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Abstract. This paper describes a large case study that explores the ap-
plicability of ontology reasoning to problems in the medical domain. We
investigate whether it is possible to use such reasoning to automate com-
mon clinical tasks that are currently labor intensive and error prone, and
focus our case study on improving cohort selection for clinical trials. An
obstacle to automating such clinical tasks is the need to bridge the se-

mantic gulf between raw patient data, such as laboratory tests or specific
medications, and the way a clinician interprets this data. Our key insight
is that matching patients to clinical trials can be formulated as a problem
of semantic retrieval. We describe the technical challenges to building a
realistic case study, which include problems related to scalability, the
integration of large ontologies, and dealing with noisy, inconsistent data.
Our solution is based on the SNOMED CT R© ontology, and scales to one
year of patient records (approx. 240,000 patients).

1 Introduction

This paper describes a large case study that explores the applicability of ontology
reasoning to problems in the medical domain. Currently, medical ontologies are
primarily used for terminology services. We explore whether it is possible to use
ontology reasoning to automate common clinical tasks, such as cohort selection
of patients for clinical trials, infectious disease monitoring, and clinical decision
support. An obstacle to automating these tasks is the need to bridge the semantic
gulf between raw patient data, such as laboratory tests or specific medications,
and the way a clinician interprets this data. For example, a laboratory report
which indicates the presence of a class of organisms implies the presence of an
infectious disorder; similarly, certain types of chemotherapy drugs imply the
presence of certain cancers. Using ontologies, it should be possible to automate
this interpretation process and build a reusable solution. Toward this goal, we
focus our case study on the problem of cohort selection for clinical trials.



Low participation in clinical trials is a significant problem in clinical and
translational research, where participation rates range between 5%-10% for most
trials [1]. A key deterrent to participation is that matching patients to clinical
trials is currently a manual, physician-driven process. Automating this process
has shown some promising results in terms of increased patient referrals from
physicians [2]. However, current efforts at automation require the development
of custom applications.

The SNOMED CT R© ontology [3], which formally defines classes of disorders,
drugs, and organisms, is well suited for our case study to see whether ontologies
can help automate the problem of cohort selection. Our primary insight is that
matching patients to clinical trials can be formulated as a problem of semantic
retrieval, i.e., a clinical trial criterion can be expressed as a semantic query, which
a reasoner can then use together with SNOMED CT to infer implicit information
that results in retrieving eligible patients.

Our goal in this study is to assess the feasibility of this approach in a realistic
scenario. The technical challenges fall primarily into three categories: knowledge
engineering, scalability, and noisy data, each of which is described below.

Knowledge Engineering. A key challenge is to combine the legacy patient data
with existing ontologies such as SNOMED CT to demonstrate the value of ontol-
ogy matching for cohort selection. The following examples illustrate this problem:

– There are currently 39 clinical trials [4] that specify warfarin medication as
an inclusion criterion. SNOMED CT has the names of generic drug concepts,
which are in turn described in terms of their active ingredients, such as war-
farin. However, the patient record contains only the names of vendor-specific
drugs. What is needed here is a mapping from vendor-specific drug names
to generic drug concepts, to allow an inference about active ingredients of
drugs.

– There are 26 clinical trials that specify Methicillin-resistant Staphylococcus
aureus (MRSA) disorder as an inclusion criterion for the trial. SNOMED CT
defines MRSA disorder as a disorder that indicates the class of MRSA organ-
isms as a causative agent. However, the patient record contains institution-
specific laboratory tests that indicate only the presence or absence of a par-
ticular organism (e.g., MRSA organism) in institution-specific terminologies.
What is needed here is a mapping of the presence or absence of the organism
to whether its corresponding SNOMED CT equivalent term is a causative
agent or not.

– There are currently 6240 trials that refer to disorders that involve different
types of neoplasms. SNOMED CT classifies 1522 different types of morpholo-
gies as neoplasms. However, the patient record contains information about a
specific radiology test that indicates the presence of a certain morphology in
a certain body part, all coded in local terminologies. Once again local terms
for body parts and morphologies need to be mapped to their SNOMED CT
counterparts.



It is clear from these examples that a key knowledge engineering task is to
map patient record terms to concepts in the SNOMED CT model. This map-
ping process is not simply a matter of establishing equivalences, which is itself
non-trivial for large terminologies. The local terminology is often coded as a
taxonomy, so there is the additional difficult problem of ontology integration [5].
Because each health care institution codes patient data using an idiosyncratic
local terminology, mapping to the SNOMED CT model requires customization
per health care institution. Fortunately, while this task is a significant effort, it
only has to be performed once per institution, and is reusable for solving different
clinical problems.

Scalability. Another key challenge is the need for reasoning over ontologies that
are very large and expressive. The size of the knowledge base for the clinical
trials case study far exceeds the capabilities of most reasoners. There are several
reasoners that are designed to handle large Tboxes (e.g., Fact++ [6], Pellet [7],
Racer [8]). Other reasoners scale to large Aboxes in secondary storage (e.g. Kaon2
[9], SHER [10]). The combination of a large Abox and a large Tbox required for
this case study, however, far exceeds the size of the knowledge bases that have
been tested so far with these reasoners.

Another factor is the expressivity needed for solving the clinical problem.
While SNOMED CT is modeled within the EL++[11] formalism (intersections,
existential restrictions, role hierarchies), negation and universal restrictions are
inherent in the patient data and in the queries. As an example, negation of
complex concepts is an important aspect of the patient record, e.g., when pneu-
monia has been ruled out on the basis of a radiology report. Similarly, clinical
trials exclusion criteria are negations of complex concepts, which means that the
solution requires the expressivity of OWL-DL.

Noisy, incomplete data The third challenge is that clinical data tends to be in-
complete and noisy. SNOMED-CT contains complete definitions for disorders
including both information needed to infer the presence of the disease, and also
information to relate the disorder to other disorders. However, patient data con-
tains only information needed to infer the disease.

Clinical data is also inconsistent from a logical perspective. It is not uncom-
mon for a laboratory test to contain both positive and negative findings. To
perform semantic retrieval, current reasoners assume that the data is consistent.
Therefore, cleansing the data efficiently is another open issue.

In the rest of this paper, we present our solutions to these technical chal-
lenges, and summarize the results for matching 9 clinical trial criteria against
a knowledge base with 59 million Abox assertions and 22,561 Tbox assertions.
The clinical trials case study is described in more detail in Section 2. Sections
3-5 present the technical challenges and issues that we faced, and how they were
resolved. Section 6 gives results and validation, and Section 7 draws conclusions.



2 Case Study Description

The architecture for retrieving patients eligible for clinical trials is shown in Fig-
ure 1. Clinical trial criteria are formulated as queries, and a reasoner matches the
queries against a knowledge base to retrieve eligible patients. We use the SHER
reasoner, which implements the techniques in ([12], [10]) for scalable Abox rea-
soning. The first steps in creating this solution are constructing a knowledge base
Tbox, based on SNOMED CT, and an Abox from structured patient records. For
our case study, we use one year of anonymized patient records from Columbia
University Medical Center.

Fig. 1. Case Study Solution Architecture

Constructing the Tbox requires integrating the terminology used in the pa-
tient data and SNOMED CT terminology. The Columbia patient data are en-
coded in a frame-based semantic network called MED [13]. We considered only
the MED taxonomy which consists of 100,212 concepts that capture the organ-
ism, disease, and medical test hierarchies. SNOMED CT has 379,630 concepts
which include organism, pharmaceutical product, specimen, body structure, clin-
ical findings, and procedures. SNOMED CT is not just a taxonomy; 217,619 of
SNOMED CT concepts are defined in terms of existential restrictions. Such def-
initions allow the inferencing of disorders from relationships in the Abox such
as associated morphology, finding site, and causative agents.

Constructing the Abox requires translating records encoded in the MED
taxonomy into a set of assertions encoded in SNOMED CT in SHER’s relational
store. The patient database [14], which stores the raw data for the Abox, includes
a single table of clinical events, where each event consists of one or two records.
The events used in the case study correspond to laboratory test results, radiology
findings, and drug treatment. We use an Extract-Transform-Load (ETL) process
to transform the patient events into assertions compatible with SNOMED CT.



The queries themselves are extracted from clinical trial criteria found on [4],
where the criteria are expressed as text. We convert the text-based queries into
logical DL queries, which use SNOMED CT concepts.

Sections 3-5 describe the major technical challenges encountered in imple-
menting the case study.

3 Knowledge Engineering

3.1 Mapping MED to SNOMED CT

To create the Tbox, the first step is to map concepts in MED to the concepts
in SNOMED CT. Our goal is to achieve a high degree of accuracy and coverage
through a semi-automated process:

1. Existing Mappings: Many of the concepts in both MED and SNOMED
CT are mapped to the concepts in the Unified Medical Language System
(UMLS R©) [15]. Therefore, it is possible to use UMLS as an intermediary
target, mapping MED to UMLS to SNOMED CT for a subset of MED
concepts.

2. NLP-based Mapping: We next use the medical Meta Map tool (MMTx)
[16] to map natural language strings associated with MED concepts to UMLS
concepts, and then to SNOMED CT concepts when possible. Only mappings
with a perfect score on MMTx are retained.

3. Prefix Removal: Some MED concept strings contain institution-specific
prefixes, such as NYPH. We remove these prefixes to increase the number of
perfect matches on MMTx.

4. Manual mapping: Vendor-specific drugs in MED do not have a mapping
to a generic mapped drug concept in SNOMED CT; these 1000 concepts are
manually mapped by domain experts (co-authors CP and JC).

This procedure maps 17,446 out of 100,212 MED concepts to SNOMED CT.
The next step, described in Section 3.3, dramatically increases the coverage by
including assertions corresponding to the MED taxonomy.

3.2 Validation of Mappings

To determine the accuracy of mapping MED to SNOMED CT, domain ex-
perts (co-authors CP and JC) analyzed the mapping results. Since both MED
and SNOMED CT share a common upper level ontology (Semantic Network in
UMLS), it is possible to determine whether each of the mapped concepts belong
to the same conceptual category. These categories were further combined into se-
mantic groups. An example of a valid mapping is the MED concept fibromyalgia,
which has an upper level concept in UMLS of Finding, mapped to the SNOMED
CT concept Primary fibromyalgia syndrome, which has an upper level concept
of Disease or Disorder. Both Finding and Disorder belong to the same semantic
group. By this approach, 2,534 invalid mappings were found with mismatching



source and target upper level concepts and semantic groups. Manual inspection
of invalid mappings revealed that the majority (all but 11) are caused by errors
in categorizing MED concepts in terms of the upper UMLS concepts, e.g. 768
are caused by a single missing parent type of DRUG in MED. The faulty 11 are
true false positives, and are eliminated from our mapping. False negatives from
unmapped concepts are discussed in the next section.

For each mapped MED concept, a subclass assertion is added to the Tbox to
relate it to its mapped SNOMED concept. We use subclass rather than equiva-
lence assertions because the current mapping between MED and SNOMED is not
guaranteed to be sufficiently precise to warrant equivalence. However, without
concept equivalence, negated queries fail, since we cannot infer that the negation
of a MED concept is a subclass of the negation of its corresponding SNOMED
CT concept. A more precise MED to SNOMED mapping will eliminate this
issue, and this is an issue for future work.

3.3 Integrating the MED Taxonomy with SNOMED CT

Although we succeeded in mapping 17,446 MED concepts, this constitutes only
17% of the MED Tbox. In terms of the 13,313 MED concepts referred to in the
Abox of one year patient data, only 9% had a direct mapping to a SNOMED CT
concept.This reflects the fact that the patient data is coded in institution-specific
MED concepts that do not have direct mappings to SNOMED CT concepts.
However, since many of their super-concepts map to SNOMED CT concepts by
our mapping process, we can significantly increase coverage by adding subclass
assertions corresponding to the MED taxonomy. If we include the subclasses of
the mapped MED concepts, we increase coverage of the MED Tbox to 75,514
concepts. For the Abox, including subclasses of mapped MED concepts increases
coverage from 9% to 88% (11,732 concepts).

3.4 Abox Construction

To construct a SNOMED CT Abox from the one year patient data, we trans-
form the existing relational patient database with implicit relationships into
membership and role assertions corresponding to SNOMED CT. As an example
of such a mapping, if a patient record states that the patient is on drug Cerner
Drug: Lactulose Syrp 20G/30ml, it needs to be transformed into the appropriate
SNOMED CT role assertion between the patient and the drug. We use the at-
tribute administeredSubstance as the relationship and the drug itself is mapped
to Lactulose in SNOMED CT in the Tbox.

Patient data transformation performs several critical functions:

– In the clinical domain, negative findings for medical tests and procedures are
crucial in selection for clinical trials and clinical decision support. Therefore,
negative results in the patient data should be modeled using logical negation.
The transformation process extracts positive and negative results from the
patient record and makes them explicit.



– In the clinical domain, results of laboratory tests and findings form logical
groupings (e.g., a specific laboratory test indicates an organism as well as
the source specimen for the test). Disorders in SNOMED CT capture such
groupings by nesting existential restrictions as illustrated by the SNOMED
CT definition of Breast Neoplasm below:

∃roleGroup.(∃hasMorphology.Neoplasm ⊓ ∃hasF indingSite.Breast).

We therefore model groups of events using the SNOMED CT roleGroup

attribute, as discussed in the examples below.

The Abox construction process is driven off of set of transformation rules,
derived by abstracting implicit information models for both the patient database
and SNOMED CT. Fortunately, the structure of the data and these information
models are relatively simple, so that the number of rules is small. Table 1 illus-
trates two radiology rules. These rules generate unique individuals p and e in

Radiology Event Template Abox Assertion Templates

?PatientID, ?T imeStamp, individuals: p, e, r

?Morphology, ?BodyPart, ?HighCertainty assocObservation(p, e)
roleGroup(e, r)
hasT imeStamp(e, ?T imeStamp)
r : ∃hasMorphology.?Morphology

r : ∃findingSite.?BodyPart

?PatientID, ?T imeStamp, individuals: p, e, r

?Morphology, ?LowCertainty assocObservation(p, e)
roleGroup(e, r)
hasT imeStamp(e, ?T imeStamp)
r : ∀hasMorphology.¬?Morphology

Table 1. Transformation Rules for Radiology Events

the Abox, representing each unique patient and event. A unique individual r is
generated to represent the grouping of the associated Morphology and BodyPart
of an event. New relationship assertions are generated to associate p with e, and
e with r.

The first rule transforms a positive morphology finding and associated body
site, and the second rule transforms a negative morphology finding, in which case
there is no associated body site. In the positive case, the first rule adds mem-
bership assertions with existential restriction concepts to the Abox, associating
r with the morphology and the body site. In the negative case, the second rule
adds a membership assertion with a universal restriction concept that includes
negation to the Abox.

Table 2 shows examples of rule instantiation. The transformation rules are
engineered to match SNOMED CT definitions. For example, the SNOMED CT
definition of Breast Neoplasm above typifies SNOMED CT rules for radiology
findings. Note that a query for patients testing positive for breast neoplasm will



Radiology Event Abox Assertions

Patient43, 3.15.2006, individuals: p43, e1, r1
Malignant Neoplasm, Breast, High Certainty assocObservation(p43, e1)

roleGroup(e1, r1)
hasT imeStamp(e1, 3.15.2006)
r1 : ∃hasMorphology.Malignant Neoplasm

r1 : ∃findingSite.Breast

Patient32, 12.01.2005, individuals: p32, e2, r2
Malignant Neoplasm, Low Certainty assocObservation(p32, e2)

roleGroup(e2, r2)
hasT imeStamp(e2, 12.01.2005)
r2 : ∀hasMorphology.¬Malignant Neoplasm

Table 2. Sample Radiology Event Transformations

match the first patient in Table 2, and a query for patients testing negative will
match the second patient.

4 Scalability

4.1 Dealing with Large Aboxes

SHER embodies techniques [10],[12] which use summarization and refinement to
achieve scalable Abox reasoning. Specifically, a summary Abox is constructed
from the original Abox. The initial summary Abox is built by mapping all in-
stances of the same type in the original Abox to a single instance in the sum-
mary Abox. For example, all instances of Malignant Neoplasm in the original
Abox are represented by a single instance of Malignant Neoplasm in the sum-
mary Abox. SHER first checks the summary Abox for any inconsistencies in the
knowledge base, using Pellet tableau-based reasoner [7] for consistency check-
ing. If the summary is consistent, then the original Abox must be consistent
(for technical detail, see [12]). However, the converse is not true. If any inconsis-
tencies exist, then the reasoner finds their justifications (i.e., the minimal set of
assertions responsible for the inconsistency), and tries to selectively refine sum-
mary instances in these justifications. Refinement is the process of splitting the
summary instance by the sets of role assertions that are present in the original
Abox for the individuals mapped to the given summary instance. This iterative
process of refinement ends when the summary is consistent, or the justifications
cannot be refined any more. If the knowledge base is inconsistent, SHER pro-
vides a set of justifications that can be used to cleanse the knowledge base of
inconsistencies.

To answer a query, the negation of the query is added to the concept set of
each instance in the summary Abox, and the same iterative refinement process
is followed. During this process, a map from refined individuals in the summary
Abox to individuals in the original Abox is maintained. When the process con-
verges, query results are obtained from this mapping. Initially, SHER could not



scale to the case study with such a large Abox. The problem was in the re-
finement step: the map from refined individuals to real individuals was kept in
memory. To achieve scalability, the refinement mapping is now maintained in
the database. In fact, the refinement process is performed entirely by database
operations.

4.2 Dealing with Large Tboxes

Even though the MED-SNOMED CT integrated Tbox has a total of 523,368
subclass or equivalence assertions, we do not need all of these for reasoning. As
described in [12], the techniques used in SHER are based on taking the closure of
the Abox, which informally is the set of concepts that are present in the Abox,
either directly or indirectly through assertions in the Tbox. For query answering,
the closure of the query concept must also be included.

More specifically, we compute a subset of the MED-SNOMED CT integrated
Tbox using the following procedure: (a) We use the FACT++ [6] tableau rea-
soner to absorb the Tbox to produce a new set of Tbox assertions T that elim-
inates any GCIs from the original Tbox. In the case of the MED-SNOMED CT
integrated Tbox, no GCIs are left after absorption, and no domain or range
constraints are added to the Rbox due to role absorption. (b) We then compute
the closure of the Abox clos(A, T ,R) and queries as defined in [12]. (c) For each
concept C in the clos(A, T ,R), we add the assertions in T where that concept
appears on the left hand side of the assertion. The resulting Tbox has 22,561
assertions, of which 17,319 assertions are related to MED concepts.

5 Noisy, Incomplete Data

The data in the patient records is incomplete with respect to SNOMED CT
definitions. For example, suppose a clinical trial criterion is Methicillin resis-
tant Staphylococcus aureus infection (MRSA). The SNOMED CT definition of
MRSA is the intersection of three terms:

∃hasCausativeAgent.Methicillin resistant Staphylococcus aureus,
Infection due to antimicrobial resistant bacteria, and
Infection due to Staphylococcus aureus.

If a patient record contains a positive test for an MRSA organism, a clinician
would likely say the patient matches the eligibility criteria. However, the patient
record matches only the first term of the SNOMED CT definition. Since there
is not information in the patient record that matches the second two conjuncts,
which provide definition completeness, the patient will not be retrieved as el-
igible. We therefore support users specifying which terms of the definition are
required, allowing them to tailor the query to match the data that they have. We
refer to this as query weakening. The patients retrieved are then ranked based
on the number of matching terms.

As discussed earlier, clinical data is inconsistent. As an example, two different
laboratory tests for the same disorder can result in contradictory results. SHER



is designed to detect multiple inconsistencies in the data efficiently (for technical
details, see [12]). We use these algorithms to eliminate inconsistent data before
querying it.

6 Evaluation

In this section, give the experimental results of our case study. Our experiments
were conducted on a 2-way 2.4GHz AMD Dual Core Opteron system with 16GB
of memory running Linux, and we used IBM DB2 V9.1 as our database. Our
Java processes were given a maximum heap size of 8GB.

6.1 Validation with a 100 Patient dataset

To validate the clinical correctness of results we first performed an experiment
with a randomly selected dataset of 100 patients from a 20 year clinical dataset
from the Columbia Medical Center. The 100 patient dataset has 7,451 Tbox
subclass assertions, 98,956 type assertions, and 119,206 role assertions.

ClinicalTrials.gov ID Description

NCT00084266 Patients with MRSA
NCT00288808 Patients on warfarin
NCT00393341 Patients with breast neoplasm

NCT00419978 Patients with colon neoplasm

NCT00304382
Patients with pneumococcal pneumonia where source
specimen is blood or sputum

NCT00304889 Patients on metronidazole

NCT00001162
Patients with acute amebiasis, giardisis, cyclosporiasis
or strongloides...

NCT00298870 Patients on steroids or cyclosporine

NCT00419068 Patients on corticosteroid or cytotoxic agent

Table 3. Clinical Trial Requirements Evaluated

We selected 9 clinical trials from [4] that query for different types of clinical
information (see Table 3). These queries were chosen to cover the domains of
laboratory, drug and radiology data. Table 4 shows the DL version of the queries,
along with the concepts that were weakened to find solutions, because of the
partial information present in the clinical record. The order of the queries Table 4
reflects the order in Table 3. Table 5 shows the queries, the number of patients
matched to the queries, whether matches reflect matches to weakened queries,
and time to process the queries in seconds. For query NCT 00001162, the results
shown are for the union of 7 different disorders, only 4 of which are illustrated
in Table 4.

The matched patients for the 9 clinical trials were manually evaluated by an
analysis of the original Columbia database records by one of the authors (CP).



DL Query Weakened Concept

∃associatedObservation.MRSA MRSA

∃associatedObservation.

∃roleGroup.

∃administeredSubstance.

∃roleGroup.∃hasActiveIngredient.Warfarin

None

∃associatedObservation.BreastNeoplasm Breast Neoplasm

∃associatedObservation.ColonNeoplasm Colon Neoplasm

∃associatedObservation.
(

PneumococcalPneumonia

⊓

∃hasSpecimenSource.Blood ⊔ Sputum

)

Pneumococcal Pneumonia

∃associatedObservation.

∃roleGroup.

∃administeredSubstance.

∃roleGroup.∃hasActiveIngredient.Metronidazole

None

∃associatedObservation.










acuteamebiasis⊔

giardisis⊔

cyclosporiasis⊔

strongloides⊔

. . .











acute amebi-
asis
giardisis
cyclosporiasis
strongloides
. . .

∃associatedObservation.

∃roleGroup.

∃administeredSubstance.

∃roleGroup.∃hasActiveIngredient.cyclosporine ⊔ steroids

None

∃associatedObservation.

∃roleGroup.

∃administeredSubstance.

∃roleGroup.∃hasActiveIngredient.corticosteroid ⊔ cytotoxicAgent

None

Table 4. DL Queries for Evaluated Clinical Trials

Such an analysis revealed no false positives in the reported matches. In terms
of recall, we missed 8 patients on the steroid/corticosteroid queries because the
manual mapping of drugs to SNOMED CT missed these mappings. We missed 1
patient for the Metronidazole case. Here, the miss occurred because there were
duplicate MED concepts Metronidazole and Metronidazole Preparations, with
only the former concept being mapped to SNOMED CT. The missed patient
for Metronidazole was because some drugs such as Cerner Drug: Metronidazole
Tab 500 mg. were subclasses of the unmapped Metronidazole concept. For the
breast neoplasm query, our transformation process did not distinguish between
disorders and imaging findings in the radiology data, hence the relevant MED
concept Malignant Neoplasm of Breast (Female) Unspecified was asserted as a
finding. We rectified the problem by including a query extension that also looks
at the associated findings:

∃associatedObservation.∃associatedF inding.BreastNeoplasm.



Query Matched Patients Time (s) Weakened Query

NCT00084266 1 54 yes

NCT00288808 4 78 no

NCT00393341 0 29 yes

NCT00419978 1 51 yes

NCT00304382 0 39 yes

NCT00304889 0 29 no

NCT00001162 4 225 no

NCT00298870 6 117 no

NCT00419068 6 118 no

Table 5. Patient Matches for Trial DL Queries for 100 Patients

6.2 Results with the 1 year dataset

The 1 year patient dataset had records for 240,269 patients with 22,561 Tbox
subclass assertions, 26 million type assertions, and 33 million role assertions. In
the 1 year patient dataset, we had 15 instances of inconsistencies in the data.
These inconsistencies were due to (a) laboratory tests that produced contradic-
tory information, for example, positive and negative assertions about organism
respiratory syncytial virus by laboratory tests of direct immunofluorescence as-
say (DFA) and enzyme immunoassay (EIA), (b) modeling errors in MED that
resulted in certain MED concepts that were classified as both negative and posi-
tive information, for example, the MED concept Rule Out Specific Organism was
an indirect subclass of both Positive Organism Comment Result and Negative
Culture Result. Since MED is a taxonomy, and does not contain an assertion
that Positive Organism Comment Result is disjoint with Negative Culture Re-
sult, this inconsistency was only found when we transformed the Abox to contain
assertions about the presence or absence of an organism based on these concepts.
The inconsistent data were detected by SHER, and we manually deleted records
that resulted in the inconsistencies.

Table 6 shows the queries, the number of patients matched to the queries,
the time to process the queries in minutes, and whether the query needed to be
weakened to find solutions. Table 6 demonstrates the scalability of reasoning in
the SHER engine for a combination of a large Tbox and a large Abox. We do
not present any comparison results because no other reasoner we know of can
query this dataset. For the use of clinical trial matching, which is currently a
manual process, our results show that using ontology matching to automate this
task is practical.

7 Discussion

We have presented a feasibility study for an ontology-based approach to match
patient records to clinical trials. Using a real world patient dataset, we described
various modeling and engineering challenges that we solved, including:



Query Matched Patients Time (m) Weakened Query

NCT00084266 1018 68.9 yes

NCT00288808 3127 63.8 no

NCT00393341 74 26.4 yes

NCT00419978 164 31.8 yes

NCT00304382 107 56.4 yes

NCT00304889 2 61.4 no

NCT00001162 1357 370.8 no

NCT00298870 5555 145.5 no

NCT00419068 4794 78.8 no

Table 6. Patient Matches for Trial DL Queries for 240,269 Patients

– Mapping the MED terminology to SNOMED CT terminology.

– Integrating the MED taxonomy with SNOMED CT.

– Transforming the 1-year patient database into a SNOMED CT Abox.

– Reasoning over a realistic dataset.

– Identifying and eliminating noise in the patient data.

– Dealing with incomplete patient information.

We are continuing to work on making it easier to integrate large ontologies,
improving the integration of MED and SNOMED CT, and tuning SHER for
scalability.

An interesting problem with respect to clinical data and clinical trials queries
is that of open versus closed world reasoning. Description logics and OWL use
an open world assumption i.e. if a fact is not explicitly asserted, no assumption
is made about the fact, as opposed to a closed world assumption which assumes
a fact is negative if not explicitly asserted. In the clinical domain, we need open
world reasoning in radiology and laboratory data, because, for example, unless a
lab test asserts a negative finding we cannot make arbitrary assumptions about
the results. However, in pharmacy data, we can use the closed world assumption
to infer that a patient is not on a medication if it is not asserted. Integrating
open world with closed world reasoning is a key issue for future consideration
[17].

SNOMED CT plays a critical role in the clinical domain; it has been adopted
as a national health care standard in the United States and was recently ac-
quired by International Health Terminology Standards Development Organiza-
tion thereby making it a truly global clinical standard in healthcare. Represent-
ing patient data using SNOMED CT has benefits that go beyond the clinical tri-
als matching application. Currently, several decision support systems, infection
control systems, public health organizations and regional healthcare information
organizations use SNOMED CT merely for terminology services. Our approach
provides a means to reuse the knowledge already represented in SNOMED CT
to perform semantic retrieval for different biomedical applications.
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