a data exchange setting
over a a source schema S1 and a target schema S2 that involve a relation for
each construct of T1 and T2, respectively. Under this view, S1 is an instance of
S1. It follows that the results on data exchange shown in [14] can be applied to
our scenario. In particular, the fact that, if a solution exists, the application
of the chase procedure to an instance of S1 using the given dependencies
terminates and generates a universal solution. In this case, by construction,
the output is an instance of T2 and, by definition, is also a universal solution
of the given schema exchange problem. 2

Theorem 1 provides a procedural way to generate a universal solution of a
schema exchange problem. However, what we obtain is only one of the possible
universal solutions and it turns out that, in general, it is not necessarily the
best in terms of size. This is clarified in the following example.

Example 9 Consider a schema exchange problem in which the source tem-
plate T1 = (C1,ΣC1

) and the target template T2 = (C2,ΣC2
) are the following:

C1 = {Relation(name),Key(name, in),Attribute(name, in) }

C2 = {Relation(name),Key(name, in)}

with the usual relational constraints in ΣC1
and in ΣC2

shown in Example 4.
Note that the second template models schemas with only key attributes.

Assume now that we would like just to copy each relation over T1 into a
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relation over T2 having a new key. This transformation can be implemented
by the following tgd:

ΣC1,C2
= { Relation(nR),Key(nK , nR),Attribute(nA, nR) →

Relation(nR),Key(n′

K , nR) }

Note that the rule is applicable only if the relation in the source contains at
least one key and one attribute, even if the latter is not used in the target.
Let us consider the following e-schema S over T1:

Relation

name

ORDER

Key

name in

OrderNo ORDER

Attribute

name in

Item ORDER

Quantity ORDER

If we apply the chase over S using over ΣC1,C2
we obtain the following universal

solution S′:

Relation

name

ORDER

Key

name in

K1 ORDER

K2 ORDER

where K1 and K2 are labelled nulls that represent any key attribute names:
they form together a composite key for the relation ORDER.

However, it is easy to see that the following e-schema S′′ is also a universal
solution:

Relation

name

ORDER

Key

name in

K1 ORDER

Note that S′′ is homomorphically equivalent to S′ (that is, there is a homo-
morphism from S′ to S′′ and vice versa) but it is more compact than S′.

Solutions S′ and S′′ of Example 9 are both universal but S′′ is clearly preferable
to S′ since it is smaller in size. This solution is actually the core of all the
universal solutions for S. It has been shown that the core is unique, as all
universal solutions for a schema exchange problem have the same core up to
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isomorphism [12]. The core for a schema exchange problem with only egd as
target constraints can be computed in naive way by successively removing
tuples from a universal solution, as long as the solution resulting in each step
satisfy the dependencies. Recently, Gottlob and Nash [16] have proposed a
polynomial time algorithm that computes the core of a universal solution of a
data exchange problem whose source-to-target constraints are tgds and whose
target constraints consist of egds and weakly acyclic tgds. Hereinafter, we will
only refer to the core of universal solutions.

6 From Schema to Data Exchange

In this section we propose a transformation process that generates a data

exchange setting as an instance of a schema exchange setting for a given data
source.

6.1 Metalinks and S-D transformation process

Before discussing the transformation process, a preliminary notion is needed.
In order to convert the schema exchange setting into a data exchange setting,
we need to keep track of the correspondences between the source schema
and the solution of the schema exchange problem. This can be seen as an
application of the data provenance problem to schema exchange. To this end,
by extending to our context a notion introduced in [11], we introduce the
notion of metalink to describe the relationships between source and target
metadata.

Definition 6 (Metalink) Let S be an e-schema and Σ be a set of s-t template

dependencies. A metalink for S is an expression of the form I →σ,s I
′ where

I ⊆ S and I ′ is the result of the application of a chase step on I based on the

dependency σ ∈ Σ and the substitution s.

Note that, since a reduced number of elements are involved in schema ex-
change, we can store all the metalinks and we do not need to compute them
partially and incrementally as in [11].

Given a relational database over a schema S1 and schema exchange setting
(T1, T2,ΣC1C2

) such that the encoding S1 of S1 is an instance of T1, we aim at
generating a target database over a schema S2 such that the encoding S2 of
S2 is a universal solution for S1. We call such process S-D transformation and
it can be summarized as follows.
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Input: A schema S1 with constraint ΣS1
and a schema exchange setting

(T1, T2,ΣC1C2
);

Output: A data exchange setting (S1,S2,ΣS1S2
,ΣS2

);

(1) Encode (S1, ΣS1
) into an e-schema S1;

(2) Apply the chase procedure to S1 using ΣC1C2
and save the metalinks

in a set M during the execution: each chase step based on the dependency
σ ∈ Σ with a substitution s adds to M a metalink I →σ,s I

′;

(3) Decode the result S2 of the chase procedure into a schema S2 with
constraints ΣS2

;

(4) For each metalink I →σ,s I
′ in M:

(a) let L be the set of relations in S1 mentioned in I: annotate all the
attributes A in L with s−1(A);

(b) let R be the set of relations in S2 mentioned in I ′: annotate all the
attributes A′ in R with s−1(A′);

(c) replace all the attributes in L and R with fresh variables by associ-
ating the same variable to the attributes with the same annotation
according to the constraints in ΣS1

and ΣS2
;

(d) add the tgd L→ R to a set ΣS1S2
;

(5) Return the data exchange setting (S1,S2,ΣS1S2
,ΣS2

).

Example 10 Let us consider the schema exchange setting described graphi-
cally in Figure 5 and represented by the following set of tgds ΣC1,C2

:

{ v1 = Relation(nR),Key(nK , nR),FKey(nF , nR, n
′

R),Attribute(nA, nR),

Relation(n′

R),Key(n′

K , n
′

R),Attribute(n′

A, n
′

R) →

Relation(nR),Key(nK , nR),Attribute(nF , nR),Attribute(nA, nR),

Attribute(n′

A, nR) }

Intuitively, the dependency occurring in ΣC1,C2
specifies that the target is

obtained by joining two source relations according to a foreign key defined
between them. Now consider the following source schema:

S = { EMP(eid, name, did), DEPT(did, dname), }

ΣS = { EMP(x1, x2, x3), EMP(x1, x
′

2
, x′

3
) → (x2 = x′

2
, x3 = x′

3
),

DEPT(x1, x2), DEPT(x1, x
′

2
) → (x2 = x′

2
),

EMP(x1, x2, x3) → DEPT(x3, x
′

1
) }

22



Relation(
Name
Key(

Name )
FKey(

Name ) 
Attribute(

Name )
) 
Relation(

Name
Key(

Name )
Attribute(

Name )
)

Relation (
Name
Key(

Name )
Attribute(

Name )
Attribute(

Name )
Attribute(

Name )
)

Fig. 5. Schema exchange scenario for Example 10.

The encoding of S is the e-schema S that follows:

Relation

name

s1 EMP

s2 DEPT

Key

name in

s3 eid EMP

s4 did DEPT

Attribute

name in

s5 name EMP

s6 dname DEPT

FKey

name in refer

s7 did EMP DEPT

Let {s1, . . . , s7} be the e-components of S. The application of the chase based
on the given tgd produces the set of e-schema components {t1, . . . , t5}:

Relation

name

t1 EMP

Key

name in

t2 eid EMP

Attribute

name in

t3 name EMP

t4 did EMP

t5 dname EMP

The metalink generated by this chase step is: {s1, . . . , s7} →v1,s1
{t1, . . . , t5},
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where s1 is the substitution:

{ nR 7→ EMP, nK 7→ eid, nF 7→ did, nA 7→ name, n′

R 7→ DEPT,

n′

K 7→ did, n′

A 7→ dname }

The chase ends successfully and produces an e-schema S′ whose decoding is
the schema (S′,ΣS′) where:

S′ = {EMP(eid, name, did, dname)}

ΣS′ = {EMP(x1, x2, x3, x4), EMP(x1, x
′

2
, x′

3
, x′

4
) → (x2 = x′

2
, x3 = x′

3
, x4 = x′

4
)}

Now, on the basis of the above metalink, we derive the following sets of anno-
tated relations:

L = {EMP(eid[nK ], name[nA], did[nF ]), DEPT(did[n′

K ], dname[n′

A])}

R = {EMP(eid[nK ], name[nA], did[nF ], dname[n′

A])}

By replacing all the attributes in L and R with variables in such a way that
the attributes with the same annotation are replaced with the same variable,
we obtain the following s-t tgd:

d1 = S.EMP(x1, x2, x3), S.DEPT(x3, x4) → S′.EMP(x1, x2, x3, x4)

The final data mapping scenario is reported graphically in Figure 6.

As a final comment, we note that the example can be naturally extended
to a more complex source schema. If, for instance, the relation EMP had two
attributes, the tgd v1 would fire twice, producing in the second chase step
a further attribute schema component for EMP in the target e-schema, and
therefore another attribute in the target schema.

6.2 Properties of the S-D transformation process

A number of general results on the S-D transformation process can be shown.
First, the fact that the output of the process is a “correct” result, that is, the
solution of the data exchange problem reflects the semantics of the schema ex-
change problem given as input. In order to introduce the concept of correctness
in this context, a preliminary notion is needed.
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Fig. 6. Data exchange scenario for Example 10.

Given an s-t tgd d over relational schemas, the encoding of d is a tgd over
schema templates obtained by applying a procedure similar to the one defined
in Section 4.3 for schemas.

More precisely, let d an s-t tgd over a source schema S and a target schema
T, and let ΣS and ΣT be two set of dependencies over S and T, respectively.

The encoding of d is an s-t template tgd d̂ such that:

• the left-hand-side (right-hand-side) of the tgd d̂ contains an atom of the
form Relation(R) for each relation R occurring in the lhs (rhs) of d;

• the lhs (rhs) of d̂ contains a set of atoms of the form Key(Ki, R) (1 ≤ i ≤ m)
for each relation R(K1, . . . , Km, A1, . . . , An) occurring in d such that there
is an egd:

R(x1, . . . , xm, y1, . . . , yn), R(x1, . . . , xm, y
′

1
, . . . , y′n) →

(y1 = y′
1
, . . . , yn = y′n)

in ΣS (ΣT);
• the lhs (rhs) of d̂ contains a set of atoms of the form FKey(Fi, R,R

′) (1 ≤
i ≤ n) for each relation R(A1, . . . , Am, F1, . . . , Fn) occurring in d such that
there is a tgd:

R(x1, . . . , xm, y1, . . . , yn) → R′(y1, . . . , yn, z1, . . . , zp)

in ΣS (ΣT);
• the lhs (rhs) of d̂ contains a set of atoms of the form Attribute(Ai, R) (1 ≤
i ≤ p ≤ n) for each relation R(K1, . . . , Km, A1, . . . , An) occurring in the lhs
(rhs) of d such that Ai in not involved in the rhs of an egd in ΣS (ΣT) or
in both the lhs and rhs of a tgd in ΣS (ΣT).

Example 11 Let us consider the tgd d1 of the Example 10, which is reported
here for convenience:

d1 = S.EMP(x1, x2, x3), S.DEPT(x3, x4) → S′.EMP(x1, x2, x3, x4)
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The encoding of d1 is the following s-t template tgd.

v2 = Relation(EMP),Key(eid, EMP),Attribute(name, EMP),

FKey(did, EMP, DEPT),Relation(DEPT),Key(did, DEPT),

Attribute(dname, DEPT) → Relation(EMP),Key(eid, EMP),

Attribute(name, EMP),Attribute(did, EMP),Attribute(dname, EMP)

The tgd v2 in the example above is less general than the original tgd v1 for
the schema exchange scenario described in Example 10. However, it generates
the same output S′ on the given input S. This exactly captures the fact that
the data exchange problem obtained as output captures the semantics of the
schema exchange problem given as input.

This intuition is captured by the following correctness result.

Theorem 2 Let (S,S′,ΣSS′) be the output of the S-D transformation process

when (T1, T2,ΣC1C2
) and S are given as input and let ̂Σ be the set of s-t tgds

obtained by encoding the s-t tgds in ΣSS′. The encoding S
′ of S′ is a universal

solution for the encoding S of S under the schema exchange setting (T1, T2,
̂Σ).

Proof: The e-schema S′ is obtained in step 2 of the S-D transformation process
by chasing the encoding S of S using the dependencies in ΣC1C2

. The proof
proceeds by induction on the number n of chase steps needed to generate S′.
Specifically, we show that, for every 0 ≤ i ≤ n, indicating with Si the e-
schema produced after the i-th step in chasing S using dependencies in ΣC1C2

,

there is an e-schema
̂
Si produced as an intermediate result in chasing S using

dependencies in ̂Σ such that Si is homomorphic to
̂
Si. Since, by Theorem 1, if

a solution exists, ̂Sn is a universal solution for S under (T1, T2,
̂Σ), if there is a

homomorphism from Sn = S′ to ̂Sn then the former is also a universal solution
for S under (T1, T2,

̂Σ) and the claim follows. The basis is immediate since, for
n = 0, the e-schema S′ as well as the sets of dependencies ΣSS′ and ̂Σ are empty
by construction, and so S′ is also a trivial universal solution for (T1, T2,

̂Σ).
With respect to the induction, assume that there is a homomorphism hi from

Si−1 to
̂
Si−1 and let Si−1 →σ,s Si be the metalink corresponding to the i-

th chase step over S based on the tgd σ ∈ ΣC1C2
and the substitution s.

The result of the application of this chase step is, by definition of chase step,
Si = Si−1 ∪ s(R), where R is the right hand side of σ. By construction (step 4
of the S-D transformation process), there is a tgd σ′ ∈ ΣSS′ which is built
from the above metalink by associating the same variable to the attributes
of S and S′ that are mapped by σ. Since the encoding of a tgd preserves
the bindings of the variables, it follows that there is a substitution s∗ from
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σ to σ̂. Moreover, by definition of encoding of a tgd it easily follows that
there is a substitution ŝ from the left hand side ̂L of σ̂ to the encoding S of
S. Since S is not modified by the chase procedure, we have that ŝ is also a

substitution from the left hand side of σ̂ to
̂
Si−1. Hence, we can apply a chase

step based on σ̂ and ŝ to
̂
Si−1. The result of the application of this chase step

is, by definition,
̂
Si =

̂
Si−1 ∪ ŝ( ̂R), where ̂R is the right hand side of σ̂, and

since ̂R = s∗(R), we have that
̂
Si =

̂
Si−1 ∪ ŝ(s∗(R)). Now let L be the left

hand side of σ: since, by the inductive hypothesis, there is a homomorphism

hi from Si−1 and
̂
Si−1, we have that hi ◦ s is a homomorphism from L to

̂
Si−1. At the same time, the composition of the substitutions s∗, from L to
̂L, and ŝ, from ̂L to

̂
Si−1, is also a substitution from L to

̂
Si−1. It follows

that, on the variables occurring in L and R, hi ◦ s = ŝ ◦ s∗. Hence, we have

that hi(Si) = hi(Si−1) ∪ hi(s(R)) =
̂
Si−1 ∪ ŝ(s∗(R)) =

̂
Si, and so hi is a

homomorphism from Si to
̂
Si. 2

The following completeness result can also be shown. We say that a data
exchange setting is constant-free if no constants are used in formulas.

Theorem 3 Any constant-free data exchange setting can be obtained from the

S-D transformation process over some schema exchange setting.

Proof: Given a data exchange setting M = (S,S′,ΣSS′) we can derive a
schema exchange setting (T1, T2,ΣC1C2

) from which M can be obtained with
the S-D transformation process by: (i) defining two templates T1 and T2 such
that S is an instance of T1 and S′ is an instance of T2 (this can be easily done
on the basis of the structure of the encodings of S and S′), and (ii) encoding
the tgds in ΣSS′ . The schema exchange setting we obtain is already suitable
for our purposes, but it can be made even more general by replacing each
constant with a unique variable. It is also easy to see that this cannot be done
if constants appear in ΣSS′ since the encoding procedure does not consider
them. 2

Intuitively, the above theorem states that a schema exchange can be gen-
eralized by substituting distinct variables for constants and since the S-D
transformation does not handle constants the data exchange setting must be
constant-free.
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7 Related work

To our knowledge, the notion of schema exchange studied in this paper is
new. In general, we can say that our contribution can be set in the framework
of metadata management. Metadata can generally be thought as information
that describes, or supplements, actual data. Several studies have addressed
metadata related problems, such as, interoperability [18,23,29], annotations
and comments on data [7,10,15], data provenance [9], and a large list of more
specific problems, like data quality [20]. While the list is not exhaustive, it
witnesses the large interest in this important area and the different facets of
the problem.

Most of the proposed approaches focus on a specific kind of metadata and are
not directly applicable to other cases without major modifications. Bernstein
set the various problems within a very general framework called model man-

agement [3–5]. In [6] the authors show the value of this framework to approach
several metadata related problems, with a significant reduction of program-
ming effort. Our contribution goes in this direction: as in model management,
schemas and mappings are treated as first class citizens.

In particular, the schema exchange problem offers some novel research oppor-
tunity in the context of the ModelGen operator. The ModelGen operator real-
izes a schema translation from a source data model Ms to a target data model
Mt and returns an executable mapping (or a transformational script) for the
translation of the instances of the source schema. For instance, the ModelGen
operator could be used to translate a relational database into a schema for an
XML document (e.g., a DTD). ModelGen has been implemented in commer-
cial products as a non-generic way to translate schemas between specific pairs
of data models. In particular, the most supported scenario in available tools
is the translation of ER diagrams into relational schemas.

Several proposals for the general problem have also been proposed in the last
years [1,21,25]. All the frameworks share the same approach: (i) the system
rewrites a source schema S into a representation S ′ for a universal metamodel;
(ii) a sequence of rule-based transformations modifies S ′ to translate or elim-
inate the constructs that are not allowed in the target data model; (iii) after
n transformations, S ′ can be rewritten into the representation for the target
data model. It is evident that in this translation process a crucial role is done
by the rule-based transformations. Surprisingly all the frameworks lack a tool
for the design of such transformations at the data model level. In this paper,
we provide a novel contribution to this problem by studying a framework for
schema translation with a clear and precise semantics, that can be at the basis
of an innovative tool supporting the design and the automatic generation of
transformations over schemas.
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It is also important to locate schema exchange in the context of data ex-
change. Our work is largely inspired by the theoretical foundations explored
by Fagin et al in the last years [12,14]. We remark that schema exchange is
the first proposal to extend their results to metadata and to introduce the
novel notion of encoding of schemas and tgds. One of the most important
practical contributions in data exchange are the algorithms for the genera-
tion of the tgds representing the schema mappings [13,27]. Those algorithms
take as input the schemas (with their constraints) and the arrows between
the elements of the schemas (named correspondences in literature). We point
out that in many practical settings the target schema does not exist, and it
must be designed from scratch with a manual process before designing the
mapping. This means that the user must deal with at least two manual steps:
(i) the definition of the target schema and (ii) the definition of the correspon-
dences between the elements. Many attempts have been done to automate the
generation of the target schema [1,8,19,21,24,25] and the identification of the
correspondences between different schemas (the schema matching problem,
see [30] for a survey). Proposed solutions gave important but partial contri-
butions: in general settings, with existing tools it is not possible to avoid the
manual time-consuming work we have highlighted. Our approach effectively
tackles this problem. As we have shown, in many cases it is possible to define
generic transformations over templates of schemas and the use of these trans-
formations can support the activity described above. Finally, we mention that
the notion of template has been used in many contexts to support the design
and reuse of software components [28].

Some of the results of this paper have been presented, in a preliminary form,
in [26]. In this paper we have extended our earlier work in several ways: we have
added a lot of practical examples to make more clear the various notions and
results; we have added a new section (Section 2) that illustrates a motivating
scenario and provides an overview of the approach; we have refined the notions
of schema exchange, encoding and decoding of e-schemas, s-t dependencies and
metaroute (now called metalink); we have introduced a new and more general
S-D transformation process (now the new algorithm is self-contained as it does
not refer to notions and techniques defined elsewhere); we have included the
proofs for all the results; we have added a new section (Section 7) discussing
related works.

8 Conclusion and Future work

In this paper, we have introduced and studied the schema exchange problem,
a generalization of data exchange to sets of schemas with similar structure.
This problem consists of taking a schema that matches a source template
and generating a new schema for a target template, on the basis of a set of
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dependencies defined over the two templates. To tackle this problem, we have
presented a method for the generation of a “correct” solution of the problem
and a process aimed at automatically generating a data exchange setting from
a schema exchange solution.

As a follow-up to this theoretical study, we have developed a prototype, called
GAIA, that relies on the theoretical framework illustrated in this paper and
supports several activities involved in the management of heterogeneous data
sources; in particular, the design and reuse of schema mappings. Specifically,
GAIA provides a graphical interface that allows the user to: (i) describe data
collections presenting structural similarities, by means of a source template T1,
(ii) define the structure of a possible transformation of the source by means of
a target template T2 and a set correspondences between T1 and T2, graphically
represented by lines, (iii) translate any data source over a schema matching
with T1 into a format described by a schema matching with T2, (iv) make use of
a set of predefined template mappings as design patterns for the development
of new schema mappings, and (v) convert a schema mapping into a template
mapping to be reused in a different application. GAIA asks user intervention
when, for instance, there is the need to choose appropriate names for nulls
occurring in schemas. We have successfully tested this tool in a number of
cases from industrial settings. Further information on this tool can be found
in: http://gaia.dia.uniroma3.it/.

We believe that other interesting directions of research can be pursued within
the schema exchange settings. We sketch some of them.

• Combining data and metadata. The framework we have presented can be
extended to support mappings and constraints involving data and metadata
at the same time [17]. This scenario allows the user to specify the transfor-
mation of metadata into data and vice versa. For instance, we could move
the name of a relational attribute into a tuple of a relation, or we could
generate a target schema with a set of attributes identified by some data in
the source. It is evident that, adding support to data and metadata in the
same dependency, is a required step to extend the class of data exchange
settings that can be generated in the S − D transformation process.

• Reuse of existing data exchange. We have developed a preliminary technique
for generalizing data exchange mappings given by the user into a generic
mapping over templates. The idea is to extract the design pattern for each
data exchange scenario, and possibly find common patterns when the given
scenarios are two or more. Once a transformation is expressed in a schema
exchange setting, it can be later used to derive a data exchange transfor-
mation similar to the original one for a different pair of schemas.

• Metaquerying. A template is actually a schema and it can therefore be
queried. A query over a template is indeed a meta query since it operates
over meta-data. There are a number of meta-queries that are meaningful.
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For instance, we can retrieve with a query over a template the pairs of
relations that can be joined, being related by a foreign key. Also, we can
verify whether there is a join path between two relations.

• Special class of solutions. Given a schema exchange problem, can we verify
whether all the solutions of the problem satisfy some relevant property?
For instance, we would like to obtain only relations that are acyclic or
satisfy some normal form. We are also investigating under which conditions
a schema exchange problem generates a data exchange setting with certain
properties, e.g., the fact that the dependencies belong to some relevant
classes.
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