
Top-K Generation of Integrated Schemas Based on
Directed and Weighted Correspondences

Ahmed Radwan
University of Miami

a.radwan@umiami.edu

Lucian Popa
IBM Almaden

lucian@almaden.ibm.com

Ioana R. Stanoi
IBM Almaden

irs@us.ibm.com

Akmal Younis
University of Miami

ayounis@miami.edu

ABSTRACT
Schema integration is the problem of creating a unified target schema
based on a set of existing source schemas and based on a set of cor-
respondences that are the result of matching the source schemas.
Previous methods for schema integration rely on the exploration,
implicit or explicit, of the multiple design choices that are possible
for the integrated schema. Such exploration relies heavily on user
interaction; thus, it is time consuming and labor intensive. Further-
more, previous methods have ignored the additional information
that typically results from the schema matching process, that is, the
weights and in some cases the directions that are associated with
the correspondences.

In this paper, we propose a more automatic approach to schema
integration that is based on the use of directed and weighted corre-
spondences between the concepts that appear in the source schemas.
A key component of our approach is a novel top-k ranking algo-
rithm for the automatic generation of the best candidate schemas.
The algorithm gives more weight to schemas that combine the con-
cepts with higher similarity or coverage. Thus, the algorithm makes
certain decisions that otherwise would likely be taken by a human
expert. We show that the algorithm runs in polynomial time and
moreover has good performance in practice.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Schema and subschema; H.2.5 [Heteroge-
neous Databases]: Data translation

General Terms
Algorithms, Design

Keywords
Schema integration, data merging, data integration, model manage-
ment, schema mapping, top-k generation, interactive schema gen-
eration
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1. INTRODUCTION
Schema integration seeks to derive a unified representation of

the data, used to simplify the access to heterogeneous data sources.
The input to integration is a set of source schemas that relate to
each other through correspondences or constraints. The output is a
consolidated target schema that constitutes a nonredundant unified
representation of all the data.

Schema integration has been an active research field for a long
time and continues to be a challenge in practice [1, 3, 12, 23, 19, 4,
20]. This problem lies at the core of many metadata applications,
such as view integration, mediated schema creation, and ontology
merging. The spectrum of applications extends to web-service in-
tegration, mashups and distributed web architectures [21].

Although today the process of integrating schemas is partially
automated, it is still labor-intensive. In order to reduce the amount
of manual intervention that is required from users, we need to mod-
ify or avoid parts of the integration process that unnecessarily in-
crease the load on users. Let us follow the steps that generally need
to take place while combining two input schemas.

First, the input schemas are run through one or more schema
matching algorithms [22, 10, 2] that return correspondences be-
tween the elements of the schemas. Such correspondences typi-
cally have weights reflecting the confidence of the matchers that
the two elements are similar or have overlapping semantics. More-
over, the weights in each correspondence direction can be different;
thus, an element A can be similar to (or covered by) an element B
with weight w, while the element B is similar to (or covered by)
element A with weight w′, where w and w′ are not necessarily
equal. We say in such situation that there are two directed and
weighted correspondences between elements A and B. In a sec-
ond step of schema integration, all the directed correspondences1

between two elements are merged into one undirected correspon-
dence with one aggregated weight. Correspondences for which the
aggregated weight is above a threshold are kept, while the rest are
discarded. Moreover, after the above pruning step, the weights of
the remaining set of correspondences are typically themselves dis-
carded. In the third step, several alternatives for combining the in-
put schemas are available, based on the surviving correspondences,
and schema integration tools provide interactive means for the users
to select a desired integrated schema.

Consider the simple example in Figure 1. The two input schemas
describe the structure of two elements: householder and member.
These schemas are run through one or more matching algorithms.
For simplicity, assume in this example that atomic elements that
match are assigned correspondences weighted with a similarity of
1, in both directions. Correspondences that have weight 0 are not
shown. The schema matching algorithm then calculates the over-

1There may be more than two, with multiple schema matchers.
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Figure 1: State of the art.

all similarities between the non-atomic elements, by aggregating
in some way the similarities of the sub-elements. In this example,
all the sub-elements of member match the sub-elements of house-
holder, and therefore member is covered entirely by householder.
Thus, we can conclude that there is a directed correspondence mem-
ber → householder with the similarity/weight of 1. On the other
hand, the element householder contains some sub-elements that
are unique, and as a result the similarity of the directed correspon-
dence householder → member is less than 1.2 One can see that the
weights of the derived correspondences give valuable hints about
the coverage of one element by another. Such information is more
refined than just saying whether two elements match or not. In par-
ticular, it can suggest that one element is likely to be an extension
or represents a sub-concept of the other element.

Let us revisit the second step in schema integration, where the
results of the matching algorithm are transformed into the undi-
rected correspondences used for the generation of the integrated
schema. There are several ways to combine the elements of the
two schemas, but in this simplified example there are three natural
choices: (1) merge the two root elements householder and mem-
ber into one, (2) introduce an extension relationship (or reference)
that will say that householder is an extension of member, or (3)
do not combine the two elements at all and just take their union.
This is a simple example; in reality schemas are larger and have
more complex relationships among their elements. Thus, the space
of possible candidate schemas that can result from combining the
input schemas can be quite large.

The third step in the schema integration process is then con-
cerned with identifying the “best” integrated schema among these
alternatives. In most methods, the alternatives are not created ex-
plicitly in the system, and the user must “drive” the generation of
one integrated structure. A good example of such system is de-
scribed in [19]; in their method, the expert provides a “template”
of the integrated schema (also called a mapping model) that effec-
tively specifies the structure of the merged schema and provides
the basis for accumulating all the attributes and the relationships
from the input schemas. A different kind of method, that is based
on the explicit identification of the alternative schema structures,
is described in [4]. In their system, a user can systematically ex-
plore the alternatives and narrow down, in an interactive way, the

2Section 5 will show one method for calculating the similarity mea-
sure for complex elements

householder: 

hid
hname
birth_date
occupation
salary

member: 

mid
mname
birth_date

0.611

1

1

1

1

member: 

mid
mname
birth_date

Result of Schema Matching

Pre-processing for 
Schema Integration

Integration Alternatives

1) merge: 

2) extend: 

3) none: 

householder: 

id*
name*
birth_date*
occupation
salary

householder: 

hid
occupation
salary

member: 

mid
mname
birth_date

householder: 

hid
salary
occupation
hname
birth_date

member: 

mid
mname
birth_date

householder: 

hid
hname
birth_date
occupation
salary

Figure 2: Our solution: keeps more information, outputs the
more likely schemas.

desired integrated schema. The advantage of such method is that
it is based on a systematic enumeration of the design choices and
provides more information to a user. The disadvantage is that the
user can be exposed to many “unlikely” schemas and has to explic-
itly rule out the unlikely choices. Figuring out a way of directing
user’s attention to the more challenging integration choices was left
as an open problem.
Overview of Our Approach In this paper we address the above
shortcomings in the schema integration process as follows. (See
also Figure 2.) First, we keep and exploit all the information gen-
erated by the matching algorithms. In particular, we make use of
both the direction and the weights associated with the correspon-
dences between elements. This information enables us to define
more refined relationships on the integrated schema. More impor-
tantly, this information enables us to rank the integrated schemas,
by giving higher priority to schemas that combine the concepts
with higher similarity or coverage. We are then able to devise a
polynomial-time, efficient algorithm that generates the top-k inte-
grated schemas according to the above heuristic.

As a consequence, the resulting system can avoid the generation
of many unlikely schemas and can thus minimize the user effort.
As our user experiments show, the top-k schemas that we generate
will automatically make the correct decisions in the “easy” (and
frequent) cases (i.e., concepts that are highly similar will be com-
bined, while concepts that are highly dissimilar will not be com-
bined). Thus, the user can focus her attention on the “difficult”
cases while letting the system do the “tedious” part. In fact, we
show in section 6.2 that the top-k algorithm can be effectively com-
bined with the interactive system of [4] as follows. The system first
generates the (unconstrained) top-k schemas according to the ini-
tial input (schemas and correspondences). The user then inspects
some of these schema and adds one or more constraints in the sense
of [4], restricting the space of possible schemas. These constraints
enforce decisions to be made on the “difficult” cases. Next, the
system reacts by generating the top-k schemas that satisfy the con-
straints. The process continues, with the user possibly adding more
constraints, and so on, until a final schema is obtained.

The top-k generation algorithm itself is non-trivial and we in-
clude the proof of its correctness in this paper. Furthermore, we
show that the exact complexity of the algorithm is, in the worst
case, O(m1m2 log(m1m2) + k2), where m1 and m2 are the num-
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family: Set [
fid
fname
address
householder: Set [

hid
hname

]
]
dependent: Set [

fid
did
dname

]

birth_date

income: Set [
fid
amount
sid

]
income_src: Set [

sid
sname
description

]

group: Set [
gid
gname
addr_history: Set [

start_date
end_date

]

]

member: Set [
mid
mname

med _ history: Set [
illness_date
description

]

benefit: Set [
mid
amount
source

]

address

]

occupation
salary

disability

birth_date

birth_date

Figure 3: Two input schemas with attribute correspondences.

bers of concepts in the two schemas, respectively. We then show
experimentally that the algorithm performs well in practice, on real
schemas.

Our method uses an extension on the framework of [4] for schema
enumeration. As in [4], we use graphs of concepts with has rela-
tionships to represent, at a higher-level of abstraction, XML and
relational schemas. A concept of a schema is a relation name with
an associated set of attributes and, intuitively, represents one cate-
gory of data (an entity type) that can exist according to that schema
(e.g., an “employee”, a “department”, an “address”, etc.). Concepts
in a schema may have references to other concepts in the schema
and these references are captured by has edges (e.g., “employee”
contains a has edge to “department”, etc.).

The paper is organized as follows. In section 2 we describe
schemas and correspondences, together with their translation in
terms of concept graphs. The overall method is overviewed in
section 3. We then give our top-k generation algorithm in sec-
tion 4, where we also present our cost function for differentiating
between different ways of combining schemas. Section 5 describes
one method for computing the similarities between concepts in two
different schemas, given a set of basic correspondences between the
atomic elements that appear in such concepts. The experiments are
presented in section 6. We review existing related work in section 7
and conclude the paper in section 8.

2. SCHEMAS AND CONCEPT GRAPHS
Consider the two source schemas S1 and S2 shown in fig. 3. The

schemas are shown using a nested relational model [18] which can
be used as a common representation for both relational and XML
schemas, in addition to other hierarchical set-oriented data formats.
This model is based on sets and records that can be arbitrary nested.

The first schema represents families with their householders, de-
pendents and incomes, as well as the sources for such incomes.
The top-level family element represents a set of family records,
each with three atomic components (also called attributes) and one
nested set, householder, representing the householders for each
family. The dotted arrows in schema S1 represent foreign key con-
straints: an income has references to both a family and an income
source, while a dependent has a reference to a family. The sec-
ond schema is a variation of the first one, where corresponding to
family, at the top level, we have a set of group records. Each

group record includes nested sets of addr history, member and
benefit. As the example illustrates, in general, the source schemas
can overlap and also each source schema can have information that
is not present in the other (e.g., salary, disability in the first
schema, addr history, med history in the second schema).

Figure 3 also shows correspondences (lines that represent rela-
tionships) between attributes of the two schemas. The correspon-
dences signify “matching” or “similar” attributes (i.e., that carry
similar data) in the two schemas. They can be manually speci-
fied or discovered through schema matching techniques. Note that
each attribute in a schema can have zero, one or multiple corre-
spondences into attributes of the other schema. In general, some
correspondences can have “stronger” similarity than others; thus,
correspondences can have weights. In our example, for simplic-
ity, we will assume that correspondences between atomic attributes
have weights of either 0 or 1. Furthermore, such atomic correspon-
dences typically have no direction, that is, the similarity weight
is the same in both directions. We shall distinguish atomic corre-
spondences from the correspondences between complex elements
(or concepts, as we shall see shortly), which are calculated based on
the former ones, and have values between 0 and 1, even when the
atomic correspondences are either 0 or 1. Furthermore, complex
correspondences will always have a direction.

Given the source schemas and their correspondences, our goal is
to generate an integrated schema that captures the source schemas,
by taking the union of all their features while avoiding redundancy.
Although in general there are many possible such schemas, our
technique enables the system to return a ranked set of k best so-
lutions. As in [4], our integration method uses concept graphs
as a higher-level, simplified representation of the input and output
schemas. The model is described below.
Concept Graphs The objective of concept graphs is to abstract the
physical organization of schemas into a more logical view. In the
following, let us assume U is a universe of attributes. A concept
is a relation name C associated with a subset of U (these are the
attributes of C). A concept graph is a pair (V, has) where V is
a set of concepts and has is a set of directed and labeled edges
between concepts.

Intuitively, the meaning behind a has edge from A to B is that
every instance of concept A has a reference to exactly one instance
of concept B. The role of the has edges is to express that certain
concepts cannot exist without other concepts (i.e., they extend or
refer to those concepts). In general, there can be multiple edges
between the same two concepts, and labels are attached to edges
to distinguish between them. As an example, a student concept
may have two has edges to a person concept, one reflecting that
student “is-a” person, and the other reflecting that student “has-
a” person as an advisor. Thus, in this model, has edges can encode
both has-a and is-a type of relationships that exist in conceptual
models. For simplicity, whenever there is no confusion, we shall
drop the labels associated with the has edges. Finally, we note that
the has edges in a concept graph can form cycles.

Each schema, with its nesting and constraints, can be replaced
by a concept graph. For example, two concept graphs are shown
in Figure 4 corresponding to schemas S1 and S2. The solid ar-
rows that connect concepts within one schema (e.g., householder
to family, income to income src, etc.) represent has edges.
For now, let us ignore the dotted lines connecting concepts across
schemas (i.e., the correspondences between concepts, which we
shall revisit shortly).

To understand how these concept graphs relate to the schemas,
consider the concept graph for S1. There, family and income src
are top level concepts, with no outgoing has edges; they represent
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Figure 4: Concept graphs with directed similarities.

standalone concepts that do not depend on anything else (according
to S1). In contrast, householder has a reference to family, since
a householder element cannot exist independently of a family ac-
cording to the nesting in S1. Similarly, dependent has a reference
to family, based on the fact that dependent has a foreign key to
family in S1. Moreover, income has references to both family
and income src, since an income is associated (via foreign keys)
with both a family and an income source in the schema S1.

There is an immediate algorithm that constructs a concept graph
from a schema, based on the nesting structure and the integrity con-
straints [4]. Specifically, a concept can be associated with each set
element (i.e., collection) in the schema (e.g., family, householder,
etc.). Furthermore, if the set element is nested under another set or
has a foreign key into another set, then a corresponding has edge is
added. Conversely, there are immediate algorithms for translating
concept graphs back into schemas [4]. For the remaining part of
the paper, we shall assume that the schemas are given as concept
graphs and the schema integration problem is a problem of com-
bining such concept graphs into a unified concept graph.

3. OVERVIEW OF OUR METHOD
The ranking problem we solve is the following: given an input

of two concept graphs CS1 and CS2 and a table T12 encoding the
directed and weighted correspondences between concepts, generate
the top k schemas that integrate CS1 and CS2 while using T12 to
qualitatively differentiate between possible solutions.

An example of such table T12 for the two concept graphs in Fig-
ure 4 is Table 1. For each pair (C1, C2) of concepts, where C1 is
from schema S1 and C2 is from schema S2, we give two numbers.
The first one represents the weight of the directed correspondence
C1 → C2, and we shall denote it by ŝ(C1, C2). The second num-
ber represents the weight of the directed correspondence C2 → C1,
and we shall denote it by ŝ(C2, C1). These pairs of numbers (di-
rected similarities) are also shown in Figure 4 on top of the dot-
ted lines that connect the concepts across schemas. For simplicity
of terminology, we shall call such a dotted line also a correspon-
dence, and use the pair of numbers to differentiate between the two

Table 1: Directed similarities between concepts in S1 and S2.

group member benefit med history addr history
family (0.667,1) (0.5,0.094) (0.5,0.094) (0.3,0.019) (0.833,0.344)
householder (0.042,0.75) (0.611,1) (0.278,0.5) (0.458,0.062) (0.111,0.437)
dependent (0.05,0.75) (0.733,1) (0.333,0.5) (0.55,0.162) (0.133,0.437)
income (0.083,0.75) (0.222,0.25) (0.639,0.687) (0.167,0.031) (0.222,0.438)
income src (0,0) (0,0) (0.333,0.25) (0,0) (0,0)

directions whenever needed. In general, in the graph, we connect
concepts by correspondences only if there is one non-zero weight
in at least one direction. We call such correspondence a non-zero
correspondence.

Conceptually, we distinguish between the problem of comput-
ing the entries in the table and the usage of it for schema integra-
tion. The first problem falls under the general umbrella of schema
matching; in section 5 we shall give one method for calculating
such numbers based on a given set of correspondences between
atomic attributes.
The Space of Candidate Schemas We now consider all possible
integrated schemas that can be generated based on the non-zero cor-
respondences that connect concepts in different schemas. Follow-
ing the approach in [4], in order to consider all the alternatives for
using or not using the correspondences, we use bit assignments as
follows. An assignment A is a fixed-sized, ordered vector of bits,
where each bit X represents the state of one correspondence. When
a specific bit is set to 1, this means that the associated correspon-
dence must be used to combine the two respective concepts. On
the other hand, if it is set to 0, then the correspondence is ignored.
Different assignments give rise to different ways of combining the
concepts, thus yielding different candidate integrated schemas.

As an example, consider the concept graphs and non-zero cor-
respondences in Figure 4. The assignment can be represented
as [X7 X6 X5 X4 X3 X2 X1 X0] (in the figure, the variables
are shown above the dotted lines that connect the concepts). There
are 2n possible assignments in general, where n represents the to-
tal number of non-zero correspondences between concepts; thus, a
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Table 2: merge and has Decisions

Rule Condition Decision
1 ŝ(A, B) ≥ λ AND ŝ(B, A) ≥ λ merge
2 ŝ(A, B) ≥ λ AND ŝ(B, A) < λ B has A
3 ŝ(A, B) < λ AND ŝ(B, A) ≥ λ A has B

naive enumeration of all assignments is not feasible. The method
developed in [4] explores the space of assignments in an interactive
way, where user constraints are used to direct the exploration of the
space in an efficient way.
Top-k Generation of Assignments Here we adopt a more directed
exploration strategy that is based on ranking the assignments and
generating the top-k. As a necessary step, we shall introduce a
cost model that associates a cost to each possible assignment, by
aggregating the costs that are associated with the individual bits in
the assignments. The top-k generation algorithm, together with the
cost model for ranking assignments, is described in section 4.
Combining the Concepts Once we obtain the top−k assignments,
we still have to go through one more step, where for each assign-
ment, we compute a concrete integrated concept graph (and inte-
grated schema). For each assignment, for each bit that is assigned
1, we have to decide how to combine the two concepts that are con-
nected by the respective correspondence. As opposed to [4] where
there is no choice but to merge the two concepts, in our approach
we can make a more refined decision by taking advantage of the
directed similarities between the two concepts.

More precisely, we can take one of the following decisions for
combining two concepts. (Note that choosing not to combine the
concepts can also be a valid decision. This is covered by the case
where the corresponding bit in the assignment is set to 0.)

• merge: Two quite similar concepts, for which the two weights
are high in each direction, can be merged into one, by taking
the union of their attributes and the union of their has edges.
At the same time, we avoid redundancy and collapse any cor-
responding (i.e. matching) attributes that may appear in this
union into a single attribute in the merged concept.

• Introducing a has edge in either direction: In some cases a con-
cept A is covered relatively well by another concept B, but B
is not covered well by A (i.e., the similarity ŝ(A, B) is high,
but the similarity ŝ(B, A) is low). This means that most at-
tributes of A are “covered” by B, but the reverse isn’t true. We
then make B refer to A, by adding a has edge from B to A
and removing all the attributes from B that have corresponding
attributes in A. A similar has edge from A to B is added in
the reverse situation (i.e., the similarity ŝ(A, B) is low, but the
similarity ŝ(B, A) is high). Note that, in these two cases, the
newly added has edge did not exist previously in either of the
input concept graphs but is created by the integration process.

These decisions are summarized in Table 2. From a database
normalization perspective, this enriched set of combination deci-
sions helps minimize duplication of information and, in doing so,
safeguards the database against certain types of logical or structural
problems, namely data anomalies [5].

To control the combination process, a threshold λ is used to
guide the above decisions. In particular, for a merge decision, we
require the similarities in both directions to be greater than λ. For
a has decision, we require that only one of the directed similarities
is above the threshold λ.

To illustrate the impact that the choice of λ has on the com-
bination procedure, we give an example in Figure 5. At the top

member:

householder:
member:

householder:

householder-member:

λ= 0.6

“MERGE”

λ= 0.7

“HAS”

mid
mname
birth_date

hid
hname
birth_date
occupation
salary

mid
mname
birth_date

hid 
occupation
salary

(0.611, 1)

id*
name*
birth_date*
occupation
salary

Figure 5: merge vs. has decisions.

Figure 6: Schema integration process.

we show the concept householder from schema S1 and the con-
cept member from schema S2. We also show the correspondence
connecting the concepts, together with the directed similarities,
ŝ(householder, member) = 0.611, and ŝ(member, householder)
= 1. If we choose λ to be 0.6, a merge decision will be taken and
the resulting schema will consist of a single table for members and
householders. If instead we set λ to be 0.7, a has edge will be in-
troduced connecting householder to member; this will result in
a schema with two tables with a foreign key as shown in the figure,
where, attributes in householder having corresponding attributes
in member were removed. This schema is arguably better than the
one obtained by merge, in this example.

Intuitively, the higher λ the better: more refined schemas will be
generated in such case. However, we cannot set λ too high either;
a high value of λ may cause the combination of two concepts to
fail, even though some of the assignments in the top-k require the
correspondence to be used! In other words, a high λ may invalidate
some of the decisions taken by the top-k algorithm. Choosing a
suitable λ is a critical issue and we shall provide such method, by
taking the best λ that does not invalidate the decisions made by the
top-k generation algorithm.
Summary Figure 6 summarizes the main steps in our system. First,
the two input schemas are translated into concept graphs. In the
second step, we materialize the table T12, by computing directed
similarities between all pairs of concepts across the input graphs.
We then invoke the top-k algorithm for the generation of the as-
signments with the best cost. Based on the top k assignments, we
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then determine a suitable value for the parameter λ. (The detailed
discussion of how λ is determined is deferred to section 4.3.) We
then go back to the top k assignments, and based on λ (and the
rules in Table 2) we output for each of the top k assignments the
corresponding integrated concept graph. The end result is a list of k
integrated concept graphs (and integrated schemas) in ranked order.

We note that this is an automatic procedure for generating the
top-k integrated schemas. In section 6.2, we show how this proce-
dure can be used in combination with user interaction.

4. TOP-K CANDIDATES
We now address the problem of finding the assignments that will

give rise to the most likely integrated schemas out of the entire
space of candidate schemas. In order to do this, we introduce a
cost function for assignments, which we shall use to rank them and
generate the top-k.

4.1 The Cost of an Assignment
In order to compute an aggregated cost for an assignment, we

need to consider first the cost associated with each individual deci-
sion of whether to use or not a correspondence. Assume a corre-
spondence e connects concepts A and B. Intuitively, the cost must
reflect how much the decision to include or exclude the correspon-
dence agrees with the level of similarity between the two concepts
connected by the correspondence. At this point, we are only con-
cerned with whether two concepts are to be combined or not; thus,
what we need is an undirected version of the similarity between the
two concepts.

We can use the following simple formula to aggregate the two
directed similarities into one number:

Ŝ(A,B) = min(ŝ(A, B), ŝ(B, A)).

Intuitively, this is a conservative estimate of the similarity between
the two concepts. While other formulas can be envisioned (e.g.,
based on average or weighted average), the formula above follows
[6], which analyzed various ways of combining directed distances
between objects into an undirected distance measure. There, better
object matching accuracy was reported when taking the maximum
of the directed distances, which in turn corresponds to taking the
minimum of the directed similarities.

We now derive the cost associated with the decision of includ-
ing or excluding a correspondence within a given assignment. If
the correspondence is not included (i.e., the bit is set to 0 in the
assignment), then we impose a penalty that is proportional with
the similarity between the two corresponding concepts: coste =
θ1 × Ŝ(A, B). Intuitively, the higher the similarity between the
two concepts, the higher the penalty is for not combining the con-
cepts. On the other hand, if the correspondence is included (i.e.,
the bit is set to 1 in the assignment), then we impose a penalty that
is proportional with the dissimilarity between the two concepts:
coste = θ2 × (1 − Ŝ(A,B)). We shall often use the notation
D̂(A,B) for the quantity 1 − Ŝ(A, B) and call it undirected dis-
tance. Intuitively, the higher the distance between the two concepts,
the higher the penalty is for combining the concepts.

The above proportionality constants θ1 and θ2 can be used to
give more or less weight for specific correspondences. For the sake
of simplicity, we shall assume that there is no such preference and
θ1 = θ2 = 1.

Now we can define the aggregated cost for an assignment. Our
objective function for selecting the best assignments will be to min-
imize the overall penalty for making the wrong decisions. Given an
assignment A having a set K1 of used correspondences (i.e., bits set

to 1) and a set K2 of unused edges (i.e., bits set to 0), we define the
cost of A to be:

cost(A) =
1

n

(∑
e∈K1

D̂(A,B) +
∑

e∈K2

Ŝ(A, B)

)
(1)

where n is the total number of non-zero correspondences (i.e., bits
in A). Note that cost(A) is always a number between 0 and 1.

Figure 7 shows an example assignment A = [00001111] for the
concept graphs of Figure 4, where for clarity we show both the
similarity Ŝ(A,B) and the distance D̂(A, B). Applying equ. 1,
we obtain cost(A) = 1

8
[ (0.267 + 0.333 + 0.361 + 0.389) +

(0.344 + 0.333 + 0.278 + 0.25) ] = 0.319.

Figure 7: Assignment cost calculation

The cost model we adopt here is very basic, and it can be refined
to account for additional factors. For example, it can be modified
to differentiate between the actual ways of using a correspondence,
that is, to differentiate between the cost of merging two concepts
and the cost of adding a has relationship between the concepts.
The cost model can also be refined to account for how the schemas
themselves will be used, by taking user constraints or query work-
loads into account. Nevertheless, our overall framework is indepen-
dent on the concrete choice of a cost function, as various cost func-
tions can be plugged into our top-k algorithm for the generation of
the best assignments. Once we obtain the best assignments (with
the top-k algorithm), we shall come back to the directed similari-
ties, when deciding on the actual structure of the integrated concept
graph that results from each assignment.

4.2 Top-K Algorithm
In general, assignment problems can be solved using, for exam-

ple, the Munkres algorithm [14] or other related top-k algorithms
[8, 16]. These papers show that assignment problems can be gen-
erally solved in polynomial time, in cases that satisfy a (1 : 1)
mapping cardinality constraint, which means in our terms, that one
concept in one schema can only be combined with at most one con-
cept in the other schema. This is a serious limitation since, in many
practical cases, a concept in a schema can have correspondences
(and can be combined) with multiple concepts in another schema.
The study in [7] proposed formalizing schema matching problems
as assignment problems. It gives an algorithm that, given two input
schemas and a set of similarities between their elements, generates
the top-k schema matchings, in cases where valid solutions satisfy
a (1 : n) mapping cardinality constraint. This constraint means
that a single element in the first schema can be mapped to multiple
elements in the second schema, but a single element in the second
schema can only be mapped to a single element in the first schema.
This assumption is also a strong limitation and prevents us from
using such algorithm.

We now start describing our algorithm for top-k enumeration.
The initial step is to calculate the first, optimal assignment A1,
which minimizes the cost. Let ei be the correspondence repre-
sented by bit i in the assignment. Let Ŝi and D̂i = 1 − Ŝi be
the (undirected) similarity and distance associated with ei. Based
on the cost formulas in the previous subsection, if Ŝi ≥ D̂i, the
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Figure 8: (a) Initial steps in the top-k enumeration process, (b) top 6 assignments

cost of including ei in an assignment is smaller than the cost of ex-
cluding it. Thus, the optimal assignment (of minimum cost) must
necessarily have the bit i set to 1. Conversely, if Ŝi < D̂i, the cost
of including ei in an assignment is larger than the cost of excluding
it. Thus, the optimal assignment must necessarily have the bit i set
to 0. As it can be seen, it is immediate to derive the optimal assign-
ment A1. For our example, the assignment shown in Figure 7 is the
optimal assignment.

The challenge is to efficiently derive the next k − 1 best assign-
ments. That is, given the jth assignment, we need to decide which
bits to “flip” in the assignment in order to obtain the (j + 1)th
best assignment. Let us define Δfi = |Ŝi − D̂i|, to quantify the
cost impact of flipping (i.e., complementing) the bit i from its cur-
rent value in the optimal assignment A1. Let us define the vector
Δf = [Δfn−1, ..., Δf0]. For our example, the top section of Fig-
ure 8(a) shows the optimal assignment (in the line with k = 1) and
the vector Δf (in the next line). For each i, Δfi represents the in-
crease in cost with respect to cost(A1) if the bit i (i.e., variable Xi)
in A1 were to be flipped. We next sort the Δf vector in increasing
order. Let us denote the sorted vector as Δfs. Moreover, a vec-
tor Map keeps the association (after sorting) between elements of
Δfs and the variables Xi. See Figure 8(a) for an illustration of
Map and Δfs.

In order to generate the next best assignments, we explore, in-
crementally, modifications of the original assignment A1. The in-
cremental modifications are based on the sorted vector Δfs of cost
increases. The goal, at each iteration, is to discover the next as-
signment that minimizes the increase in cost (as compared to the
current assignment). To give an intuition, let us look at Figure 8(a)
again. It can be seen that the 2nd best assignment (shown in the line
for k = 2) can be obtained by just flipping the bit X3, since this
will give the least cost increase (according to Δfs). Next, to com-
pute the 3rd best assignment, we need to change the variable with
the next cost increase (i.e., X2) and leave X3 unflipped (relative to
A1). To obtain the 4th best assignment, we have two choices. We
could either flip variable X4 (which is the variable with the next
cost increase) and leave the rest as in A1, or flip both X2 and X3.
In order to decide which choice gives the smaller cost increase, we
need to actually calculate the costs for the two choices (i.e., 0.312
vs. 0.278 + 0.054) and take the minimum.

As the example suggests, the key ingredients behind our algo-
rithm are the following:

• To find the top k assignments, it is enough to consider combi-

nations of flipping or not flipping the lower k − 1 variables in
the Map vector.

• Furthermore, at any point in the algorithm, there are at most
two new alternatives to be considered. To discover the next so-
lution, it is enough to compare the new alternative(s) with the
best candidate in a candidate set. The assignment with min-
imum cost increase becomes the next solution, while the rest
will be re-evaluated in the next iteration.

In the algorithm, we make use of bit vectors of the form F =
[fn−1, ..., f0] to keep track of the bit flips as compared with the
best assignment A1. Each vector F encodes an assignment as fol-
lows. If fi = 1, then the variable in the ith position in the Map
vector is flipped relative to its value in A1. Alternatively, if fi = 0
then the same variable is left unchanged. The algorithm iteratively
outputs the top-k assignments in increasing cost in the form of bit
vectors F = [fn−1, ..., f0]. The actual assignments can be found
immediately based on F , Map and A1.
Additional Vector Notation When describing a bit vector F , it is
convenient to drop the most significant bits that are set to 0. We
refer to such a representation as the condensed representation. We
denote by len(F ) the size (or the length) of the condensed repre-
sentation of F . As an example, the condensed representation of F
= [00000010] is [10]; moreover, len(F ) = 2. (By convention, we
take the condensed representation of a bit vector with all zeros to
be [0].) We also make use of a “reverse” operation that expands a
bit vector. If F is a bit vector in condensed representation, and m
is such that len(F ) ≤ m, we denote by em(F ) the expansion of F
on m bits. Such expansion is obtained by adding 0’s in front of the
leading 1, so that the size of the resulting vector is m. Finally, we
use ‖ to denote the concatenation of a bit vector in front of another.
For example, [1] ‖ [01] = [101].

Algorithm 1 gives the exact steps for enumerating the top-k as-
signments. The two data structures used are: a list “cand” of candi-
dates and a list “soln” of solutions generated so far. The list cand
is implemented as a priority queue, so that its operations (insertion,
deletion, and taking the minimum) have all logarithmic complexity.

In lines 1 and 2, soln is initialized with the top 2 assignments,
and cand is initialized with the 3rd best assignment. (Recall that
we manipulate F -vectors.) The for loop (lines 3-18) iteratively
outputs the ith best assignment starting from i = 3. In lines 4-7,
the candidate c of minimum cost increase in cand is output as the
ith solution, and then moved from cand to the end of soln.
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Algorithm 1 Enumerating the top k assignments

1: soln ⇐ {[0], [1]}
2: cand ⇐ {[10]}
3: for 3 ≤ i ≤ k do
4: c = min(cand)
5: Output c as the ith best solution
6: Remove c from cand
7: Add c at the end of soln
8: Write c, in condensed representation, as [1] ‖ em(s). (Here,

len(c) is m+1, and s is the condensed representation of the
“lower” m bits of c).

9: Let nextm(s) be the first element s′ in soln that is after s
and satisfies len(s′) ≤ m.

10: if nextm(s) exists then
11: candidate = [1] ‖ em(nextm(s))
12: Insert candidate in cand
13: end if
14: if s = [0] then
15: candidate = [10] ‖ em(s)
16: Insert candidate in cand
17: end if
18: end for

In lines 8 to 17, two new possible candidates are calculated based
on the current best solution c and the solutions found so far. The
bit vector c, assumed to have m + 1 bits, is first decomposed into
two parts: the highest significant 1, and the remaining lower m bits
whose condensed representation is denoted by s. Next, we look
for nextm(s), which is the first vector s′ in soln that succeeds s
(i.e., has higher cost) and satisfies len(s′) ≤ m. In particular, s′

is the first higher cost solution (after s) that can still be written on
m bits. Note that nextm(s) may not necessarily be the immediate
successor of s. Also, note that nextm(s) may not exist.

In lines 10-13, if nextm(s) is found, a new candidate is gener-
ated and added to cand. This new candidate is obtained by replac-
ing s with nextm(s) within the lower m bits of c. Additionally, in
lines 14-17, if all the lower m bits of c are 0, a new candidate is
generated by advancing the leading 1 by one position. Intuitively,
these are the two possible ways of generating new candidate as-
signments, while minimally increasing the cost.
Example Let us follow the first three iterations of the algorithm for
our running example (see Figure 8 again). The solution set soln is
initialized with {[0], [1]}, and the candidate set cand is initialized
with {[10]}.

• candidate c = [10] is the only entry in cand and, hence, it
is the best. Thus, c becomes a solution (the 3rd), and it is
moved from cand to the end of soln. Two new candidates
are placed into cand: [11], obtained by replacing [0] in c with
next1([0]) = [1], and [100], obtained by advancing the leading
1 in c. The candidate set is now cand = {[11]0.332 , [100]0.312},
where we write as a subscript the associated cost increase for
each candidate (based on Δfs).

• the best candidate c is now [100], since 0.312 < 0.332. Thus,
c becomes the 4th solution, and it is moved from cand to soln.
As before, two new candidates are placed in cand: [101], ob-
tained by replacing [00] in c with the expansion on 2 bits of
next2([0]) = [1], and [1000], obtained by advancing the lead-
ing 1 in c. The set cand is now {[101]0.366 , [1000]0.334 , [11]0.332}.

• the best candidate c is now [11]. This entry is removed from
cand and becomes the 5th solution. Note that c, in this case,
will not generate any new candidates. First, there is no next1([1])

in soln, since all solutions following [1] have len greater than
1. Moreover, c does not pass the test in line 14. The candidate
set becomes cand = {[101]0.366 , [1000]0.334} (and [1000] will
become the 6th solution in the next iteration).

4.2.1 Algorithm Analysis
Algorithm Correctness We can prove the correctness of the top-k
algorithm by induction. For simplicity of the presentation, we shall
assume that there are no ties among the assignments (i.e., no two
assignments have the same cost). If ties occur, the same proof of
correctness applies but with slight extensions (essentially, we must
define a certain order among the assignments with the same cost,
and then observe that the algorithm outputs ties in that order).

For k = 1, 2, and 3, the algorithm is correct by initialization.
For k > 3, assume that the algorithm has generated the first k − 1
solutions F1, · · ·Fk−1. We show that the solution with the k-th best
cost, Fk, must be in the candidate set cand at the beginning of the
k-th iteration of the algorithm. Therefore, Fk will be generated as
the k-th solution by the algorithm. Let us write Fk, in condensed
representation, as [1] ‖ em(s). We assume here that len(Fk) is
m + 1, and s is the condensed representation of the lower m bits
of Fk. There are two cases to consider.
Case 1: len(Fk) > max1≤i≤k−1(len(Fi)). Since Fk is the first
(i.e., lowest-cost) solution of its length, it must be that s = [0].
(We make use here of an obvious monotonicity property on as-
signments, and of the assumption of no ties.) Consider now the
assignment c = [1] ‖ em−1([0]), which is the same as Fk except
that the leading 1 occurs in a position that is lower by one. Since
cost(c) < cost(Fk), it must be the case that c is one of the pre-
vious k − 1 solutions. Hence, in an earlier iteration, the algorithm
must have added Fk to cand (lines 14-17).
Case 2: len(Fk) ≤ max1≤i≤k−1(len(Fi)). Thus, there is an
earlier solution Fl such that len(Fk) ≤ len(Fl). In turn, this im-
plies that there is a solution Fi (with i ≤ l) such that len(Fi) is
exactly the same as len(Fk). This can be shown by observing that
solutions do not “skip” any length number, that is, if there is a solu-
tion of length p then there is another (lower-cost) solution of length
p−1. Essentially, the length can be reduced by 1 as follows: a vec-
tor of the form [10 . . .] can be replaced by [01 . . .], while a vector
of the form [11 . . .] can be replaced by [01 . . .]. In each case, the
resulting vector has a lower cost.

Since len(Fi) = m + 1, it must be that Fi is of the form [1] ‖
em(si) where si is some bit vector in condensed representation
such that len(si) ≤ m. Note that both s and si must be among the
top k− 1 solutions, since their respective costs are smaller than Fk

and Fi. Furthermore, since cost(Fk) > cost(Fi), and Fk and Fi

are identical on the leading bit, it must be that cost(s) > cost(si).
This implies that si appears in soln before s. Let s′ be the nearest
solution in soln that precedes s and has length smaller than m. We
know that such s′ exists, because si itself precedes s and has length
smaller than m. Note that nextm(s′) = s.

Let us now form the vector F ′ = [1] ‖ em(s′). Since cost(s′) <
cost(s), we have that cost(F ′) < cost(Fk). Thus, F ′ is one of
the top k − 1 solutions. This fact, combined with the fact that
nextm(s′) exists, implies that in an earlier iteration, the algorithm
must have added [1] ‖ em(nextm(s′)) to cand (lines 10-13). But
this last vector is precisely Fk . This concludes the proof.
Complexity Analysis First of all, the size of cand is O(k). This
is because at each iteration, we take out one element and put at
most two new candidates. So, the list increases by at most 1 at
each iteration. Then, at each iteration, the complexity of finding the
candidate with minimum cost (line 4) is O(log k) (given a priority
queue implementation for cand). Determining nextm(s) requires
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Figure 9: Combined concept graph and schema (λ = 0.53).

O(k) in the worst case, since it requires traversing the soln list,
and the size of soln is at most k.

So, each iteration takes O(k) and there are O(k) iterations. Hence,
the overall complexity is O(k2). Since the initial time to sort
the Δfs vector is O(n log n), we obtain an overall complexity of
O(n log n + k2).

Note that the cost of obtaining the next solution is only O(k) at
each step. This is important, since it is often the case that we do not
need to generate all the top k solutions at once, but rather generate
them lazily, one by one, as the user interaction demands it. In such
case, the time to obtain the next solution is the important one.

4.3 Lambda Tuning
We now consider the problem of determining the parameter λ

that controls how to combine concepts (via merge or via has edges)
once the top-k assignments have been generated. Note that assign-
ments already specify which correspondences to be used; what is
missing is how to use them.

As seen from the rules for combining concepts (see table 2), the
choice of the parameter λ is critical, as it directly affects the gener-
ated schema. Figure 9 shows the combined concept graph when
λ = 0.53. Note that family and group are merged into one
concept, as well as income and benefit; moreover dependent,
member and householder are also merged. Figure 10 shows
the combined concept graph when λ = 0.63. It illustrates the
effect of introducing a has edge from householder to member
rather than merging householder with member, due to the in-
crease in λ. (Note that dependent is merged with member, so
the has edge from householder goes into the merge of member
and dependent). Figures 9 and 10 also show the corresponding
integrated schemas.

Note that as λ decreases, the number of correspondences that are
used for merge will increase, thus resulting in a more “compact”
integrated schema. In the extreme case of λ = 0, all the selected
correspondences will be used for merge. On the other hand, in-
creasing λ will limit the number of correspondences that are used
for merge to those connecting tightly related concepts, thus, re-
sulting in a more “normalized” integrated schema.

From the database normalization perspective, it is appealing to
increase the value of λ. However, a value for λ that is too high
runs the risk of violating some of the assignments generated by
the top-k algorithm. In particular, if λ is too high, there may be an
assignment (in the top-k) requiring that a certain correspondence be
used. However, because λ is too high, none of the rules in Table 2

Figure 10: Combined concept graph and schema (λ = 0.63).

apply; hence the concepts cannot be combined, even though the
correspondence has been selected by the assignment.

An immediate approach to address this problem is to set λ to
the highest possible value such that the decisions encoded by the
top-k assignments can all be satisfied. Concretely, let E be the set
of correspondences that are selected by at least one of the top-k
assignments. Denote the two directed similarities associated with a
correspondence in E as ŝ1 and ŝ2. The steps for setting λ are:

1. iteratively scan all the correspondences in E,

2. for each such correspondence, record max(ŝ1, ŝ2) and add this
value to a list L, and finally

3. set λ to be the minimum of the values in L.

The above procedure guarantees that all the correspondences used
in any of the top-k assignments will be taken into consideration,
when combining the concepts with the chosen λ. Note that this
is the maximum possible value for λ that can be obtained without
ignoring any of those correspondences.
Stability Analysis Note that the number of the top candidates k
may affect λ tuning. Specifically, increasing k may decrease λ if
any of the additional candidates uses a new correspondence having
max(ŝ1, ŝ2) < λ. So, the problem of tuning λ can be replaced by
a new problem of tuning k. An alternative is to generate a larger
number of solutions, k′, and perform stability analysis to identify
the correspondences that are the most stable throughout the solu-
tion set. The parameter λ can then be set to satisfy the constraints
of the most stable correspondences. Then λ will not be as much
dependent on the value of k, but on the correspondences that have
the highest probability to be included in the final solution. For this
purpose we employ a stability analysis method similar to the one
proposed in [7] and test it on real and synthetic data. Assume E

represents the set of correspondences used in any of the top-k′ as-
signments. Our stability analysis counts how many times a corre-
spondence in E appears in the top-k′ assignments. A correspon-
dence that appears a sufficient number of times will be part of the
set of most stable edges. Otherwise, it will be ignored.

5. COMPUTING CONCEPT SIMILARITIES
In this section we introduce concept similarity, a directed sim-

ilarity measure for concepts and concept graphs. In essence, this
is a variation of the well-known Hausdorff distance [15]. The con-
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cept similarity measure quantifies the distance between concepts
by incorporating both the attributes within concepts and the refer-
ences to other concepts. Other techniques for calculating similar-
ities/distances between schema elements could also be envisioned
[22, 10, 2]. The similarity measure we define and implement here
has two appealing characteristics: its simplicity and the fact that it
is a straightforward extension of a widely studied distance measure
(the Hausdorff distance).
Hausdorff Distance We start by reviewing the basic notions re-
lated to the Hausdorff distance. We shall use d̂(a, b) to denote the
distance between two objects a and b; correspondingly, ŝ(a, b) =

1 − d̂(a, b) represents the similarity between a and b. Both mea-
sures are asymmetric (e.g., d̂(a, b) is not necessarily equal to d̂(b, a))
and vary in the range [0,1]. The distance between an object a and
a set of objects B = {b1, ..., bNB} is defined as:

d̂(a, B) = min
b∈B

d̂(a, b) (2)

There are several ways to define the directed distance between two
object sets A = {a1, ..., aNA} and B = {b1, ..., bNB} as shown
in [9]. The study in [6] proposed the following variation of the
Hausdorff distance:

d̂(A, B) =
1

NA

∑
a∈A

d̂(a, B) (3)

The complement of the above formula (i.e., the similarity ŝ(A, B) =

1 − d̂(A, B)) represents a measure that quantifies the degree to
which the set A is covered by the set B. This measure indicates the
degree to which A can be considered a “subset” of B. This simi-
larity measure varies in the range [0, 1], where 1 denotes complete
“inclusion”.

5.1 Concept Similarity
We now adapt the notion of Hausdorff distance between sets of

objects, to define distances and similarities between concepts. Let
α(X) denote the collection of attributes in a concept X, and let
β(X) denote the collection of concepts to which X has direct refer-
ences (i.e., has edges). Nα and Nβ are the numbers of attributes
and, respectively, the number of outgoing has edges of concept A,
and where d(a, b) is 0 if there is a correspondence between the at-
tributes a and b, and 1 otherwise. For the moment we assume that
has edges do not form cycles, a case that is discussed separately
later in this Section. We can now define the concept distance that
corresponds to equ. 2 by the following:

d̂(a, B) = min
(
minb∈α(B)d(a, b), minB′∈β(B)d̂(a, B′)

)
(4)

and the concept version of equ. 3 as:

d̂(A, B) =
1

Nα + Nβ

⎛
⎝ ∑

a∈α(A)

d̂(a, B) +
∑

A′∈β(A)

d̂(A′, B)

⎞
⎠
(5)

Note that both of these definitions are recursive.
Since our framework uses similarities between concepts rather

than distances, we need to transform these calculations slightly.
The corresponding similarity measures can be easily computed by
using:

ŝ(a, b) = 1 − d̂(a, b) ŝ(a,B) = 1 − d̂(a,B)

ŝ(A, B) = 1 − d̂(A, B)

Intuitively, a concept similarity should be lower if the attributes of
the corresponding concepts are covered via other referenced con-

Figure 11: The behavior of κ as α varies.

cepts and not directly. To achieve this intended behavior, we mod-
ify the above computation as follows. Assume that we need to
compute the similarity between concepts A and B. Then, we keep
track of the number δA of has edges that we follow from A (with
each recursive call to equ. 5). Similarly, we keep track of the num-
ber δB of has edges that we follow from B (with each recursive
call to equ. 4). Whenever we reach the fixed point in the recursion
where we need the similarity ŝ(a, b) between attributes a and b (see
equ. 4) we use a scaling factor κ to alter this similarity, based on the
difference between δA and δB . More precisely, we take κ = α

α+δ
,

where δ = |δA − δB | and where α is an application dependent
parameter. We then alter the similarity between a and b by using a
weighted similarity formula ŝ(a, b) = κ × s(a, b).

The intuition behind κ is that we want to penalize the similarity
between attributes when the attributes reside in concepts that have
different depths relative to the original concepts A and B that are
being compared. This guarantees in particular that the similarity
between two identical concept graphs will always be 1. The behav-
ior of κ against δ with different α values is depicted in figure 11.
It can be seen that as α increases the penalty with depth distances
decreases, and vice versa.

In our experiments in section 6, we shall use α = 1, due to the
fact that the hierarchy depth of the concepts in the tested schemas
is not too large (5 or 6, at most). Thus, we increase the penalty
quicker, even for low values of δ.

To calculate the complete set of similarities, we iteratively cal-
culate the similarity between each pair of concepts across input
graphs. For our ongoing example, Table 1 shows the similarities
associated with the set of concept correspondences between each
concept of S1 and each concept of S2. These similarities are also
shown in Figure 4 on top of the dotted lines connecting concepts
across schemas. Additionally, the minimum of the directed simi-
larities is shown below the correspondences (this is the undirected
version Ŝ(A,B) as described earlier).

For our example, the similarity numbers show that householder
matches better (with higher similarity) with member than with
benefit. This is the result we would intuitively expect (since there
are more attributes in common between householder and member
than between householder and benefit). As a result, in the inte-
gration process, we will assign higher weight to the schemas that
combine householder with member than to the ones that com-
bine householder with benefit.

It can be also seen that the directed similarity from member to
householder is 1 based on the fact that member as well as its “su-
perconcepts” (i.e., group in this case) are covered by householder
and its “superconcepts” (i.e., family).
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Note that concepts that are “below” a given concept (i.e., “sub-
concepts” that have paths of has edges leading to the given con-
cept) do not affect the similarity calculation. For example, the sub-
concept med-history is not taken into account by the similarity
calculation for member. One reason for this design choice is that,
intuitively, a has edge from A to B represents a strong relationship
from A to B but not necessarily from B to A. For example, an in-
stance of member cannot exist without an instance of group; how-
ever, it can exist without an instance of med-history. To capture
this semantics, only direct or indirect superconcepts are involved in
similarity calculations in our method.

Finally, we note that the method for computing directed simi-
larities between concepts that we presented in this section is com-
pletely orthogonal to the overall method for schema integration. In
particular, other methods can be easily plugged in; for example,
one could develop methods that involve both superconcepts and
subconcepts, or could adapt existing algorithms (e.g. [10]) to to
calculate directed similarities between concepts.

Handling Cycles Recall that our concept similarity measure is cal-
culated recursively. Thus, cycles in the input concept graphs can
cause problems for the computation of concept distances. Cycles
arise naturally in practice (e.g., an employee has a department, and
a department has an employee which is the manager). To han-
dle cycles in our implementation, we incorporate a cycle detec-
tion technique, which keeps track of the visited concepts during
recursion. When a cycle is detected, we interrupt the repetitions of
the cycle when the difference between two successive calculations
(Δŝ) becomes smaller than a considerably very low value ε. From
the recursive nature of the formulas there is a guarantee that Δŝ
converges (i.e., ∀iter(Δiter ŝ > Δiter+1ŝ)), but since there is no
guarantee on the rate of the convergence, for performance issues we
interrupt the cycle after a predefined number itermax of iterations.

6. EXPERIMENTAL EVALUATION
We evaluate our integration approach using a number of real

world and synthetic scenarios. In section 4 we showed that our
top-k generation algorithm has low complexity, which makes it
amenable for an efficient implementation. In this section we verify
this on our implementation; we analyze the performance of gener-
ating the top-k schemas for a number of scenarios, and also evalu-
ate the usability and effectiveness of the integration process based
on a user study. Furthermore, we evaluate the tuning method for
the integration parameter λ, by varying the number of top config-
urations and analyzing the effects on the final results. Our system
is implemented using Java and the experiments were carried on a
PC compatible machine, with Intel Core Duo processor (1.8GHz),
running Windows XP and JRE 5.0.

6.1 Real Integration Scenarios
We test the performance and effectiveness of our method in a

number of integration scenarios [4]. The schemas used in the exper-
iment are: a relational and an XML schema, each representing gene
expression experimental results (GENEX); two XML schemas rep-
resenting enterprise business objects (such as orders, and customers
related to orders), one from SAP and the other one from the IBM
WebSphere Business Integration (WBI) suite; a relational and an
XML version of the Mondial database [13]; two relational schemas
from the Amalgam integration benchmark [11] for bibliographic
data; the first schema in the Amalgam benchmark and a DBLP
schema (obtained from the DBLP website); and two XML schemas,
each with a different nesting structure, representing information
about departments, projects and employees.

Figure 12 shows the characteristics of these scenarios, including
the number of concepts, the number of correspondences between
attributes, as well as the number of non-zero correspondences be-
tween concepts (i.e., correspondences between concepts that have
non-zero similarity in at least one direction). In the fifth column of
the table, we give the total number of integrated schemas (i.e., the
size of the space of candidate schemas) in each scenario. The last
portion of the table indicates the average time per generated schema
when using the top-k schema integration method. This time is ob-
tained by running the top-k algorithm for several values of k and
then reporting the average time between two consecutive solutions
(for each fixed k).

Although the numbers of concepts and correspondences in these
scenarios are not large, the schemas are not necessarily trivial. For
example, the SAP schema is split over 15 files with concepts hav-
ing tens (20-50) of attributes and multiple levels of nesting. More-
over, many of the concepts are referred to from other concepts.
One reason for why there is only a small number of concept cor-
respondences (seven in the WBI-SAP integration scenario) is that
not every concept in one schema has a match in the other schema.
Nevertheless, the size of the space of candidate schemas in these
scenarios is sufficiently large to illustrate the need for an effective
tool to explore all the integration choices. For larger schemas, the
effectiveness of our top-k enumeration method would become even
more apparent.

As it can be seen, the average time to generate the next schema
is consistently low, even when k is large (e.g., 128). Note that in
practice, in an interactive system, we will seldom need to generate
such a large number of schemas (see also the next subsection).

We also observed from the experiment that the top schemas gen-
erated by the algorithm make the “correct” decisions for a large
fraction of the bits (or, variables) in the assignment vector. In par-
ticular, the highly similar concepts (with many attributes in com-
mon) are combined, while the highly dissimilar concepts are not
combined. In a sense, these are the “easy” decisions that an expert
may often agree with. This leaves out the “difficult” cases, involv-
ing groups of “ambiguous” concepts for which any combination
may be possible.

To illustrate, consider the Mondial scenario. There are 18 cor-
respondences between concepts. Most of them (14, precisely) in-
volve concepts that are semantically the same (e.g., river, sea, lake,
city, which occur in both input schemas). However the concept
country in one of the schemas can be combined with any subset of
COUNTRY, ECONOMY, and POPULATION in the other schema.
This is reflected in the respective similarity numbers which are very
close to 0.5. The reason for this “ambiguity” is that country in
the first schema is an unnormalized relation that includes attributes
specific to economy and population, which are stored separately, in
different relations, in the second schema. The schemas at the top
of our ranking will enumerate all possible choices of combining
these concepts (from the most normalized to the most unnormal-
ized), while making the obvious choice for the rest of the concepts.
In contrast, the schemas that are at the bottom of the ranking will
not combine some of the concepts that are obviously equivalent.

In the next subsection, we shall make a more precise qualitative
argument, via a user study.

6.2 User Experiment
In general, the best assignments generated by the top-k algorithm

may not always yield the schema that is “best desired” by a partic-
ular expert, although they may yield a good approximation. Thus,
a human expert is still required for the schema integration process.
Our goal is to minimize the human effort rather than eliminate it.
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Integration Attribute Source ConceptTotal Integr. Time/schema (ms)
Scenario Corresp. ConceptsCorresp. Schemas (top-64)(top-128)(top-256)

Genex 31 13 6 64 0.50 n/a n/a
WBI-SAP 46 22 7 128 1.70 2.44 n/a
Mondial 74 49 18 >3000 1.43 1.72 2.13
Amalgam 16 24 12 >3000 0.95 1.12 1.43
Amalgam-DBLP 26 29 11 2048 0.85 0.98 1.10
Dept-Proj-Emp 16 10 8 192 0.22 0.25 n/a

Figure 12: Evaluation on real schema integration scenarios.

In this subsection, we shall evaluate the effectiveness of our top-k
algorithm as part of an interactive tool that helps a human expert
reach the “best desired” schema.

The tool works as follows. It first generates the (unconstrained)
top-k schemas according to the initial input (schemas and corre-
spondences). The user then inspects a few of the top schemas (the
first, the second, etc.) and adds, if needed, one or more constraints
in the sense of [4]. These constraints are a mechanism through
which a human expert can “fix”, or override, the undesired choices
made by the top schemas. Next, the system reacts by generating
the (new) top-k schemas that satisfy the constraints. The process
continues, with the user possibly adding more constraints, and so
on, until the “best desired” schema is obtained.

There are two types of user constraints that we allow: “Always
use correspondence X”, and “Never use correspondence X”.3 The
first constraint requires that the pair of concepts connected by cor-
respondence X must always be combined. It is equivalent to fixing
the bit for X (in the assignment vector) to be always 1. Conversely,
the second constraint requires the correspondence X to be ignored.
Thus, it is equivalent to fixing the bit for X (in the assignment vec-
tor) to be always 0. Note that, with each such constraint, the space
of the candidate schemas is reduced by half.

The regeneration of the top-k schemas is done by re-invoking
the top-k algorithm, after taking out the fixed variables from the
assignment vector. We note that, in the tool, we generate the top-k
schemas only one at a time, as demanded by the user. (Thus, the
time per schema is more important than the time to generate all
top-k schemas.)

To evaluate the effectiveness of the resulting tool, we conducted
a user study to evaluate the number of user interaction steps needed
to reach the “best desired” schema. We had four users, which are
researchers in our department and are database experts. Neverthe-
less, they required a few hours to go through the three scenarios we
selected for this experiment, since they needed to understand the
semantics of the schemas (and the domain). The results of our user
study are summarized in Figure 13.

Genex Mondial Dept-Proj-Emp
(constr.)(schemas)(constr.)(schemas)(constr.)(schemas)

User A 1 2 1 2 2 3
User B 1 2 1 2 1 2
User C 1 2 3 4 2 3
User D 0 3 3 4 0 5

Figure 13: User study in three of the scenarios.

We measure two types of interactive steps in the experiment.
First, we count the total number c of constraints that a user has
to add, to instruct the tool. Second, we count the total number s

3These constraints are called, respectively, Apply(X) and
¬Apply(X), in [4].

of different schemas that the user explores, before deciding the fi-
nal integrated schema. These numbers are not an exact measure
of the human effort involved, since they do not include the time
to understand the source schemas, or the time to evaluate the in-
tegrated schemas. Still, these parameters give an indication of the
complexity of the interactive process. As it can be seen, the number
of interaction steps is consistently low in all scenarios for all users.

For Genex, the users were consistent and picked the same “best
desired” schema. A total of 4 out the 6 correspondences connected
semantically equivalent concepts (with many common attributes).
The top schemas generated by the tool chose, correctly, to merge
these concepts. The users were left to decide how to combine the
concepts of array and measurement in one schema, with the
concept of array measurement (which included features of both
array and measurement) from the other schema. All users decided
that a good design is to leave array as a separate concept, and
to merge array measurement with measurement. However,
they accomplished this in different ways. User D let the tool enu-
merate the first few schemas and stopped when she realized that the
3rd schema was the desired one. Users A, B and C looked at the
first schema, which merged the above three concepts into one, and
concluded right there that they did not want array to be merged
with array measurement. Hence, they added a constraint to pre-
vent such merging. The top schema (after regeneration) was then
the desired schema.

The Mondial scenario had similar characteristics with Genex. In
particular, the “hard” choices involved the country concept (as dis-
cussed earlier). Here, the final schema was not the same for all the
users. Two of them (C and D) chose to merge all four concepts
that had country features (i.e., country, COUNTRY, ECONOMY,
POPULATION), by explicitly adding three constraints. The other
two (A and B) achieved a more normalized schema, by merging
country with COUNTRY, but leaving ECONOMY and POPU-
LATION as separate concepts (with has edges to the integrated
concept for country). Only one constraint was needed for this.

Finally, the scenario with more “ambiguous” choices was Dept-
Proj-Emp, where most of the concepts in each schema could match
several of the concepts in the other schema. For example, employee
in the first schema could match both manager and emp in the
second schema, while fund in the first schema could match both
grant and project in the second schema. Users A and D reached
the same final schema, although in different ways. Users B and C
decided on different schemas. Thus, different users can often have
different integrated schemas (and different criteria of goodness) in
mind. This confirms, one more time, that an automatic system for
schema integration is not realistic. Even so, the tool was helpful in
identifying the choices that all the users agreed with (e.g., merge
employee with emp, and merge fund with grant).

Notably, the schema chosen by User C in this final scenario
showed a case where the unconstrained top-k algorithm could not
have generated the “best desired” schema (even for a large k). The
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reason for that is that User C decided that fund should be merged
with grant and, additionally, with project. The reasoning was that
usually there is a one-to-one relationship between a project and a
grant; hence, the two concepts could be combined into one. On the
other hand, the unconstrained top-k algorithm gives little weight to
the choice of merging fund with project since they only have one
attribute in common (project name).

Overall, the user study validates the idea that the top-k algorithm
identifies many of the correct choices in practice. Thus, the user
can focus her attention on the “difficult” cases. This is reflected in
the number of user constraints needed to guide the system. This
number is relatively small in our experiment.

6.3 Synthetic Scenarios for Stability Analysis
In order to analyze the effect of the number k of solutions used

on the value of the integration parameter λ, we used a set of syn-
thetic integration scenarios. More specifically, we studied the fre-
quency of used edges in the top-k assignments, and inspected the
change in this frequency as an effect of varying k. Intuitively, edges
frequently used in the top-k assignments are more likely to be part
of the best assignment. By contrast, rarely used (or unused) edges
are less likely to be part of the best assignment.

Intuitively, setting λ based on stability analysis makes sense if
edge frequencies quickly stabilize. In other words, the variation of
k beyond some value should not significantly affect the calculated
frequencies. If such k is small, we can rely just on a few number of
top candidates to evaluate the frequencies.

To validate this experimentally, we generated 100 synthetic in-
tegration scenarios as follows: we randomly varied the number of
input schemas between 2 and 10, then, for each schema, we ran-
domly generated a number of concepts between 3 and 20. Finally
we randomly generated the similarities associated with all corre-
spondences. We used a uniform probability distribution function in
all random number generations. For each scenario, we calculated
the top-k assignments and varied k as k = 1, 10, 20 ... 100. For
each top-k, we calculated the frequency of each used correspon-
dence and then calculated the difference between such frequency
and the frequency of the same edge in the preceding top-k group.
Figure 14 displays the average for all used correspondences. The
value corresponding to k = 10 is the average difference in frequen-
cies between the top-10 candidates and the top-1 candidate, while
the value corresponding to k = 20 is the average difference in fre-
quencies between the top-20 candidates and the top-10 candidates,
and so on. It can be seen that, as k increases, the differences in
frequencies become less significant.

In conclusion, this experiment validates the idea that λ can be set
by varying k and employing stability analysis, rather than based on
a single value of k that is given by the user. Nevertheless, once λ
is determined, via stability analysis, we still go back and generate
the top-k best schemas, where k is the actual limit imposed by the
user.

7. RELATED WORK
There are a number of features that distinguish our approach

from existing work on schema integration, model merging and on-
tology merging. In the context of ontology merging, most literature
has been primarily focused on the problem of ontology alignment,
which is deriving relationships across concepts in different ontolo-
gies (see ILIADS [25] as an example). In contrast, the focus of
our method is on the ranked exploration of the alternatives for the
structural, non-redundant unification of the concepts.

We briefly visited the method of Pottinger and Bernstein [19]
in section 1; this method subsumes much of the earlier work on

Figure 14: The average change in the frequency of the used
edges in the top k schemas, as k varies.

schema integration [1, 3, 23] and also includes merging-specific
features that are present in PROMPT [17] and other ontology merg-
ing systems, such as FCA-Merge [24]. In the method described in
[19], the user must provide in advance a “template” of the inte-
grated schema. In contrast, the input to our method is just a set of
atomic correspondences which can be discovered by an automatic
schema matching tool. From such input, our system is then able to
generate the most “likely” candidate integrated schemas. As in [19]
and following [4], our method operates at a logical level, where the
schemas are described in terms of concepts and their relationships.

The work of [19] is extended in [20] by considering the schema
integration problem in the context of source schemas related by
GLAV mappings, as opposed to just correspondences between sch-
ema attributes. One possible direction is to investigate whether our
ranking and enumeration mechanism can extend to such context.

Our paper builds upon the framework introduced in [4], which
reduces the schema integration problem to an enumeration of all
possible ways of merging two graphs of concepts. This enumera-
tion defines in a very precise, mathematical sense, the space of can-
didate schemas. While the system in [4] relies exclusively on user
interaction to navigate and explore the space of candidate schemas,
the method we propose in this paper is more automatic and relies
on top-k enumeration to give higher priority to the more “likely”
schemas. In particular, we keep and exploit all the weights gen-
erated by the matching algorithms, which enables us to cost the
integrated schemas. Furthermore, the use of weights also enable us
to define more refined relationships on the integrated schema (i.e.,
incorporate both merge and has decisions).

Our formalization of the schema integration problem as a top-k
enumeration is different from the general assignment problem [14],
and existing techniques (see [14, 8, 16, 7]) do not immediately ex-
tend to our context. In particular, as discussed in section 4.2, they
limit the ways in which concepts in one schema can be combined
with concepts in another schema.

Finally, we note that schema matching techniques have been ex-
tensively studied [22, 10, 2]. Our schema integration method is
complementary to schema matching, since it uses the outcome of
schema matching. Moreover, the emphasis here is on using directed
similarities rather than the more common undirected similarities.

8. CONCLUDING REMARKS
In this paper, we aim at reducing the manual effort that is re-

quired in generating an integrated schema. Our schema integration
method is based on the use of directed and weighted correspon-
dences between the concepts that appear in the source schemas.
A key component of our approach is a novel top-k ranking algo-
rithm for the automatic generation of the best candidate schemas.
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The algorithm gives more weight to schemas that combine the con-
cepts with higher similarity or coverage. Thus, the algorithm makes
certain decisions that otherwise would likely be taken by a human
expert. We show that the algorithm runs in polynomial time and
moreover it is effective in practice.

One important future direction is to apply and extend schema
integration techniques such as the ones developed in this paper to
situations where the number of schemas to be integrated is much
larger (e.g., in the hundreds). In particular, we would like to be
able to automate the problem of generating unified schemas when
extracting and integrating large data sets from the web (e.g., from
DBPedia, Freebase, etc). Even when the data has structure, it is of-
ten the case that the schema underlying an entity of interest varies,
sometimes significantly, from one individual object to another, and
coming up with a unified schema will pose challenges.
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