
PORSCHE: Performance ORiented SCHEma

Mediation

Khalid Saleem Zohra Bellahsene

LIRMM - UMR 5506, Université Montpellier 2, 34392 Montpellier, France

Ela Hunt

GlobIS, Department of Computer Science, ETH Zurich, CH-8092 Zurich

Abstract

Semantic matching of schemas in heterogeneous data sharing systems is time con-
suming and error prone. Existing mapping tools employ semi-automatic techniques
for mapping two schemas at a time. In a large-scale scenario, where data shar-
ing involves a large number of data sources, such techniques are not suitable. We
present a new robust automatic method which discovers semantic schema matches
in a large set of XML schemas, incrementally creates an integrated schema encom-
passing all schema trees, and defines mappings from the contributing schemas to the
integrated schema. Our method, PORSCHE (Performance ORiented SCHEma me-
diation), utilises a holistic approach which first clusters the nodes based on linguistic
label similarity. Then it applies a tree mining technique using node ranks calculated
during depth-first traversal. This minimises the target node search space and im-
proves performance, which makes the technique suitable for large scale data sharing.
The PORSCHE framework is hybrid in nature and flexible enough to incorporate
more matching techniques or algorithms. We report on experiments with up to 80
schemas containing 83,770 nodes, with our prototype implementation taking 587
seconds on average to match and merge them, resulting in an integrated schema and
returning mappings from all input schemas to the integrated schema. The quality of
matching in PORSCHE is shown using precision, recall and F-measure on randomly
selected pairs of schemas from the same domain. We also discuss the integrity of
the mediated schema in the light of completeness and minimality measures.

Key words: XML schema tree, schema matching, schema mapping, schema
mediation, tree mining, large scale.

Email addresses: saleem@lirmm.fr (Khalid Saleem), bella@lirmm.fr (Zohra
Bellahsene), hunt@inf.ethz.ch (Ela Hunt).

Preprint submitted to Elsevier 5 February 2008

1 Introduction

Schema matching relies on discovering correspondences between similar el-
ements in a number of schemas. Several different types of schema match-
ing[3,6,7,10,15,16,21,22] have been studied, demonstrating their benefit in dif-
ferent scenarios. In data integration schema matching is of central impor-
tance[2]. The need for information integration arises in data warehousing,
OLAP, data mashups [13], and workflows. Omnipresence of XML as a data
exchange format on the web and the presence of metadata available in that for-
mat force us to focus on schema matching, and on matching for XML schemas
in particular.

Previous work on schema matching was developed in the context of schema
translation and integration [3,6,11], knowledge representation [10,22], machine
learning, and information retrieval [7]. Most mapping tools map two schemas
with human intervention [3,7,6,10,9,15,16]. The goals of research in this field
are typically differentiated as matching, mapping or integration oriented. A
Matching tool finds possible candidate correspondences from a source schema
to a target schema. Mapping is an expression which distinctly binds elements
from a source schema to elements in the target schema, depending upon some
function. And integration is the process of generating a schema which contains
the concepts present in the source input schemas. Another objective, media-
tion, is mapping between each source schema and an integrated schema. The
objective behind our work is to explore the ensemble of all these aspects in a
large set of schema trees, using scalable syntactic and semantic matching and
integration techniques. The target application area for our research is a large
scale scenario, like WSML 1 based web service discovery and composition, web
based e-commerce catalogue mediation, schema based P2P database systems
or web based querying of federated database systems.

We consider input schemas to be rooted labelled trees. This supports the com-
putation of contextual semantics in the tree hierarchy. The contextual aspect
is exploited by tree-mining techniques, making it feasible to use automated
approximate schema matching [7] and integration in a large-scale scenario. Ini-
tially, we create an intermediate mediated schema based on one of the input
schemas, and then we incrementally merge input schemas with this schema.
The individual semantics of element labels have their own importance. We
utilise linguistic matchers to extract the meanings hidden within the labels.
This produces clusters of nodes bearing similar labels, including nodes from
the intermediate mediated schema. During the merge process, if a node from
a source schema has no correspondence in the intermediate mediated schema,
a new node in the intermediate mediated schema is created to accommodate

1 Web Service Modeling Language, http://www.w3.org/submission/WSML

this node.

Tree mining techniques extract similar sub tree patterns from a large set of
trees and predict possible extensions of these patterns. The pattern size starts
from one and is incrementally augmented. There are different techniques [1,25]
which mine rooted, labelled, embedded or induced, ordered or unordered sub-
trees. The basic function of tree mining is to find sub-tree patterns that are
frequent in the given set of trees, which is similar to schema matching activity
that tries to find similar concepts among a set of schemas.

Contributions

We present a new scalable methodology for schema mapping and producing an
integrated schema from a set of input schemas belonging to the same concep-
tual domain, along with mappings from the source schemas to the integrated
(mediated) schema. The main features of our approach are as follows.

1. The approach is almost automatic and hybrid in nature.
2. It is based on a tree mining technique supporting large scale schema

matching and integration. To support tree mining, we model schemas as
rooted ordered (depth-first) labelled trees.

3. It uses node level clustering, based on node label similarity, to minimise
the target search space, as the source node and candidate target nodes
are in the same cluster. Label similarity is computed using tokenisation
and token level synonym and abbreviation translation tables.

4. The technique extends the tree mining data structure proposed in [25].
It uses ancestor/ descendant scope properties (integer logical operations)
on schema nodes to enable fast calculation of contextual (hierarchical)
similarity between them.

5. It provides as output the mediated schema and a set of mappings (1:1,
1:n, n:1) from input source schemas to the mediated (integrated) schema
and vice versa.

6. The approach was implemented as a prototype. We report on experi-
ments using different real (OAGIS 2 , xCBL 3) and synthetic scenarios,
demonstrating:

a) fast performance for different large scale data sets, which shows that our
method is scalable and supports a large scale data integration scenario;

b) input schema selection options (smallest, largest or random) for the
creation of initial mediated schema, allowing us to influence matching
performance;

c) match quality evaluation using precision, recall and F-measure as mea-
sures of mapping quality;

2 http://www.openapplications.org
3 http://www.xcbl.org

d) an analysis of the integrity of integrated schema with reference to com-
pleteness and minimality measures;

e) quadratic time complexity.

The remainder of the paper is organised as follows. Section 2 presents the
desiderata and issues encountered in large-scale schema mediation. Section 3
defines the concepts used in the paper. Our approach, Performance ORiented
SCHEma mediation (PORSCHE) is detailed in Section 4, comprising of the
architecture, algorithms and data structures, supported by a running example.
Section 5 presents the experimental results in the framework of the desiderata
for schema mediation. Section 6 reviews related work and compares it to ours.
Section 7 gives a discussion on the lessons learned and Section 8 concludes.

2 Desiderata for Schema Mediation

Schema Mediation can be defined as integration of a set of input schemas into
a single integrated schema, with concepts mappings from the input schemas
to the integrated schema, also called the mediated schema. There are numer-
ous issues in the semantic integration of a large number of schemas. Beside
mapping quality, the performance and integrity of the integrated schema are
also very important. For example, the Semantic Web, by definition, offers a
large-scale environment where individual service providers are independent. In
such a situation the mappings can never be exact, rather they are approximate
[7,10,12]. And with hundreds of services available, searching and selecting the
required service needs to be fast and reliable enough to satisfy a user query.
Following, is a brief discussion of the desiderata for schema integration and
mediation.

2.1 Feasibility and Quality of Schema Mapping and Integration

The quality of mappings depends on the number and types of matching algo-
rithms and their combination strategy, for instance their execution order. To
produce high quality mappings, matching tools apply a range of match algo-
rithms to every pair of source and target schema elements. The results of match
algorithms are aggregated to compute the possible candidate matches which
are then scrutinised by users who select the best/most correct candidate as the
mapping for the source schema element(s) to the target schema element(s).
COMA++[6] and S-Match[10] follow this technique and create a matrix of
comparisons of these pairs of elements and then generate mappings. The final
mapping selection can also be automated, depending upon some pre-defined
criteria (match quality confidence), for example, choosing the candidate with

the highest degree of similarity. QOM[9] and RONDO[17] use a variation of
these techniques. The mapping algorithms used there are applied to each pair
of schemas of size amenable to human inspection. Large schemas, anything
in excess of 50 elements, make human intervention very time consuming and
error-prone. Therefore, automated selection of best mappings from the source
to the target schema is a must in large scale scenarios.

The second aspect regarding large scale scenarios is the requirement for batch
schema integration, where schemas may contain thousands of elements. Often,
an integrated schema is to be created and mappings from source schemas to
the integrated schema have to be produced, and this is to be done fast and
reliably. This requires both matching and integration and is not supported by
tools like COMA++, S-Match, QOM and RONDO.

2.2 Schema Integration Approaches and Integrity Measures

Integrating a batch of schemas is a specialised application of schema match-
ing, and a natural next step in data integration. Schema integration can be
holistic, incremental or iterative (blend of incremental and holistic), as sur-
veyed in [2]. The binary ladder (or balanced incremental integration) approach
can be implemented as a script which automates the merging process, based on
algorithms like QOM and SF. For example, in a binary ladder implementation,
the result of merging the first two schemas is consecutively merged with sub-
sequent schemas. [12,24], on the other hand, discuss mining techniques and
apply an n-ary integration approach (all schemas exploited holistically), to
generate an integrated schema, along with approximate acceptable mappings.
An iterative approach first finds clusters of schemas, based on some similarity
criteria, and then performs integration at cluster level iteratively[14,20,23].
Although the iterative process is automatic and robust, the mediation aspect
is very difficult to implement on top of those approaches.

The main purpose of schema integration in an information system is to hide
the complexity of the underlying data sources and schemas from the user. The
user accesses the integrated schema (mediated schema) to find a service or an
answer to a query. Batista and colleagues [4] explain the quality aspects of
the integrity of a mediated schema in an information system. They highlight
three quality criteria.

Schema completeness, computed as completeConcepts/allConcepts is the
percentage of concepts modelled in the integrated schema that can be found
in the source schema. Completeness is indicative of the potential quality of
query results.
Minimality, calculated as nonRedundantElements/allElements, measures the

compactness of the integrated schema and is normally reflected in query exe-
cution time.
Type consistency, measured as consistentElements/allElements spans all
the input and mediated schemas. It is the extent to which the elements rep-
resenting the same concept are represented using the same data types.

2.3 Performance

Performance is an open issue in schema matching [21,22], governed by schema
size and matching algorithms. The complexity of the matching task for a
pair of schemas is typically proportional to the size of both schemas and the
number of match algorithms employed, i.e. O(n1n2a), where n1 and n2 are
element counts in the source and the target and a is the number of algorithms
used [6,10,16]. Selection of the best match from a set of possible matches
increases the complexity of the problem. In schema integration and mediation,
beside the parameters discussed above, as there are more than two schemas,
we may consider instead the batch size (number of schemas) and the manner
in which the schemas are compared and integrated. The performance of the
integration and mapping process can be improved by optimising the target
search space for a source schema element. Minimising the search space by
clustering will improve performance.

Our three desiderata, outlined at the start of this section, motivated us to
deliver a new robust and scalable solution to schema integration and media-
tion. Here, we focus on a large number of schemas, automated matching, and
good performance. We explore mediated schema generation. For a given batch
of large schemas and an initial mediated schema (derived from one of the in-
put schemas), we efficiently construct a mediated schema which integrates all
input schemas in an incremental holistic manner. To enhance the speed and
lower the cost of data integration, we try to remove the need for human in-
tervention. We present a new method for schema matching and integration
which uses a hybrid technique to match and integrate schemas and create
mappings from source schemas to the mediated schema. The technique com-
bines holistic node label matching and incremental binary ladder integration
[2]. It uses extended tree mining data structures to support performance ori-
ented approximate schema matching. Our approach is XML schema centric,
and it addresses the requirements of the Semantic Web.

3 Preliminaries

3.1 Match Cardinalities

Schema matching finds similarities between elements in two or more schemas.
There are three basic match cardinalities at element level [21]. Since we are
matching schema tree structures (elements are nodes), where the leaf nodes
hold data, we place more emphasis on leaf node matching. Our categorisation
of node match cardinalities is driven by the node’s leaf or non-leaf (inner node)
status.
i) 1:1 - one node of source schema corresponds to one node in the target
schema; leaf:leaf or non-leaf:non-leaf.
ii) 1:n - one node in the source schema is equivalent to a composition of n
leaves in the target schema; leaf:non-leaf, where a source leaf node is mapped
to a subtree containing n leaf nodes in the target.
iii) n:1 - n leaves in source schema compositely map to one leaf in the target
schema; non-leaf:leaf, allowing a subtree with n leaves in a source to be mapped
to a target leaf.

Example 1 (Match Cardinality): For 1:1, cardinality is straightforward.
For 1:n, consider Figure 1. A match is found between Ssourcename[2], child of
writer, and Stargetname[2], child of author, with children first and last. We have
a 1:2 mapping (name)source : (name/first, name/last)target. Also, there is a
match between Ssourcepublisher[4] and Stargetpublisher[5], with a 1:1 mapping
(publisher/name)source : (publisher)target.•

Semantically speaking, a match between two nodes is fuzzy. It can be either
an equivalence or a partial equivalence. In a partial match, the similarity is
partial. It is highlighted in the following example.

Example 2 (Partial Match): In source schema Name = ‘John M. Brown’,
is partially matched to LastName = ‘Brown’ and FirstName = ‘John’ in the
target, because Name also contains the MiddleInitial = ‘M’. •

Fig. 1. Example schema trees showing labels and depth-first order number for each
node.

3.2 Definitions

Semantic matching requires the comparison of concepts structured as schema
elements. Labels naming the schema elements are considered to be concepts
and each element’s contextual placement information in the schema further de-
fines the semantics. For example, in Figure 1, Ssourcename[2] and Stargetname[5]
have similar labels but their tree contexts are different, which makes them con-
ceptually disjoint. Considering the XML schema as a tree, the combination of
the node label and the structural placement of the node defines the concept.
Here we present the definitions used in schema matching and integration.

Definition 1 (Schema Tree): A schema S = (V, E) is a rooted, labelled
tree[25], consisting of nodes V = {0, 1, . . . , n}, and edges E = {(x, y) | x,y
∈ V }. One distinguished node r ∈ V is called the root, and for all x ∈ V ,
there is a unique path from r to x. Further, lab:V → L is a labelling function
mapping nodes to labels in L = {l1, l2, . . .}.

Schema tree nodes bear two kinds of information: the node label, and the
node number allocated during depth-first traversal. Labels are linguistically
compared to calculate label similarity (Def. 2, Label Semantics). Node number
is used to calculate the node’s tree context (Def. 4, Node Scope).

Definition 2 (Label Semantics): A label l is a composition of m strings,
called tokens. We apply the tokenisation function tok which maps a label to
a set of tokens Tl = {t1, t2, . . . , tm}. Tokenisation [10] helps in establishing
similarity between two labels.
tok : L → P(T), where P(T) is a power set over T.

Example 3 (Label Equivalence): FirstName, tokenised as {first, name},
and NameFirst, tokenised as {name, first}, are equivalent, with 100 % simila-
rity.•

Label semantics corresponds to the meaning of the label (irrespective of the
node it is related to). It is a composition of meanings attached to the tokens
making up the label. As shown by Examples 3-5, different labels can represent
similar concepts. We denote the concept related to label l as C (l).

Example 4 (Synonymous Labels): WriterName, tokenised as {writer,
name}, and AuthorName, tokenised as {author, name} are equivalent (they
represent the same concept), since ‘writer’ is a synonym of ‘author’.•

Semantic label matching minimises the search space of possible mappable tar-
get nodes [10,25]. The derivation of concept similarity in two schemas is initi-
ated by comparing their labels. Similarity between labels is either equivalence
or partial equivalence, or no similarity, as defined below.

a. Equivalence : C(lx) = C(ly)
b. Partial Equivalence : C(lx)∼=C(ly)

i) More Specific (Is part of) : C(lx)⊆C(ly)
ii) More General (Contains) : C(lx)⊇C(ly)
iii) Overlaps : C(lx) ∩ C(ly)6= ∅
c. No Similarity : C(lx) ∩ C(ly)= ∅

Example 5 (Label Similarity): As AuthorName and WriterName are equiv-
alent (Example 4), we write AuthorName = WriterName. Also, AuthorLast-
Name ⊆ AuthorName, as LastName is conceptually part of name. Conversely,
AuthorName⊇AuthorLastName. MiddleLastName and FirstNameMiddle over-
lap, as they share tokens {name, middle}.•

Definition 3 (Node Clustering): To minimise the target search space (see
Sec. 2), we cluster all nodes, based on label similarity. The clustering function
can be defined as V T : L → P(V) where P(V) is the power set over V .
V T returns for each label l ∈ L a set of nodes vi ⊆ V , with labels similar
to l. Figure 2 illustrates node clustering. Here, the cluster contains nodes
{x52, x11, x23, x42} bearing synonymous labels {author, novelist, writer}.

Fig. 2. Node Clustering. In xsn, s is the schema number and n is the node number
within the schema.

Definition 4 (Node Scope): In schema S each node x ∈ V is numbered
according to its order in the depth-first traversal of S (the root is numbered
0). Let SubTree(x) denote the sub-tree rooted at x, and x be numbered X,
and let y be the rightmost leaf (or highest numbered descendant) under x,
numbered Y . Then the scope of x is scope(x)=[X,Y]. Intuitively, scope(x) is
the range of nodes under x, and includes x itself, see Fig. 3. The count of
nodes in SubTree(x) is Y −X + 1.

Fig. 3. Example schema tree with labels and [number,scope] for each node.

Definition 5 (Node Semantics): Node semantics of node x, Cx, combines

the semantics of the node label l, C(lx), with its contextual placement in the
tree, TreeContext(x) [10], via function NodeSem.
Cx : x → NodeSem(C(lx), TreeContext(x)).
TreeContext of a node is calculated relative to other nodes in the schema,
using node number and scope (Example 7).

Definition 6 (Schema Mediation)
INPUT: A set of schema trees SSet = {S1,S2, . . .Su}.
OUTPUTS:
a) An integrated schema tree Sm which is a composition of all distinct con-
cepts Cx in SSet (see Def. 5, and[4]).

Sm =
∧

x∈Si

u⊎

i=1

(Cx)

where
⊎

is a composition operator on the set of schemas which produces a
tree containing all the distinct concepts (encoded as nodes). The tree has to
be complete (see integrated schema integrity measure, Sec. 5 and[4]) to ensure
correct query results.
b) A set of mappings M = {m1, m2, . . .mw} from the concepts of input schema
trees to the concepts in the integrated schema.

The integrated schema Sm is a composition of all nodes representing distinct
concepts in SSet. During the integration, if an equivalent node is not present
in Sm, a new edge e′ is created in Sm and the node is added to it, to guarantee
completeness.

3.3 Scope Properties

Scope properties describe the contextual placement of a node[25]. They explain
how structural context (within a tree) can be extracted during the evaluation
of node similarity. The properties represent simple integer operations.

Unary Properties of a node x with scope [X,Y]:
Property 1 (Leaf Node(x)): X=Y.
Property 2 (Non-Leaf Node(x)): X < Y.

Example 6 (Leaf and Non-Leaf) : See Fig. 3. Property 1 holds for title[7,7]
which is a leaf. Property 2 holds for writer[1,2] which is an inner node. Intu-
itively, properties 1 and 2 detect simple and complex elements in a schema.•

Binary Properties for x [X,Y], xd[Xd, Yd], xa[Xa, Ya], and xr[Xr, Yr]:
Property 3 (Descendant (x, xd), xd is a descendant of x): Xd >X and

Yd ≤Y.
Property 4 (DescendantLeaf (x, xd)): This combines Properties 1 and 3.
Xd >X and Yd ≤Y and Xd = Yd.
Property 5 (Ancestor (x, xa), xa is an ancestor of x): (complement of
Property 3) Xa <X and Ya ≥Y.
Property 6 (RightHandSideNode (x, xr), xr is Right Hand Side Node
of x with Non-Overlapping Scope): Xr > Y .

Fig. 4. Source and target schema trees.

Example 7 (Node Relationships): See Fig. 4. Starget – property 5 holds for
nodes [4,5] and [5,5], as Ancestor([5,5],[4,5]), so publisher[4,5] is an ancestor of
name[5,5]. Also Ancestor([4,5],[0,7]) holds for book[0,7] and publisher[4,5]. In
Starget, RightHandSideNode([4,5],[6,6]) holds, implying node labelled isbn
is to the right of node labelled publisher.•

Example 8 (Using Scope Properties) : The task is to find a mapping
for Ssourceauthor/name in the target schema Starget (Fig. 4). Starget has two
nodes called name: [2,2] and [5,5]. We assume synonymy between author and
writer, top down traversal, and Ssourceauthor being already mapped to writer
[1,2]. We perform the descendant node check on [2,2] and [5,5] with respect to
writer[1,2]. Using Prop. 3, Descendant([5,5],[1,2])=false implies [5,5] is not
a descendant of [1,2], whereas Descendant([2,2],[1,2]) is true. Thus, [2,2] is a
descendant of [1,2], and author/name is mapped to writer/name.

4 PORSCHE

PORSCHE accepts a set of XML schema trees. It outputs an integrated
schema tree and mappings from source schemas to the integrated schema.

4.1 PORSCHE Architecture

PORSCHE architecture (see Fig. 5) supports the complete semantic integra-
tion process involving schema trees in a large-scale scenario. The integration

Fig. 5. PORSCHE architecture consists of three modules: pre-mapping, label con-
ceptualisation and node mapping.

system is composed of three parts: i) Pre-Mapping, ii) Label Conceptualisation
and iii) Node Mapping, supported by a repository which houses oracles and
mappings.

The system is fed a set of XML Schema instances. Pre-Mapping module pro-
cesses the input as trees, calculating the depth-first node number and scope
(Def. 4) for each of the nodes in the input schema trees. At the same time,
for each schema tree a listing of nodes is constructed, sorted in depth-first
traversal order. As the trees are being processed, a sorted global list of labels
over the whole set of schemas is created (see Sec. 4.2).

In Label Conceptualisation module, label concepts are derived using linguistic
techniques. We tokenise the labels and expand the abbreviated tokens using
an abbreviation oracle. Currently, we utilise a domain specific user defined
abbreviation table. Further, we make use of token similarity, supported by
an abbreviation table and a manually defined domain specific synonym table.
Label comparison is based on similar token sets or similar synonym token
sets. The architecture is flexible enough to employ additional abbreviation or
synonym oracles or arbitrary string matching algorithms.

In Node Mapping module, the Mediated Schema Creator constructs the ini-
tial mediated schema from the input schema tree with the highest number of
nodes augmented with a virtual root. Then it matches, merges and maps. Con-

cepts from input schemas are matched to the mediated schema. The method
traverses each input schema depth-first, mapping parents before siblings. If a
node is found with no match in the mediated schema, a new concept node
is created and added to the mediated schema. It is added as the rightmost
leaf of the node in the mediated schema to which the parent of the current
node is mapped. This new node is used as the target node in the mapping.
The technique combines node label similarity and contextual positioning in
the schema tree, calculated with the help of properties defined in Section 3.

The Repository is an indispensable part of the system. It houses oracles: the-
sauri and abbreviation lists. It also stores schemas and mappings, and provides
persistent support to the mapping process.

4.2 Algorithms and Data Structures

In this section we discuss the hybrid algorithms used in PORSCHE. We make
assumptions presented in [12,24] which hold in single domain schema integra-
tion. Schemas in the same domain contain the same domain concepts, but
differ in structure and concept naming, for instance, name in one schema may
correspond to a combination of FirstName and LastName in another schema.
Also, in one schema different labels for the same concept are rarely present.
Further, only one type of match between two labels in different schemas is
possible, for example, author is a synonym of writer.

Algorithm : preMap

Data: SSet : Set of Schema Trees of size u
Result: V , G LL, j

V : List of lists of nodes (one list per schema) of size u, initially empty;
each node list S NL sorted on depth-first order
G LL : Global sorted list of labels
j : Schema tree identifier, initialized to 0
begin1

for each schema Si ∈ S do2

Vi ← nodeScope(∅, RootNodeSi
, ∅)3

V ← V ∪ Vi4

Li ← lab(Vi)5

if i = 1 then6

G LL ← sort(Li)7

else8

G LL ← mergeLabelLists(Li,G LL)9

j ← initialMediatedSchema(Vrandom|Vsmallest|Vlargest)10

end11

Fig. 6. Pseudocode of Pre-Mapping.

Pre-Mapping comprises a number of functions: 1) depth-first, scope and par-

ent node number calculation, 2) creation of data structures for matching and
integration: schema node list (S NL) for each schema and global label list
(G LL), and 3) identification of the input schema from which the initial me-
diated schema is created. S NL and G LL are later updated by the Node
Mapping module (see Fig. 11). Pre-Mapping requires only one traversal of
each input schema tree (Fig. 6).

Algorithm : nodeScope

Data: p, c, V

p : parent node list element, c : current node, V : nodes list
Result: V

begin1

x ← New nodesListElement(c)2

x.number ← length(V)3

x.parentNode ← p4

x.rightMostNode ← ∅5

Add x to V6

if c has no children then7

update(x, x)8

for each child of c do9

nodeScope(x, child, V)10

end11

Fig. 7. Pseudocode for node scope calculation and node list creation.

Algorithm nodeScope (Fig. 7) is a recursive method, called from the preMap
algorithm (L6.3) 4 for each schema, generating a schema node list (S NL).
It takes as input the current node, its parent reference, and the node list. In
its first activation, reference to the schema root is used as the current node:
there is no parent, and S NL is empty. A new node list element is created
(L7.2-6) and added to S NL. Next, if the current node is a leaf, a recursive
method update (Fig. 8) is called. This adjusts the rightmost node reference
for the current S NL element and then goes to adjust its ancestor entries in
S NL. This method recurses up the tree till it reaches the root, and adjusts
all elements on the path from the current node to the root. Next, in nodeScope
(L7.9-10), the method is called for each child of the current node.

After calculating node scope, preMap adds the new S NL to its global list
of schemas and creates a global (sorted) label list (G LL) (L6.5-9). (L6.10)
chooses the largest (smallest or random) schema tree for subsequent formation
of the initial mediated schema. G LL creation is a binary incremental process.
S NL of the first schema is sorted and used as an initial G LL (L6.6-7) and
then S NLs from other schemas are iteratively merged with the G LL, as
follows.

4 Lx.y refers to line y of algorithm in figure x

Algorithm : update

Data: xc, xr

xc : Current nodes list element
xr : Right most node element of current nodes list element
begin1

xc.rightMostNode ← xr2

if xc ¬ Root Node then3

update(xc.parentNode, xr)4

end5

Fig. 8. Pseudocode for updating scope entries in S NL.

mergeLabelLists (see Fig. 9) is a variant of merge sort. At (L9.7-8), we skip
labels shared between S NL and G LL and add links between them, to keep
track of shared labels. Multiple occurrences of the same label within an S NL,
however, are needed, as they help us in identifying labels attached to distinct
nodes, e.g. author/name is different from publisher/name. If more distinct
nodes with the same label are encountered in the matching process, they are
handled in an overflow area. In the G LL, multiple occurrences of the same
label are equivalent to the largest number of their separate occurrences in one
of the input schemas. This is further explained with the help of the following
example.

Algorithm : mergeLabelLists

Data: L1, L2 : Label lists for merging
Result: G LL : Sorted list of merged label lists, initially empty
begin1

sort(L1)2

while length(L1) ≥ 0 ∧ length(L2) > 0 do3

if first(L1) ≤ first(L2) then4

append first(L1) to G LL5

L1 ← rest(L1)6

if first(L1) = first(L2) then7

L2 ← rest(L2)8

else9

append first(L2) to G LL10

L2 ← rest(L2)11

if length(L1) > 0 then12

append rest(L2) to G LL13

if length(L2) > 0 then14

append rest(L1) to G LL15

end16

Fig. 9. Pseudocode for label list merging, based on merge sort.

Example 9 (Repeated Labels) : Assume three input schema trees: S1, S2

and S3. Their S NLs before merge sort are: S1{book, author, name, info,
publisher, name, title}, S2{book, writer, name, publisher, address, name, title}

Algorithm : labelSimilarity

Data: G LL, simType

G LL : Global label list
simType : Similarity type for labels
Result: G LL : Global label list with inter-label similarity links
begin1

var Set of token sets T2

(T ,G LL) ← tok(G LL)3

if simType = synonymTokenSetSimilarity then4

adjustTokenSynonymSimilarity(Union of token sets ∈ T)5

for each li ∈ G LL do6

for each lj ∈ rest(G LL) do7

if li ¬ = lj ∧ @ similarity(li,lj) then8

if Ti = Tj then9

adjustLabelSimilarity(li,lj)10

end11

Fig. 10. Pseudocode for label similarity derivation, based upon tokenisation (tok).

and S3{book, author, address publisher, address, name, title}. The sorted
G LL is {address, address, author, book, info, name, name publisher, title,
writer}.•

Label conceptualisation is implemented in labelSimilarity (Fig. 10). The method
creates similarity relations between labels, based on label semantics (Def. 2).
This method traverses all labels, tokenises them (with abbreviations expanded),
and compares them exhaustively. If similarity is detected, a link is added in
G LL recording label similarity between two list entries.

After Pre-Mapping, PORSCHE carries out Node Mapping (see Fig. 11, media-
tion), which accomplishes both schema matching and integration. This handles
the semantics of node labels, along with the tree context, to compute the map-
ping. The algorithm accepts as input a list of S NLs (V) and the identifier
of the input schema with which other schemas will be merged (j). It outputs
the mediated schema node list (MSNL), Vm, and a set of mappings M , from
input schema nodes to the mediated schema nodes.

First, the initial mediated schema tree which works as a seed for the whole
process is identified. To this purpose, a clone of the largest S NL is created
with a new root node, Vm (L11.2). The new root node allows us to add input
schema trees at the top level of the mediated schema whenever our algorithm
does not find any similar nodes. This is required to support the completeness
of the final mediated schema.

We use three data structures mentioned in the preceding paragraphs: (a) input
S NLs, V (b) G LL, and (c) MSNL, Vm. Here, we give a brief explanation
of attributes associated with the node objects in each data structure. V holds

Algorithm : mediation

Data: V , j

V : List of lists of nodes (one list per schema) of size u; each node list
S NL sorted on depth-first order;
j : Input schema identifier
Result: M, Vm

M : Set of mapping, initially empty
Vm : Mediated schema nodes list
begin1

Vm ← initialMediatedSchemaNodesList(Vj , xROOT)2

for each V ∈ V do3

for each node x ∈ V do4

Lx ← lab(x)5

Lxsl ← similarLabels(Lx, Vm)6

if Lxsl ¬ ∅ then7

Vt ← VT(Lxsl)8

if |Vt| = 1 then9

(m, xt)← oneMatch(x, Vt, Vm)10

else11

(m, xt)← multipleMatch(x, Vt, Vm)12

else13

(xt, Vm)← addNewNode(Vm, x)14

(m, xt)← mapOneToOne(x, xt)15

M ←M ∪m16

end17

Fig. 11. Pseudocode for schema integration and mapping generation.

u S NLs, representing each input schema, where each element of the list has
attributes {depth-first order number, scope, parent, mapping data {mediated
schema node reference, map type}}. G LL element attributes are {label, link
to similar label}. Vm’s elements comprise attributes {depth-first order number,
scope, parent, list of mappings{input schema identifier, node number}}. Data
structures (a) and (c) are further sorted according to the order of (b), i.e. sorted
G LL, where each node object is placed aligned with its label (see Tab. 1). This
helps in the clustering of similar nodes (Def. 3) and speeds up mapping, as
similar nodes can be looked up via an index lookup. In mapping data in V, the
mediated schema node reference is the index number of the node in MSNL
to which it has been matched, and maptype records mapping cardinality (1:1,
1:n or n:1).

During mediation a match for every node (L11.4) of each input schema (L11.3)
is calculated, mapping it to the mediated schema nodes. For each input node x,
a set Vt of possible mappable target nodes in the mediated schema is created,
producing the target search space for x. The criterion for the creation of this
set of nodes is node label equivalence or partial equivalence (L11.5,6). Vt can
have zero (L11.13), one (L11.9) or several (L11.11) nodes.

If there is only one possible target node in the mediated schema, method

Algorithm : oneMatch

Data: x, Vt,Vm

x : Source node
Vt : Set of one target node xt1
Vm : Mediated schema tree node list
Result: m, xt

m : Mapping
xt : Target node in Vm

begin1

if (Leaf(x)∧Leaf(xt1)) ∨ (¬Leaf(x)∧¬Leaf(xt1)) then2

if ancestorMap(x,xt1) then3

(m, xt)← mapOneToOne(x, xt1)4

else5

(xt, Vm) ← addNewNode(Vm,x)6

(m, xt)← mapOneToOne(x, xt)7

if Leaf(x)∧¬Leaf(xt1) then8

(m, xt)← mapOneN(x, xt1)9

if ¬Leaf(x)∧Leaf(xt1) then10

(m, xt)← mapNOne(x, xt1)11

end12

Fig. 12. Pseudocode for matching one target node.

Algorithm : multipleMatch

Data: x, Vt, Vm

x : Source node
Vt : Set of n(> 1) target nodes
Vm : Mediated schema tree node list
Result: m, xt

m : Mapping
xt : Target node in Vm

begin1

descendantCheck← false2

for each node xti ∈ Vt do3

if descendant(x,xti) then4

(m, xt)← mapOneToOne(x, xti)5

descendantCheck← true6

break7

if ¬descendantCheck then8

(xt, Vm)← addNewNode(Vm,x)9

(m, xt)← mapOneToOne(x, xt)10

end11

Fig. 13. Pseudocode for matching several target nodes.

oneMatch (Fig. 12) is executed. (L12.2,8,10) compare the tree context of nodes
x (input node) and xt1 (possible target node in Vt), to ensure that a leaf node
is mapped to another leaf node. Second check, ancestorMap (L12.3), ensures
that at some point up the ancestor hierarchy of x and xt1 there has been a
mapping, in accordance with Prop. 5. This guarantees that subtrees containing

x and xt1 correspond to similar concept hierarchies. This increases the match
confidence of nodes x and xt1.

Alternatively, if the target search space Vt has more than one node, algorithm
multipleMatch (Fig. 13) is executed. Here, we check the descendant Prop. 3
(L13.4) for each node xt in Vt (L13.3). Descendant function verifies if xt lies
in the sub-tree of the node to which the parent is mapped, that is within the
scope. The function returns true for only one node or none.

Method addNewNode (L11.14,13.9,12.6) adds a new node xt as the rightmost
sibling of the node to which the parent of x is mapped. Adding a new node
requires a scope update: the ancestor and right hand side nodes of the new
node have now a larger scope. Properties 5 and 6 are used to to find the
ancestor and right hand side nodes. For ancestor nodes, scope is incremented,
and for right hand side nodes, both node number and scope are incremented.

Mapping method mapOneToOne, creates a 1:1 map from x to xt, whereas
mapOneN creates a mapping from x (a leaf) to a set of leaves in the subtree
rooted at xt (non-leaf), which is a 1:n mapping. This mapping is considered
to be an approximate mapping but follows the semantics of leaves mapping to
leaves. And, similarly, mapNOne is a composite mapping of leaves under x, to
leaf xt. Node Mapping algorithm (Fig. 11) integrates all input nodes into the
mediated schema and creates corresponding mappings from input schemas to
the mediated schema.

4.3 A Schema Integration Example

Figure 14 shows two trees after Pre-Mapping. A list of labels created in this
traversal is shown in Table 1a. The two nodes with the same label name but
different parents are shown (labels with index 2 and 3). The last entry in the
list is the root of the mediated schema. In the label list the semantically
similar (equivalent or partially equivalent) labels are detected: author (index
0) is equivalent to writer (index 7).

Fig. 14. Input Schema Trees Sa and Sb.

A matrix of size uq (here 2x9) is created, where u is the number of schemas
and q the number of distinct labels in the G LL, see Tab. 1b. Each matrix
row represents an input schema tree and each non-null entry contains the

Table 1
Before Node Mapping. Schema column entry is (node number, scope, parent).

a. Global Label List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer root

b. Input Schema Matrix : Row 1 is Sa and Row 2 is Sb

1,2,0 0,3,-1 2,2,1 3,3,0

0,5,-1 2,2,1 4,4,3 3,4,0 5,5,0 1,2,0

c. Initial Mediated Schema

1,6,0 3,3,2 5,5,4 4,5,1 6,6,1 2,3,1 0,6,-1

Table 2
After Node Mapping. *Column entry is (node number, scope, parent, mapping).
**Bold numbers refer to sourceSchema.node.

a. Global Label List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer root

b. Mapping Matrix *: Row 1 is Sa and Row 2 is Sb

1,2,0,7 0,3,-1,1 2,2,1,2 3,3,0,4

0,5,-1,1 2,2,1,2 4,4,3,3 3,4,0,5 5,5,0,6 1,2,0,7

c. Final Mediated Schema **

1,7,0,
1.0,2.0

3,3,2,
1.2,2.2

5,5,4,
2.4

7,7,1,
1.3

4,5,1,
2.3

6,6,1,
2.5

2,3,1,
1.1,2.1

0,7,-1

node scope, parent node link, and the mapping, which is initially null. Matrix
columns are alphabetically ordered. The larger schema, Sb, Fig. 14, is selected
for the creation of the initial mediated schema Sm. A list of size q, Tab. 1c, is
created to hold Sm, assuming the same label order as in Tab. 1a and 1b.

The node mapping algorithm takes the data structures in Tab. 1 as input, and
produces mappings shown in Tab. 2b and the integrated schema in Tab. 2c.
In the process, the input schema Sa is mapped to the mediated schema Sm,
i.e. extended schema Sb. The mapping is taken as the column index (Tab. 2b,
in bold) of the node in Sm. Saving mappings as column index gives us the
flexibility to add new nodes to Sm, by appending to it. Scope values of some
nodes may be affected, as explained previously, because of the addition of new
nodes, but column indices of all previous nodes remain the same. Intuitively,
none of the existing mappings are affected.

Fig. 15. Mediated Schema with mappings.

Node Mapping for input schema Sa (Tab. 1b row 1) starts from the root node
Sa[0,3]book. It follows the depth first traversal of the input tree, to ensure that
parent nodes are mapped before the children. Sa[0,3] has only one similar node
in the mediated schema tree Sm i.e., node 1 at index 1. So entry 1 at index 1 for
Sa records the mapping (Sa[0, 3], Sm[1, 6]), see Tab. 2b. Information regarding
mapping is also saved in the mediated schema node as 1.0 (node 0 of schema
1). Next node to map in Sa is [1,2]author, similar to Sm[1,2]writer. Both nodes
are internal and the method ancestorMap returns true since parent nodes of
both are already mapped. The resulting mapping for node with label author is
entry 7. For node with label 2 name, there are two possibilities, label 2 (index
2) and label 3 (index 3) in the mediated schema. Descendant is true for node at
index 2 (author/name,writer/name), and false for 3 (author/name,pub/name).
Hence, 2 is the correct match.

The last node to map in Sa is [3,3]price. There is no node in Sm with a similar
label, so a new node is added to Sm, recorded by an entry in the column with
label ‘price’ in the mediated schema (Tab. 2c). A new node is created as the
rightmost sibling of the node in the mediated tree to which the parent node
of current input node is mapped, i.e. as child of book. The scope and parent
are accordingly adjusted for the new node, and for its ancestors, and for right
hand side nodes, scope and number are adjusted. There is no effect on the
existing mapping information. Finally, a mapping is created from the input
node to this new target node.

If a new node is added in the middle of the tree, its ancestor’s scope is incre-
mented by one. And, accordingly, right hand side nodes (satisfying Property
6) have their order numbers and scopes incremented by one. The implemen-
tation keeps track of the columns for the next node according to depth-first
order. Thus, the final mediated schema tree can be generated from the final
mediated schema row by a traversal starting from the root. The mediated
schema with mappings (dotted lines) is shown in Fig. 15.

4.4 Complexity Analysis

The worst-case time complexity of PORSCHE can be expressed as a function
of the number of nodes in an input schema, n on average, where the number
of schemas is u. The algorithm has the following phases.

• Data structure creation - all input schemas are traversed as trees (depth-
first) and stored as node lists (S NLs), a global list of node labels (G LL)
is created, and one of the schemas is selected as the base for the mediated
schema, with time complexity O(nu).

• Label List sorting - the number of labels is nu and sort time complexity for
the global list is O(nu log(nu)).

• Label similarity - we compare each label to the labels following it in the list.
Time complexity of O((nu)2).

• Node contextual mapping - nodes are clustered, based on node label simi-
larity. Worst case is when all labels are similar and form one cluster of size
nu. We compare each node once to all other nodes, using tree mining func-
tions. At worst, nu nodes are compared to nu nodes, with time complexity
O((nu)2). Realistically, there are multiple clusters, much smaller than nu,
which improves performance.

Overall time complexity is O((nu)2), with space complexity O(n(u)2), as the
largest data structure is a matrix of size nu2 used in the schema mapping
process.

The theoretical time and space complexity of PORSCHE is similar to other
algorithms we surveyed (Sec. 2). Because we perform only one full traversal
of all the schemas and reuse the memory-resident data structures generated
in the traversal of the fist schema, instead of performing repeated traversals
used in alternative approaches which use a script to repeatedly merge any two
schemas, we can generate a mediated schema faster than other approaches.
Our experiments confirm the complexity figures derived above, see Section 5.

5 Experimental Evaluation

The prototype implementation uses Java 5.0. A PC with Intel Pentium 4,
1.88 GHz processor and 768 MB RAM, running Windows XP was used. We
examine both the performance and quality of schema mediation, with respect
to mapping quality and mediated schema integrity.

Table 3
Schema domains used in the experiment.

Domain OAGIS XCBL BOOKS

Number of Schemas 80 44 176

Average nodes per schema 1047 1678 8

Largest schema size 3519 4578 14

Smallest schema size 26 4 5

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

t
i
m
e
(
m
s
)

Schemas

Performance Scalability (Books Schemas)

Same trend for case A,B and C

Fig. 16. BOOKS: integration time (ms) as a function of the number of schemas.

5.1 Performance Evaluation

Performance is evaluated as the number of schemas or nodes processed versus
the time required for matching, merging and mapping. We selected three sets
of schema trees from different domains, shown in Tab. 3. OAGIS and xCBL
are real schemas, whereas BOOKS are synthetic schemas.

Experiments were performed with different numbers of schemas (2 to 176).
Algorithm performance was timed under three different similarity scenarios:

A) Label String Equivalence,
B) Label Token Set Equivalence,
C) Label Synonym Token Set Equivalence.

Figure 16 shows a comparison of three similarity scenarios, A, B, and C, for
sets of 2, 4, 8, 16, 32, 64, 128, and 176 schemas from BOOKS. There is no
visible difference in the performance of various matchers. This is possibly due

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

t
i
m
e
(
s
)

Nodes (x 1000)

Performance Scalability (Nodes)

OAGIS Schemas
XCBL Schemas

Fig. 17. Comparison of schema integration times (seconds) for real web schemas.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90

t
i
m
e
(
s
)

Nodes (x 1000)

Performance Scalability (Nodes)

Similarity A
Similarity B
Similarity C

Fig. 18. Integration of OAGIS schemas.

to the fact that synthetic schemas vary little in their labels.

Figure 17 shows time in seconds for OAGIS and xCBL. The execution time
for PORSCHE depends upon the number of schemas to be integrated, and
appears to be quadratic in the number of nodes, as predicted by the complexity
analysis (Sec. 4.4). Figures 18 and 19 show the time in seconds against the
number of nodes processed for the three similarity methods (A, B, and C), for
xCBL and OAGIS schemas. xCBL schemas (Fig. 19) are slower to match than
OAGIS schemas (Fig. 18). This is due to the higher average number of nodes
in xCLB schemas. It takes approximately 600 s to match 80 OAGIS schemas,

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80

t
i
m
e
(
s
)

Nodes (x 1000)

Performance Scalability (Nodes)

Similarity A
Similarity B
Similarity C

Fig. 19. Integration of xCBL schemas.

while 44 xCLB schemas require about 800 s.

In both cases there is a slight difference in matching times for categories A,
B and C (Fig. 18 and 19), due to different label matching strategies. A is the
fastest, as it works only on the labels. B is slightly slower, as labels have to
be tokenised, and C is the slowest, as one needs to match synonyms as well.
These evaluation cases show that PORSCHE has acceptable performance on
an office PC for a large number of schemas.

5.2 Mapping Quality

As available benchmarks focus on two schemas at a time, and our approach
targets a set of schemas, we can only compare mapping quality for two schemas
at a time. From the set of 176 books schemas we randomly selected 5 pairs
of schemas (sizes ranging between 5 and 14 nodes), from purchase order one
schema pair (schema sizes 14 and 18 nodes), and from OAGIS two schema
pairs (schema sizes from 26 to 52 nodes) 5 . We computed mapping quality
for COMA++ and SF:Similarity Flooding (RONDO) and compared those to
PORSCHE. The quality of mappings is evaluated using precision, recall and
F-measure. The results are summarised in Figures 20, 21, 22 and 23. For
PORSCHE, similarity uses token level synonym lookup.

The comparison shows almost equivalent mapping quality for PORSCHE and
COMA++, since both are driven by similar user defined pre-match effort of

5 Schemas and results detail at http://www.lirmm.fr/PORSCHE/results/

 0

 0.2

 0.4

 0.6

 0.8

 1

Books1

Books2

BOoks3

Books4

Books5

PurOrder

Oagis1

Oagis2

P
r
e
c
i
s
i
o
n

Different Scenarios

Mapping Quality

PORSCHE SF COMA++

Fig. 20. Precision for PORSCHE, COMA++ and Similarity Flooding for 8 pairs of
schemas.

 0

 0.2

 0.4

 0.6

 0.8

 1

Books1

Books2

BOoks3

Books4

Books5

PurOrder

Oagis1

Oagis2

R
e
c
a
l
l

Different Scenarios

Mapping Quality

PORSCHE SF COMA++

Fig. 21. Recall for PORSCHE, COMA++ and Similarity Flooding for 8 pairs of
schemas.

constructing synonym tables used to derive label similarity. Similarity flood-
ing demonstrates better recall than PORSCHE or COMA++. The results
also demonstrate local schema differences. Books2 is the hardest case, and
we discovered that it contained inverted paths (book/author is matched to
author/book).

PORSCHE has also been evaluated within our benchmark, XBenchMatch[8].
The benchmark uses precision, recall, F-measure, overall measure, and other

 0

 0.2

 0.4

 0.6

 0.8

 1

Books1

Books2

BOoks3

Books4

Books5

PurOrder

Oagis1

Oagis2

F
-
m
e
a
s
u
r
e

Different Scenarios

Mapping Quality

PORSCHE SF COMA++

Fig. 22. F-measure for PORSCHE, COMA++ and Similarity Flooding for 8 pairs
of schemas.

 0

 0.2

 0.4

 0.6

 0.8

 1

PORSCHE SF COMA++

A
v
e
r
a
g
e

Q
u
a
l
i
t
y

Tools Comparison

Mapping Quality

Precision Recall F-measure

Fig. 23. Global comparison of quality metrics.

metrics of structural schema proximity. Structural proximity measures are
based on differences in the number and size of sub-trees shared between in-
put and mediated schemas, and schema proximity compares two schema trees
which are being matched. PORSCHE demonstrated good results in compari-
son with COMA++ and RONDO (Similarity Flooding).

5.3 Mediated Schema Integrity

We gave a brief overview of the integrated schema quality evaluation in Sec. 2.
Since our test domains are XML schema instances with only element label in-
formation, type consistency can not be evaluated. In the following, we consider
only completeness and minimality. As discussed in Sec. 2.2 and algorithm im-
plementation (Fig. 11, 12 and 13), when a match is not found in the mediated
schema, a new concept node is added to it. Mapping from source schema
tree to the new node is then established. This demonstrates that PORSCHE
inherently fulfills the completeness criterion of mediated schema integrity.

 0

 0.2

 0.4

 0.6

 0.8

 1

Books1

Books2

BOoks3

Books4

Books5

PurOrder

Oagis1

Oagis2

M
i
n
i
m
a
l
t
y

Different Scenarios

Integrity of Integrated Schema

Fig. 24. Minimality of PORSCHE schema integration for the selected pairs of
schemas.

To evaluate minimality, we take the pairs of schemas considered in mapping
quality evaluation. For each pair of schemas we perform matching and merg-
ing. The resulting integrated schema is scrutinised manually for redundancies.
The results (minimalty = 1 − (redundantNodes/totalNodes)) are shown in
Fig. 24. An inspection of integrated schemas showed that minimality decreased
where input schemas being matched had inverted paths. To further investigate
the integrity of our approach, we calculated the minimalty of the integrated
schema created by merging 176 books schemas (small in size and amenable
to human inspection). We used an ideal integrated schema (manually created,
containing 17 nodes) to assess redundancy. A batch of 176 experiments was
performed, each selecting one schema as the seed mediated schema. Figure 25
shows that minimality fluctuates between 0.68 and 0.85.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20
 40

 60
 80

 100
 120

 140
 160

 180

M
i
n
i
m
a
l
t
y

Schema Number

Integrity of Integrated Schema

Fig. 25. Minimality in PORSCHE for 176 book schemas. 176 experiments are shown
(along the x-axis), with each schema selected, in turn, as the initial mediated
schema.

6 Related Work

Most schema-matching systems compare two schemas at a time and aim
for quality matching but require significant human intervention. CUPID[16],
COMA++[6], S-Match[10], QOM[9], GLUE[7] are some of these tools pre-
sented in this section. Several surveys[6,21,22] argue that extending the match-
ing to data integration is time consuming and limited in scope. Matching of
two large bio-medical taxonomies has been demonstrated by Do and Rahm
using COMA++, and Mork and Bernstein [18] using CUPID and similarity
flooding (RONDO[17]). Quick Ontology Matching (QOM) matches large on-
tologies with performance in view. Large scale schema matching has also been
investigated in the web interface schema integration[12,24] using data mining.
PORSCHE’s goal is to match, merge and map in a hybrid manner, whereas
most of the tools separate the two activities of matching and integrating,
which makes them unsuitable for automated integration scenarios, as needed
in e-commerce.

COMA++[6] is one of the most recent matching and merging tools. It is a
composite matcher producing quality matches for a pair of schemas. It pro-
vides an extensible platform which can combine several matchers. It uses user
defined synonym and abbreviation tables as a pre-mapping effort. It has a
comprehensive interface for navigating through the matches produced by the
software. The user verifies and selects or edits the match results to finalise
the mapping between the two schemas. Based on these mappings, COMA++
can also generate a merged schema, which has to be validated by the user.

The authors of COMA++ give a comprehensive evaluation of match quality
results but do not quantify the quality of the merged schema. In large scale
schema matching, COMA++ requires a significant amount of human inter-
vention. First, the user identifies fragments in the two schemas to be mapped.
This aims to manage the namespace/ include characteristics of XML schemas.
Then, individual fragments from the source schemas are mapped to fragments
of the target schema, one by one, and match results are saved in a relational
database for subsequent comparison. COMA++ uses a bottom up hierarchi-
cal approach: if leaves are similar, then parent nodes may also be similar. In
PORSCHE we use a reverse approach: given similarity between parent or an-
cestor nodes, we hope to discover similarity among the descendants. We believe
that our approach is more appropriate in single domain schemas with large
tree depth, which requires matching of the structural context of descendant
nodes in a robust manner.

S-Match[10] is a hybrid matcher which carries out semantic matching by using
the WordNet dictionary. It tackles the matching as a propositional satisfiabil-
ity problem. It demonstrates better mappings than COMA++ and CUPID[16]
but has worse performance. S-Match employs 16 (13 element level and 3 struc-
tural level) match algorithms. It does not fulfill the requirement for merging
and creating mappings from the source to the integrated schema. PORSCHE
specifically addresses the data integration needs of large environments where
efficiency is important.

Mork and Bernstein [18] present a case study of matching two large ontologies
of human anatomy. They use lexical and hierarchical matching modules from
CUPID[16] and a structural algorithm called Similarity Flooding[17] to find
mappings. The hierarchical algorithm goes one step further than COMA++.
The similarity of descendants is used to evaluate ancestor similarity, and the
approach is not limited just to parent-child relationships. The authors argue
that the hierarchical approach produced disappointing results because of dif-
ferences in context. They report that a lot of customisation was required to
get satisfactory results. Our approach, in comparison, considers only top-down
similarity, and looks for matching ancestors only. It seems that further research
is needed to properly define the role of node context in XML, in particular
the scope of context, in terms of node distance and structure within a tree.

QOM[9] is a semi-automatic (RDF based) ontology mapping tool. It uses
heuristics and ontological structures to classify candidate mappings as promis-
ing or less promising. It uses multiple iterations, where in each iteration the
number of possible candidate mappings is reduced. It employs label string
similarity (sorted label list) in the first iteration, and, afterwards, it focuses
on mapping change propagation. The structural algorithm follows top down
(level-wise) element similarity, which reduces time complexity. PORSCHE
matching also uses label similarity using linguistic rather than lexical algo-

rithms. In QOM, in the second iteration, depth-first search is used to select
the appropriate mappings from among the candidate mappings.

Another interesting schema matching domain under active research is match-
ing across query interfaces of structured web databases. Web page layout forms
a hierarchy backed by a database schema. For certain Web domains, such as
travel, these interfaces are very numerous. [12,24] handle holistically the inte-
gration of these structured layouts as a mining problem. He and colleagues [12]
observe that Web database query interfaces in the same domain are usually
semantically similar, as a label is often unambiguous in a domain but it can
have several meanings in a dictionary, and synonymous labels are rarely co-
present in the same schema. However, grouping of elements such as LastName
and FirstName under the same parent is common, as those together form a
larger concept. He et al.[12] utilise data mining techniques on the input forms
and data ranges, for elements available from the web pages. The technique is
more biased towards the accuracy of integration than performance. Thus, it is
ideal for scenarios where the schemas are small, as in web query/ data inter-
faces. Our method targets tree schema structures (or schemas which can be
converted to trees) which come with minimum information (just element la-
bels) and each schema can have thousands of elements. This gives PORSCHE
a much broader application domain.

Clustering, both at the element and schema level, is often used in matching
and merging. Smiljanic and co-authors[23] suggest element clustering within
a schema, in a repository of schemas which are matched to a given person
schema. The technique shows how the combinatorial nature of the matching
problem can be reduced to polynomial, and, further, to linear complexity, by
using element clustering. The method only caters for schema matching. Lee
et al. [14] present an integration method based on the clustering of similar
DTDs of XML sources. The method works incrementally, by creating clusters
of similar schemas. Similar schema selection is based on element similarity. The
solution uses external oracles defining element similarity. It mainly focuses on
the integration process but lacks the mediation aspect.

Instance level schema matching tools work on a sample mapping set. They use
data and example sets to learn a strategy to compute equal instances and con-
cepts, and are characterised by a high time complexity. For example, GLUE[7]
uses Relaxation Labelling to calculate schema mappings: mapping assigned to
an entity is typically influenced by the features of the node’s neighbourhood
in the graph. Multiple iterations have to be performed to confirm a mapping.
Overall, such methods are slow. An advantage of instance based learners is
their capability to learn mapping expressions, as illustrated in iMAP[5], a
variant implementation of GLUE.

7 Lessons Learned

Implementing PORSCHE gave us a good insight into the existing schemas
and their properties. We learned that newer standard schemas available on the
web can be used together with linguistic techniques, and that string similarity
should not be the sole criterion for label matching. Element names are now
becoming more structured and meaningful, and new matching techniques are
increasingly based on external oracles like WordNet. Linguistic label similarity
can help in minimizing the target search space for matching very significantly.
In a large scale scenario, performing clustering just once will enhance perfor-
mance. The application of tree mining further reduces the time to select the
correct target for mapping.

For schema integration purposes, the selection of one of the schemas as the
seed for the initial mediated schema follows no fixed rule. We tried random,
the smallest and the largest schema from the input set of schemas as the initial
selection. However, using such heuristics showed that the selection depending
on schema size does not boost performance. Rather, it is the structure of
the initial seed schema which influences performance: if the initial mediated
schema contained more frequent sub-trees shared with the set of input schema
trees, the speed of matching improved.

Overall, the architecture of PORSCHE is flexible, and can accommodate new
syntactic and linguistic similarity algorithms. Most importantly, PORSCHE
is scalable, as demonstrated, and can be used in large-scale data integration.
At present, it uses a limited array of linguistic methods but its domain specific
matching quality is approximately equivalent to other current tools.

In the future, we will investigate the application of this technique in informa-
tion systems based on P2P architectures. Secondly, we want to enhance the
linguistic matching part of the system. Our study of the tree mining technique
reveals that it can be utilised to identify relationships between the elements
and groups of elements within a single tree and in a forest of schema trees. This
will help in identifying subsumptions and overlaps for n : m complex map-
pings[19]. Another possible extension is the development of persistent indexes
for incremental matching.

8 Conclusions

We presented a novel schema integration method, PORSCHE, which has
shown very promising results for large scale schema integration. It uses a
tree based depth-first traversal algorithm for matching, merging and mapping

a set of schema trees. To improve performance, we adapted a technique from
tree mining used in the clustering of similar node labels. This minimises the
target search space for a node match and improves performance. PORSCHE
uses an optimistic top down depth-first match traversal (parents are mapped
before children, and the left sub-tree is traversed before the right sub-tree),
since our assumption is that we utilise it in a domain specific environment.
This helps in using the structural contextual semantics of nodes for better
quality matching.

The novelty of our method is fourfold. First, we support automated schema
matching. Second, we not only generate matches, but also build an integrated
schema at the same time. Third, our approach scales to hundreds of schemas.
Fourth, the use of tree mining techniques for schema matching is also new in
this field.

Acknowledgements: ZB is supported by ANR-05-MMSA-007 and EH is
funded by an EU Marie Curie Fellowship.

References

[1] T. Asai, H. Arimura, and S. Nakano. Discovering Frequent Substructures in
Large Unordered Trees. In ICDS, pages 47–61, 2003.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparitive Analysis of
Methodologies for Database Schema Integration. ACM Computing Surveys,
18(4):323–364, 1986.

[3] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-Strength
Schema Matching. SIGMOD Record, 33(4):38–43, 2004.

[4] M. da Conceicao Moraes Batista and A. C. Salgado. Information Quality
Measurement in Data Integration Schemas. In Quality in Databases, VLDB
workshop, 2007.

[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP:
Discovering Complex Semantic Matches between Database Schemas. In ACM
SIGMOD, pages 383–394, 2004.

[6] H.-H. Do and E. Rahm. Matching large schemas: Approaches and evaluation.
Information Systems, 32(6):857–885, 2007.

[7] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Y. Halevy.
Learning to match ontologies on the Semantic Web. VLDB J., 12(4):303–319,
2003.

[8] F. Duchateau, Z. Bellahsene, and E. Hunt. XBenchMatch: a Benchmark for
XML Schema Matching Tools. In VLDB, pages 1318–1321, 2007.

[9] M. Ehrig and S. Staab. QOM – Quick Ontology Mapping. In ISWC, pages
683–697, 2004.

[10] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an Algorithm and an
Implementation of Semantic Matching. In ESWS, pages 61–75, 2004.

[11] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data
Management Systems. In ICDE, pages 505–516, 2003.

[12] B. He, K. C.-C. Chang, and J. Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In KDD, pages 148–157, 2004.

[13] A. Jhingran. Enterprise Information Mashups: Integrating Information, Simply
– Keynote Address. In VLDB, pages 3–4, 2006.

[14] M.-L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: clustering XML schemas
for effective integration. In CIKM, pages 292–299, 2002.

[15] J. Lu, S. Wang, and J. Wang. An Experiment on the Matching and Reuse of
XML Schemas. In ICWE, pages 273–284, 2005.

[16] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In VLDB, pages 49–58, 2001.

[17] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A Programming Platform
for Generic Model Management. In SIGMOD, pages 193–204, 2003.

[18] P. Mork and P. A. Bernstein. Adapting a Generic Match Algorithm to Align
Ontologies of Human Anatomy. In ICDE, pages 787–790, 2004.

[19] T. Pankowski and E. Hunt. Data Merging in Life Science Data Integration
Systems. In Intelligent Information Systems, pages 279–288, 2005.

[20] C. Pluempitiwiriyawej and J. Hammer. Element matching across data-oriented
XML sources using a multi-strategy clustering model. Data and Knowledge
Engineering, 48(3):297–333, 2003.

[21] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350, 2001.

[22] P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Approaches.
J. Data Semantics IV, pages 146–171, 2005.

[23] M. Smiljanic, M. van Keulen, and W. Jonker. Using Element Clustering to
Increase the Efficiency of XML Schema Matching. In ICDE Workshops, page 45,
2006.

[24] W. Su, J. Wang, and F. Lochovsky. Holistic Query Interface Matching using
Parallel Schema Matching. In ICDE, pages 122–125, 2006.

[25] M. J. Zaki. Efficiently Mining Frequent Embedded Unordered Trees.
Fundamenta Informaticae, 66(1-2):33–52, 2005.

