
ATOM: Automatic Target-driven Ontology Merging

Salvatore Raunich, Erhard Rahm

University of Leipzig, Leipzig, Germany
{raunich, rahm}@informatik.uni-leipzig.de

Abstract— The proliferation of ontologies and taxonomies in
many domains increasingly demands the integration of multiple
such ontologies to provide a unified view on them. We demon-
strate a new automatic approach to merge large taxonomies such
as product catalogs or web directories. Our approach is based on
an equivalence matching between a source and target taxonomy
to merge them. It is target-driven, i.e. it preserves the structure
of the target taxonomy as much as possible. Further, we show
how the approach can utilize additional relationships between
source and target concepts to semantically improve the merge
result.

I. INTRODUCTION

Ontologies and taxonomies are increasingly used to seman-

tically classify or annotate information in a lot of different

application contexts. For example, in life sciences, ontologies

are used to describe components and functions of organisms or

objects such as genes or proteins; on the web, product catalogs

of online shops, comparison portals or web directories use

taxonomies to classify products or websites and to help users

and applications finding relevant information. Many ontologies

have been designed for the same domain in an independent

way and there is a growing need to integrate or merge them

with the goal to create a single ontology providing a unified

view on the input ontologies while maintaining all information

coming from them.

The ontology integration problem was investigated during

the last years, but it is still a challenge if one wants to perform

the integration in a largely automatic way. The related research

problem of schema integration has been studied thoroughly

for a long time [2] but most earlier approaches suffered

from trying to solve the complex problems of matching

and merging in a single approach. More recent work on

schema integration builds on the research results on semi-

automatic schema matching [9] and separate matching from

merging. Hence, several algorithms have been proposed to

merge schemas based on a pre-determined match mapping

[3], [11], [6], [8]. Despite this simplification, several of these

merge approaches are still not fully automatic but depend

on manual intervention. Previous approaches on ontology

merging [5], [4], [12] are also user-controlled and do not

utilize the separation of matching and merging. While user-

controlled approaches provide flexibility for determining the

merge result, they require the involvement of expensive data

integration experts and introduce a substantial manual effort

especially for large ontologies.

The AUTOMATIC TARGET-DRIVEN ONTOLOGY MERGING

(ATOM) system is an attempt at overcoming these limitations.

It implements a new approach for taxonomy merging which

generates a default solution in a fully automatic way that may

interactively be adapted by users if needed. It uses a target-

driven algorithm, i.e. it merges a source taxonomy into the

target taxonomy. Such an asymmetric merge is highly relevant

in practice and allows us to incrementally extend the target

ontology by additional source ontologies. For example, the

catalog of a new online shop may be merged into the catalog

of a price comparison portal.

We discuss the ATOM base algorithm that takes as input

two taxonomies and an equivalence matching between con-

cepts and we also present an extended algorithm that can

utilize additional relationships between the input taxonomies

to semantically improve the merging result. The algorithms

generate taxonomies that preserve all instances of the input

taxonomies as well as the structure of the target taxonomy.

Furthermore, they try to limit the semantic overlap in the

merged taxonomy, by utilizing the input mapping and giving

preference to the target taxonomy when the same concepts are

differently organized in source and target.

II. OVERVIEW

The example in Figure 1 shows two taxonomies classifying

automobiles in different ways. The source taxonomy classifies

first by body style (sedan, wagon, etc.) and then by manu-

facturer (Audi, BMW, etc.) while the target taxonomy uses

the opposite order. An equivalence mapping between source

taxonomies is already given, represented as a set of equiv-

alence correspondences between source and target elements.

In this paper, we will consider only acyclic taxonomies with

is-a relationships but multiple inheritance is supported, i.e. a

concept can have multiple parents. In order to simplify the

visualization and to keep our examples more readable, in the

following we only refer to taxonomies with single inheritance

but the algorithms proposed in this paper can deal with both

single and multiple inheritance. Furthermore, we assume that

instances are limited to leaf nodes which is frequently the

case in real applications. We established an extension of our

algorithm to support instances for inner concepts but we

cannot provide the details here due to space constraints. Each

concept in a taxonomy can have attributes that will be merged

if covered by one or more correspondences.

The motivation is that a taxonomy merging algorithm should

merge equivalent concepts into a common concept and then

correctly place the remaining source concepts in the merged

taxonomy. In contrast to previous approaches we do not try

to preserve all non-matching concepts and their relationships

in both input ontologies since this could introduce a semantic



overlap in the merge result due to a different and overlapping

structuring of the domain of interest. To limit this semantic

overlap (redundancy), we focus on maintaining the target

ontology and preserving all instances of both input ontolo-

gies while retaining only those non-matched source ontology

concepts and relationships that are needed to preserve all

instances.

Fig. 1: Running Example

Properties of a merged taxonomy. Based on [7], we

identified, adapted and extended some properties that the

solution of our merge algorithm should satisfy. We give an

informal description here, but a formal discussion can be found

in [10].

Target element preservation (P1) and Target relationship

preservation (P2) properties express how the merge result

between a source and target ontology should be a taxonomy

having a similar base structure than the target. It means that

each target concept must be present in the merged taxonomy

and all target is-a relationships between concepts must be

semantically preserved. In addition to target maintenance, we

require that all instances of both the target and the source

ontology must be preserved in the merged taxonomy. We

call this property Information Preservation (P3). The Control

of semantic overlap (P4) property suggests that the merge

algorithm should also generate an integrated taxonomy with

little or no redundancy compared to the input taxonomies. In

particular, no instance overlap between concepts should be in-

troduced. The last property, Equality preservation (P5), states

that if two concepts are equal in the equivalence mapping then

they are mapped to the same merged concept in the result and

vice versa.

Finally, we require that the algorithm must terminate and

produce a result that is itself a taxonomy (respectively Termi-

nation and Closure) and should be scalable and able to provide

good performance and acceptable execution times also for

large taxonomies with many concepts and is-a relationships.

Base algorithm. We propose a base algorithm that, given as

input two taxonomies and an equivalence mapping, produces

an integrated taxonomy that satisfies properties discussed

above. We can identify two successive phases in the algorithm:

a preliminary phase and a main phase. More details of the

algorithm can be found in [10].

The preliminary phase is responsible for creating an inte-

grated concept graph I starting from two input taxonomies and

an equivalence matching between them. An integrated concept

graph contains all concepts coming from input taxonomies

and the concepts mapped by the equivalence mapping are

merged in one concept. For each is-a relationship in the input

taxonomies, a labeled edge will be generated in the graph

distinguishing source and target edges, called in the following

s-edges and t-edges. A similar algorithm was introduced in [3]

for relational and XML schemas and the preliminary phase of

our approach is based on it but with significant differences.

One of the main differences is the distinction in the integrated

concept graph between edges coming from source and that

ones coming from target; this distinction will play a very

important role in the automatic generation of the final result.

The integrated concept graph I generated for our running

example is in Fig. 2. Nodes with a star (*) in the label represent

merged concepts (e.g. Sedan BMW∗ or Wagon Audi∗); edges

with labels S1 to S7 are source edges and edges with labels

T1 to T7 are target edges.

Fig. 2: Integrated Concept Graph

The main phase is based on a integrated graph visiting

algorithm. The main idea is how source and target edges are

translated. As first step we check and remove cycles in the

graph I . Since we are assuming that input taxonomies are

acyclic, any cycle in I cannot involve only s-edges or t-edges.

It is worth to note that there can be more than one way to solve

this kind of cycles. For example, in [7] all concepts involved in

a cycle are merged in a single concept since is-a relationships

are transitive and a similar cycle implies equality of all its

concepts. In our algorithm we solve cycles in a different way,

deleting one of the s-edges involved in the cycle. The intuition

behind this choice is that we define our algorithm as target-

driven in order to preserve the target structure in the final

result, and the removal of a s-edge does not modify the target

structure. In this step, the user might choose which edge to

remove for producing a better solution.

In the second step we translate all t-edges. For each t-

edge e = N1 → N2, we normally create an is-a relationship

between the integrated concepts C1 and C2 corresponding to

N1 and N2 in I , respectively, in order to maintain the target

concepts and relationships. The only exception is when there

exists exactly one source path P with start node N1 and end

node N2 containing more than one s-edge. In the latter case we

do not create a direct relationship between C1 and C2 but we

mark all edges in P as relevant (for the merged taxonomy).

Thus, we want to preserve the target structure in the final

result but if two concepts have a more detailed structure in the

source, we want to reward it in the merged taxonomy since it

preserves and extends the target structuring between N1 and

N2.

The most important step in the main phase is the translation

of s-edges because the algorithm tries to integrate in a correct



Fig. 3: Result of the base (a) and the extended (b) algorithms

place the missing concepts coming from the source taxonomy.

The idea is that we want to check which s-edges are relevant

for the merge result without introducing redundancy in addi-

tion to the t-edges. In order to do this, for each leaf node in

the source, we traverse each path P from the node to the root

containing only s-edges (that we call s-path) and consider its

edges as relevant until one node in P has outgoing t-edges

indicating that the remaining path is already covered by T .

In our running example, the set of source leaf nodes is

{Sedan Audi∗, Sedan BMW∗, Wagon Audi∗, Wagon BMW,

SUV}; for example, the node Wagon BMW has the following

s-path P = {S7, S3}. The start node of S7, that is the first

edge in P , is Wagon BMW and since it has no outgoing t-edges

we mark S7 as relevant; the same goes for S3, the next edge

in P , and we mark it as relevant. Instead, if we consider the

node Sedan Audi∗, it has the following s-path P = {S4, S2}.

The start node of S4, the first edge in P , is Sedan Audi∗

and since it has an outgoing t-edge, T4, we do not mark S4

as relevant because a translation for Sedan Audi∗ has already

been proposed in the previous step. At the end of this step,

only S1, S3 and S7 will be marked as relevant; it follows

that SUV, Wagon BMW and Wagon will be translated in the

merge result while Sedan is considered not relevant for the

merged taxonomy and it will be ignored. Figure 3(a) shows

the integrated taxonomy generated by the algorithm for our

running example.

It is easy to see that the proposed algorithm meets the re-

quirements (P1) to (P5) introduced in this section. By merging

corresponding concepts we reduce semantic overlap compared

to a simple union of the input taxonomies; furthermore we

eliminate redundant inner nodes such as Sedan for the running

example. Still there is remaining semantic overlap in the merge

result determined by the base algorithm and we discuss next

how to further reduce it with the extended algorithm. The

default result generated automatically by the system might not

satisfy the subjectivity of the user. In this case, ATOM shows

which concepts were considered as not relevant and the list of

the target concepts with their paths that make them redundant

in order to help the user to choose a different solution.

Extended algorithm. Inspecting the result of the base

algorithm, reveals that not all concepts seem well placed and

that there is still some semantic overlap due to the differences

in the original taxonomies. For example the concept Wagon

BMW is not in the same subtree than concept BMW. Moreover,

there is likely overlap between the general SUV concept

under Automobile∗ and the more specific concepts SUV Audi

and SUV BMW. Since the provided equivalence mapping

does not express these semantic relationships, we provide an

extended algorithm using enriched input mappings with is-

a and inverse-isa relationships. An is-a correspondence is an

oriented correspondence from a source concept to a target

concept and it expresses an is-a relationship between them;

similarly we can define a inverse-isa correspondence. For

example, we can specify an is-a correspondence to describe

that the source concept Wagon BMW is a subclass of the target

concept BMW and a pair of inverse-isa correspondences to

state that the source concept SUV semantically is a superclass

for both target concepts SUV Audi and SUV BMW, since

SUV in the source represents every kind of SUV and not a

SUV of a specific manufacturer, as instead in the target is.

In order to utilize the semantic information coming from is-a

and inverse-isa mappings, we introduce is-a edges and inv-isa-

edges in the integrated concept graph reflecting respectively is-

a and inverse-isa correspondences. The result generated by the

extended algorithm for our running example is shown in Fig.

3(b). As we can see, the concept Wagon BMW is now correctly

placed and the concept Wagon was ignored in the final result

since considered as no more relevant. Moreover, concepts SUV

Audi and SUV BMW were renamed respectively as SUV Audi

+ S1 and SUV BMW + S2 to indicate that they represent not

only the target concepts but also a subset of the source concept

SUV, as defined in the inverse-isa correspondences; finally the

concept SUV (others) represents all source SUV not already

merged into other concepts – informally speaking, it represents

all SUV with a manufacturer different from Audi and BMW.

During the demonstration we will discuss complex scenarios

and we will show how the specification of is-a and inverse-isa

relationships improves the quality of the merged result.

Mapping Generation. After the integrated taxonomy has

been determined, equivalence mappings between the input

taxonomies and the merged taxonomy can be automatically

generated. The process is fully automatic and based on the ex-

tended integrated concept graph reflecting the equivalence, is-

a and inverse-isa relationships between the input taxonomies.

The idea is that these relationships produce different edges

in the integrated concept graph and consequently different

concepts and relationships in the merged taxonomy. In par-

ticular, correspondences in an equivalence mapping describe

how two or more source concepts should be merged in the

integrated taxonomy; on the other side, an isa-mapping does

not produce merged concepts in the result, but it defines a

subclass relationship between a source and a target concept,

describing which should be the father of a source concept

in the merged taxonomy; finally, an inverse-isa mapping de-

scribes how to split a source concept (and its instances) in two

or more concepts in the final result. The algorithm will produce

a correspondence for every leaf concept specifying where

instances should migrate in the merged taxonomy. Fig. 4 shows

the mappings M1 and M2 generated for our running example,

for relating the input taxonomies to the integrated taxonomy;

we have drawn correspondences between leaf nodes with a



solid line and that ones between inner nodes with a dotted

line. Thus, properties (P3) and (P4) are satisfied with respect

to instances, since there is a correspondence for each leaf node

in source taxonomies and each instance migrates to exactly one

concept in the merged taxonomy.

Fig. 4: Mappings M1 and M2

III. DEMONSTRATION

ATOM has been implemented as a working prototype written

in Java, offering a GUI to explore all steps of the merging

generation process. During the demonstration we will show

various usage scenarios supported by the system. In a typical

scenario, a user chooses a merging scenario providing input

taxonomies and mappings; correspondences can be loaded

with input taxonomies or they can be manually drawn using

the GUI as shown in Figure 5. ATOM has been integrated

with COMA++ [1] which permits semi-automatic generation

of input mappings. The user can specify different kinds of

mappings: equivalence, is-a and inverse-isa correspondences

are supported by the system as discussed in the previous

section, so that the user can decide if the merge solution must

be generated using the base or the extended merge algorithm.

At the end of the merge process, the system shows the

integrated taxonomy highlighting which concepts have been

merged, which ones have been generated from is-a mapping

and which ones from inverse-isa mapping. The set of source

nodes marked as not relevant by the algorithm and ignored

in the final result can be inspected by the user. Finally, the

system automatically generates equivalence mappings between

the input taxonomies and the merged taxonomy and it shows

them to the user.

Fig. 5: A snapshot of the system

The demonstration will focus on the discussion of various

merging scenarios, showing the features and the quality of the

merge result produced by ATOM . To show how the solution

produced by the system satisfies the properties discussed in

Section II, we have prepared synthetic scenarios of small and

medium sizes in order to easily inspect the final result. These

scenarios will be also used to show how the specification

of a more semantic mapping between the input taxonomies,

in particular is-a and inverse-isa relationships in addition to

equivalence relationships, can reduce the semantic overlap in

the merge taxonomy.

We will show how in practical cases ATOM computes the

merge taxonomy very efficiently and scales well to large

taxonomies in various real-life scenarios. We distinguish two

main scenarios: the Anatomy (Mouse-NCI) scenario and the

eBay product catalog scenarios. The first one merges the

AdultMouseAnatomy (over 2700 concepts) with the anatomi-

cal part of the NCI Thesaurus (NCIT) (about 3300 concepts);

the second one merges different versions of the eBay product

catalog with over 20000 concepts. The input taxonomies in the

Anatomy scenario have a limited overlap since only 33% input

concepts are mapped by an equivalence correspondence. This

scenario shows that only few source concepts are considered

as not relevant for the merged taxonomy and were ignored.

The system scaled well to this scenario since it produced the

merged result in about one second. The eBay product catalog

scenarios will be useful to show the scalability of the system

to very large ontologies. We considered the same scenario

where the input taxonomies are two successive versions of

the eBay product catalog. The system scaled well also on

these scenarios (the maximum execution time took less than

10 seconds) and during the demonstration we will discuss how

the proposed solution reduces the semantic overlap.

IV. CONCLUSIONS

With the ATOM system, we present a novel merging tool that

combines taxonomies by integrating one into another one. We

demonstrate the successfulness of our approach by applying it

on large real life ontologies.

REFERENCES

[1] D. Aumueller, H. Do, M. S., and E. Rahm, “Schema and Ontology
Matching with COMA++,” in Proc. of ACM SIGMOD, 2005, pp. 906–
908.

[2] C. Batini, M. Lenzerini, and N. S. B., “A Comparative Analysis
of Methodologies for Database Schema Integration,” ACMCompSurv,
vol. 18, no. 4, pp. 323–364, 1986.

[3] L. Chiticariu, P. G. Kolaitis, and L. Popa, “Interactive generation of
integrated schemas,” in Proc. of ACM SIGMOD, 2008, pp. 833–846.

[4] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, “An environment
for merging and testing large ontologies,” in KR, 2000, pp. 483–493.

[5] N. F. Noy and M. A. Musen, “Prompt: Algorithm and tool for automated
ontology merging and alignment,” in AAAI/IAAI, 2000, pp. 450–455.

[6] R. Pottinger and P. A. Bernstein, “Schema merging and mapping creation
for relational sources,” in EDBT, 2008, pp. 73–84.

[7] R. A. Pottinger and P. A. Bernstein, “Merging models based on given
correspondences,” in Proceedings of the 29th International Conference

on Very Large Data Bases - Volume 29. VLDB Endowment, 2003, pp.
862–873.

[8] A. Radwan, L. Popa, I. R. Stanoi, and A. A. Younis, “Top-k generation
of integrated schemas based on directed and weighted correspondences,”
in SIGMOD Conference, 2009, pp. 641–654.

[9] E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” VLDB J., vol. 10, pp. 334–350, 2001.

[10] S. Raunich and E. Rahm, “Target-driven Merging of Taxonomies,”
University of Leipzig, Tech. Rep., 2010. [Online]. Available:
http://arxiv.org

[11] K. Saleem, Z. Bellahsene, and E. Hunt, “Porsche: Performance oriented
schema mediation,” Inf. Syst., vol. 33, no. 7-8, pp. 637–657, 2008.

[12] G. Stumme and A. Maedche, “Fca-merge: Bottom-up merging of
ontologies,” in IJCAI, 2001, pp. 225–234.


