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Abstract. Precision and Recall, as well as their combination in terms of F-
Measure, are widely used measures in computer science and generally applied to
evaluate the overall performance of ontology matchers in fully automatic, unsu-
pervised scenarios. In this paper, we investigate the case of supervised matching,
where automatically created ontology alignments are verified by an expert. We
motivate and describe this use case and its characteristics and discuss why tra-
ditional, F-measure based evaluation measures are not suitable for this use case.
Therefore, we investigate several alternative evaluation measures and propose the
use of Precision@N curves as a mean to assess different matching systems for
supervised matching. We compare the ranking of several state of the art match-
ers using Precision@N curves to the traditional F-measure based ranking, and
discuss means to combine matchers in a way that optimizes the user support in
supervised ontology matching.

Keywords: Supervised Ontology Matching, Evaluation, Recall, Precision,
F-Measure, Precision @N-Curves, ROC-Curves, Precision-Recall-Curves

1 Supervised Ontology Matching

An ontology provides a formal representation of domain knowledge by defining enti-
ties, i.e., instances, classes, and their relationships. This broad definition of an ontology
also encompasses more restricted knowledge organization systems such as thesauri,
classifications, or taxonomies. Ontology matching is the process of creating alignments
between ontologies. An alignment A contains correspondences between the entities of
two ontologies O and Os. A correspondence c relates an entity of ontology O to an
entity of ontology Os. The semantics of the relationship depends on the application,
the matching approach, and the formal language in which the ontology is described.
Each of the prominent Semantic Web languages OWL, RDFS, and SKOS provide rela-
tionships to denote equivalent entities and to relate entities hierarchically. Additionally,
each correspondence can have a confidence value to indicate how likely the relation
holds.

The manual creation of ontology alignments is very time-consuming and often not
feasible, for example, if various ontologies are used in a dynamic environment, where
ontologies have to be matched ad-hoc, or for alignments between large-scale ontologies.
Therefore, automatic ontology matching approaches have been developed. The term
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ontology matching today is used mostly in the context of automatic matching. On the
one hand, they have the advantage to not involve any human expert but on the other
hand, the quality that can be achieved by fully automatic matching systems is limited
[26].

There are, however, use cases in which the quality of the resulting mapping is essen-
tial, and where wrong correspondences cannot be tolerated. Such use cases demand for
different approaches. In this paper, we investigate the approach of supervised ontology
matching', where a machine-created alignment is double-checked by a human expert.

2 Problem Statement

The use case for supervised ontology matching that motivates our research is the man-
ual creation of an alignment between medium-size to large ontologies, e.g., thesauri
that are used in libraries, such as the Standard Thesaurus for Economics (STW) and
the Thesaurus for the Social Sciences (TheSoz). For these thesauri, a partial alignment
has been manually created in 2006 within the KoMoHe-project [20]. This was a sig-
nificant effort, but it was not even feasible to maintain the resulting alignment as both
thesauri have been further developed: several hundred concepts have been added to both
thesauri, other concepts got changed or deleted.

Since 2012, STW and TheSoz are used in the Library Track® of the Ontology Align-
ment Evaluation Initiative (OAEI) as test-bed for automatic ontology matchers. While
the matchers are evaluated based on the existing partial alignment, it would be appeal-
ing to use the results of the matchers to improve and maintain this alignment. The time
of domain experts who could check the results and maintain the alignment, however,
is precious. This leads to our research question: Given a fixed amount of time that a
human expert can invest for double checking the results of a matcher, which matcher
should be used, so that the number of new correct correspondencies?

A general approach to evaluate automatic ontology matchers is pursued by the
OAEI, where matchers meet several challenges (including the Library Track) in an an-
nual competition. As no special use case is presumed, the matchers resp. their candidate
alignments are evaluated using the common measures precision, recall, and F-measure
[30],i.e., it is calculated how precise (returned correct correspondences vs. returned cor-
respondences) and how complete (returned correct correspondences vs. existing correct
correspondences) an alignment is. As an improvement of precision generally leads to a
decrease of recall and vice versa, F-measure, i.e., the harmonic mean of precision and
recall, is used as an overall evaluation measure. To compute these measures, a (par-
tial) reference alignment containing (almost) all correct correspondences needs to be
available.

For our use case, however, we require a measure that takes into account the time a
human expert can invest for double-checking matcher results. Thus, precision, recall,
and F-measure are not sufficient to rate matchers. Generally, a high precision of the
candidate alignment is desired, as every incorrect correspondence costs time, but does

! This is not to be confused with the term supervised learning used in machine learning, where
examples are given to a learner for training a model.
2 http://web.informatik uni-mannheim.de/oaei-library/2012/
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not increase the size of the manual alignment. On the other hand, the more time the
expert invests, the more correspondences can be checked. Thus, we require a dynamic
measure that takes the number of correspondences which can be checked as a parame-
ter, and which optimizes the outcome (i.e., number of correct correspondences) among
those.

Another important characteristic of this use case is that the correspondences that are
included in the candidate alignment, but not checked by the human expert, do not affect
the performance of the matcher for this use case. For example, if a matcher returns a
candidate alignment with 100 correspondences but the human expert only has the time
to check 10, this matcher has the same performance with respect to our use case as a
matcher creating a candidate alignment containing only these 10 correspondences. As
long as the expert is willing to check more correspondences, further correspondences
should be offered. On the other hand, it can be assumed that the expert stops checking
when the yield drops below a certain rate. Intuitively, a matcher therefore performs
best if it sorts the correspondences so that correct correspondences are sorted before
incorrect ones. Most matchers provide the means for such a ranking in the form of
confidence values [10], but those values are not taken into account for computing the
“classic” measures, such as recall, precision, and F-measure.

3 Precision@N Curves

Given an ordered candidate alignment C with |C| correspondences. In a fixed time ¢, the
human expert can verify the first n of the correspondences in C, a subset denoted as C,,.
Since n is not known, a matcher performs best, if C,, contains a maximum amount of
correct correspondences for every n, i.e., the precision of C,, is maximized for every n.
We therefore define:

Definition 1 (Precision@N). The Precision@N ( Pr,,) is the precision of C,, for a given
Candn, with1 <n <|C|

While the definition of Precision@N is derived straight from the problem statement,
there are some details to tackle. First of all, different matchers provide candidate align-
ments of different sizes — correlated to precision and recall (high precision — small
alignment, high recall — large alignment). To be comparable, Precision@N must be
defined for all matchers for all n. Therefore, the sizes of the candidate alignments have
to be equalized by padding, i.e., smaller candidate alignments are simply filled up with
placeholders from an artificial placeholder alignment P that contains artificial incorrect
correspondences with a confidence of 0:

C=u{Cc,P}; [PI=ICl—[C| (1)

There are different possibilities to define the size of C. If there are several candidate
alignments available, a human expert would all of them in an ideal case. Thus, we
define the union of all candidate alignments C,;; (without the artificial placeholdeArs),
which forms the largest candidate alignment, thus, the following equations holds: |C| =
[Cau]-
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Fig. 1: Optimal and exemplary Precision@N curves

Figure 1 shows two exemplary curves for the Precision@N values of two candidate
alignments, obtained with the matching systems WeSeE [25] and YAM++ [21], together
with the optimal curve based on the reference alignment R. The reference alignment
‘R contains all correct correspondences which can be found between the ontologies and
serves as gold standard. Its size in our use case is 3,161, the union of all matching
results considered in this paper has the size 21, 787 = |C,;;| (see Sect. 4. For the optimal
curve, Precision@N is defined as

1 1<n<|R|
Pr(R) = {lR n > |R|

n

(@)

From Fig. 1, we can see that the number n of correspondences to be checked by an
expert is required to decide on an optimal matcher: matcher WeSeE dominates matcher
YAM-++ for smaller values of n (n < 2848), while YAM++ dominates for higher values
of n.

In order to create a ranking of matchers for this given task, we have to abstract from
these curves: we propose to use the area under the curve (AUC) of the Precision@N
curve as an evaluation measure that can be used to rank the matchers with respect to
their overall performance in this use case, independent of a specific n. The AUC of the
Precision@N can accurately be approximated by a Riemann sum [28]:

€| IC]
AUC(Pr,) = / Pr, =Y Pr, 3)

=1 n=1
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We further normalize AUC(Pr,,) using AUC(Pr,,(R))~! as normalization factor. The
normalization factor can be determined by the following closed-form expression using
Euler’s approximation for the sum of a partial harmonic series [14]:

IR| IC] R
AUC(Pr,(R)=> 1+ » (4)
n=1 n=|R|+1 "
IC] IR

= [R|+R]- Z%—Z% )
n=1 n=1

. 1 1
~ R+ |R|- | In(C]) — In(|R|) + —= — == 6
R+ IR <n(| ) = in(] I)+2|C| 2|R|> (6)

In the following, we use the normalized AUC of Precision@N, which has a range be-
tween 0 and 1, and compare it to other evaluation measures.

4 Evaluation

We use the OAEI Library Track data set and the results of all matchers participating in
the OAEI 2012 campaign to evaluate Precision@N curves: AROMA [5], CODI [16],
GOMMA [18], Hertuda [15], HotMatch [4], LogMapLt [17], LogMap [17], MapSSS
[3], Optima [31], ServOMap-1t [2], ServOMap [2], WeSeE [25], and YAM++ [21]. The
results of the latest OAEI evaluation can be found in the OAEI 2012 results overview
paper [1] and include a comparison based on precision, recall and F-measure. All gen-
erated candidate alignments® as well as the reference alignment* are available.

4.1 Single Matcher Evaluation

We evaluate the Precision@N curves of the 13 matchers and compare them to related
measures. Precision, recall and F-measure have already been mentioned in the begin-
ning. These ones are commonly employed and provide an overview of the alignment
quality, but, as discussed above, do not suit every use case. None of those measures
takes the ordering of the correspondences according to their confidence values into ac-
count. For our use case, however, this ranking is essential. That is why we mainly focus
on measures which exploit confidence scores, such as Precison-Recall curves.

Mean Absolute Error (MAE) measures how close predictions are to the actual
values. It is the average of all differences between the prediction and the actual outcome.
If we assume that a confidence value of 0 indicates an incorrect correspondence and a
confidence value of 1 stands for a correct correspondence, we can apply this measure
on the candidate alignments:

1.0 — conf(c) : if c is correct

MAE(C) = ‘%I >eec {

conf(c) : otherwise

3 http://web.informatik.uni-mannheim.de/oaei-library/results/2012/raw Alignments.zip
* http://web.informatik.uni-mannheim.de/oaei-library/results/2012/reference All.rdf
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where con f(c) is the confidence value of a correspondence c. MAE measures the ability
of a matcher to predict good confidence values. An optimal candidate alignment with
respect to MAE contains correct correspondences with a confidence value of 1 and
incorrect ones with a confidence value of 0, and yields an MAE of 0.

Precision-Recall (PR) Curves illustrate which precision value is achieved at a cer-
tain recall value by plotting the precision values (y-axis) against the recall (x-axis)
values [19]. Typically, the curve decreases from high precision values for low recall
to lower precision values for higher recall. An optimal candidate alignment contains
all correct correspondences without including any incorrect ones. Whenever incorrect
correspondences occur in the candidate alignment, they need to be ranked low in the
candidate alignment to keep the curve at an upper level before it drops down. The area
under the PR curve (AUC(P R)) can be computed to receive a single value which can
be used for simple comparisons.

Receiver Operator Characteristic (ROC) Curves have been introduced in the
machine learning field to evaluate binary classifiers [13]. They show how the number of
correct correspondences varies with the number of incorrect ones which represents the
ability of the classifier to discriminate correct from incorrect correspondences. On the
x-axis, the true positive rate is plotted against the false positive rate on the y-axis. ROC
curves can be applied to see whether the matcher is able to assign distinguishable con-
fidence values [23]. If all correct correspondences are ranked higher than the incorrect
ones, the ROC curve is optimal. Again, the area under the ROC curve AUC(ROC') can
be used for comparison, which is 1 for an optimal alignment. PR and ROC curves are
strongly related and share similar characteristics, but they are not equivalent [6], since
false positives influence the PR curve more strongly than the ROC curve.

4.2 Combining Matching Strategies

Due to the large amount of available matchers, we are not restricted to only concentrate
on one system. Especially if the human expert has the time to check a huge amount of
correspondences which exceeds the size of each single candidate alignment generated
by the individual matchers, he or she should not be forced to stop only because the
candidate alignment does not contain enough correspondences. By unifying candidate
alignments, we can ensure that the human expert has enough correspondences to verify,
at most all correspondences found by any of the matchers.

When combining matchers by unifying their candidate alignments, a strategy for
ordering the correspondences in their union alignment C,;; is required. For our use
case, a particular challenge is to find a strategy to order the correspondences in Cy;; in
a way that the Precision@N curve of the resulting sorted alignment is optimal. With
this additional requirement, the ontology matching problem is reformulated as a sorting
problem. A related approach is the combination of matchers to improve the quality of
candidate alignments in terms of F-measure. Eckert et al. [8] have shown that a suitable
combination of matchers can outperform the individual ones because the strengths of
each matcher can be exploited, while weaknesses of single matchers can be cancelled
out.

We investigate the following seven strategies for ordering the union of alignments
Cat:
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Random. The random strategy is a lower baseline. Each correspondence is assigned to
a random position in the unified alignment no matter which matcher produced this
correspondence or how high the confidence value is.

Confidence Sorted. Since each correspondence has a confidence value, we can take
them to sort C,;;. Assuming that all matchers provide confidence values normalized
to a [0; 1] interval (in an extreme case, a matcher will deliver only correspondences
with a confidence of 1, with all other possible correspondences implicitly having a
confidence value of 0), we sort the correspondences by the maximum of confidence
values provided by any matcher.

F-measure on Partial Reference Alignment. Assuming that a partial reference align-
ment is already given, all matchers can be evaluated against it, which yields an ap-
proximation of the actual matcher performance. As shown in [27], precision, recall,
and F-measure on partial reference alignments strongly correlate with the respec-
tive measures of the full reference alignment. We use the F-measure on the partial
reference alignment to sort C,;;, adding all correspondences found by the best per-
forming matcher first, then adding all correspondences found by the second best
matcher, and so on. For our experiment, we use a subset of our full reference align-
ment® as a partial reference alignment. All precision, recall and F-Measure values
on this partial reference alignment can be found on the results page of the Library
Track®.

In cases where a partial reference alignment is not available, evaluation results of
similar data sets can also be used for these kinds of strategies.

Precision on Partial Reference Alignment. This strategy is similar to the F-measure
on Partial Reference Alignment strategy, but orders the correspondences by the
precision of the matcher that found them on the partial reference alignment.

Recall on Partial Reference Alignment. This strategy is similar to the F-measure on
Partial Reference Alignment strategy, but orders the correspondences by the recall
of the matcher that found them on the partial reference alignment.

Majority Voting. In this strategy, the correspondences of the unified candidate align-
ment are sorted by the number of matchers which found these correspondences. The
correspondences found by all matchers are ranked highest, followed by the corre-
spondences found by all but one matcher and so on. If several correspondences have
been detected by the same number of matchers, they are sorted in descending order
of their confidence values. In our data set, 71 correspondences have been found by
13 matchers, 209 by 12 matchers, etc., but the majority of correspondences (16662)
are only found by a single matcher. This approach has the advantage that no partial
reference alignment or other evaluation results are required.

Current Leadership. As already indicated when having a look at the Precision@N
curves, a certain matcher may perform best for a specific n. The Current Leadership
strategy picks up that idea and takes the sorted correspondences of a candidate
alignment as long as the corresponding matcher has the currently highest precision
value. As soon as another matcher takes over the leadership, the correspondences
contained in the other candidate alignment are now taken. This strategy serves as

5 http://web.informatik.uni-mannheim.de/oaei-library/results/2012/reference.rdf
® http://web.informatik.uni-mannheim.de/oaei-library/results/2012/
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a baseline and can only be applied when we already computed the Precision@N
curves for all matchers.

With the evaluation, we want to answer the question which strategy can sort the
correspondences in the unified candidate alignment best such that the Precision@N is
maximized.

5 Evaluation Results

All data and scripts (source code as well as executable programs) we used for our eval-
uation can be found in the research data repository of our library’ to ensure the repro-
ducibility and traceability of our results. To compute the area under curves, we used the
the trapz® function of the R package pracma which performs a trapezoidal integration.

5.1 Single Matcher Evaluation Results

Figure 2 shows the Precision@N curves for the individual candidate mappings. As dis-
cussed above, Precision@N curves provide an intuitive visualization to assess which
matcher contains the most correct correspondences for a given n. For small n, can-
didate alignments containing exclusively correct correspondences are preferable. The
more correspondences a domain expert can verify, the completeness of the candidate
alignment becomes more important. To decide which matcher performs best for our use
case, matchers with Precision@N curves which are always dominated by other curves,
e.g. MapSSS or Optima, can be discarded at fist glance.

Several observations can be made from the curves. For example, the curves of
GOMMA and Hertuda, which provide high recall values, stay at a rather low level
of precision but over a large number of n. In contrast, the curves for ServOMap and
LogMap, which have high precision values, start at higher precision values, but drop
quicklier.

Comparing Precision@N curves to PR and ROC curves emphasizes the individual
characteristics of each visualization. We selected two matchers to illustrate their curves
in detail. Figure 3 shows the three plots for the matcher GOMMA. The PR curve rep-
resents, apart from the beginning, an almost horizontal line. Since the PR curve plots
the precision values again the recall values, it indicates that correct and incorrect cor-
respondences occur mostly alternately in the sorted candidate alignment. This can be
observed from the ROC curve, which is close to the diagonal in that case. The Preci-
sion@N curve of GOMMA is similar to its PR curve. In both visualizations, the curves
remain stable on certain level of precision (around 0.6).

Figure 4 depicts the same three plots for the matcher ServOMap. The PR curve
shows a different behavior than the PR curve of GOMMA, starting at a higher precision
value, but not reaching the recall of GOMMA. This characteristic predicts that most of
the correct correspondences are ranked higher than the incorrect ones but the candidate
alignment also only includes a few incorrect correspondences, which is indicated by a

7 http://dx.doi.org/10.7801/23
8 http://www.inside-r.org/packages/cran/pracma/docs/trapz
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Fig. 2: Precision@N curves for all individual candidate alignments

ROC curve which is significantly above the diagonal. Similar to the PC curve, the Preci-
sion@N curve starts at a high precision value and drops fast for larger n. If we compare
both Precision@N curves, ServOMap outperforms GOMMA for smaller values of n,
while GOMMA dominates ServOMap for larger values of n.

Precision@N curves thus provide a suitable means to compare two matchers w.r.t
the number of correct correspondences among the first n results. In contrast, neither PR
curves nor ROC curves indicate the size of the alignment or provide any expectation of
a matcher’s performance for a given n.

While the curves provide a visual means to compare different matchers, it is de-
sireable to have a performance estimation reduced to one single real number such that
matchers can be explicitly ranked. As already discussed, we can compute the AUCs for
that purpose.

Table 1 shows the ranking of different matchers according to the measures intro-
duced above, where rank 1 denotes the best system. It can be observed that the ranking
according to different measures deviate. Some matchers always occupy a similar posi-
tion, e.g. CODI, while others are ranked very differently, e.g. GOMMA which even has
a standard deviation value of the positions of 3.4.

MAE has a correlation to precision which is easily explainable: if a matcher only
adds correspondences to the candidate alignment which are very likely to be correct,
and assigns high confidence values because the matcher is confident about their cor-
rectness, the MAE is close to 0 and the precision close to 1. In our experiments, the
matcher LogMap shows an exception. LogMap is on position 2 according to precision
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Fig. 3: Comparision of different curves for matcher GOMMA
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Fig. 4: Comparision of different curves for matcher ServOMap

but only on position 9 when applying MAE. For all correspondences, LogMap assigns
confidence values between 0.5 and 0.99. Since it has a high precision, most of these
correspondences are correct, even though some of them have a confidence of only 0.5.
Obviously, these high differences cause a high MAE value. In contrast, HotMatch, also
a matcher with a high precision, only assigns confidence values between 0.88 and 1.0.
Thus, the difference is rather small. MAE provides an assessment of the confidence
values which are important for the ranking but it does not take into account how many
of all correct correspondences have been found.

AUC(PR) is highly correlated (0.98) to F-measure, but the additional consideration
of the ordering changes the positions of some matchers. The most significant changes
concern GOMMA and Hertuda. While GOMMA drops from position 2 to position 5,
Hertuda rises from position 7 to position 4. Thus, Hertuda assigns better confidence
values to the correspondences found, which allow for a better ordering.

AUC(ROCQ), unlike others, is neither negatively nor positively correlated to any of
the other measures. The difference in the positions can vary a lot, e.g. GOMMA has
position 2 according to F-measure but only position 10 when applying AUC(ROC).
This shows that a matcher with a high F-measure does not necessarily assign confidence
values to the correspondences which can indicate whether a correspondence is indeed
correct or not.
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Table 1: Positions of the matchers according to different measures

Matcher |AUC(Pr;,)|Precison|Recall|F-Measure| AUC(PR)|AUC(ROC)|MAE
GOMMA 1 8 2 2 5 10 7
Hertuda 2 10 1 7 4 5 10
ServoMap-It 3 3 5 1 1 1 4
YAM++ 4 6 4 5 6 9 5
LogMapLt 5 7 3 6 7 11 6
ServOMap 6 1 8 3 2 2 1
LogMap 7 2 7 4 3 4 9
WeSeE 8 5 9 8 8 3 3
HotMatch 9 4 10 9 9 8 2
CODI 10 11 11 10 10 12 11
AROMA 11 13 6 12 11 6 13
MapSSS 12 9 12 11 12 13 8
Optima 13 12 13 13 13 7 12

AUC(Pry,) is significantly correlated (0.97) to AUC(PR) and acts in most cases
similar to recall as well as F-measure, but puts a stronger focus on recall than AUC(P R)
and F-measure since the candidate alignments need to contain as many correct corre-
spondences as possible. AUC(PR) is tolerant against incorrect correspondences in the
candidate alignment as long as they are sorted at the end of the candidate alignment,
and the recall is high. If the expert has a lot of time, it is even better to find a few cor-
rect correspondences among the incorrect ones than to find none or stop the manual
verification.

While the AUC values are a suitable means to provide a ranking between matchers,
there is a loss of information from the original curves. For example, while we can ob-
serve from the curves that ServOMap outperforms GOMMA for small n, but is inferior
for for larger n, but this is not reflected in the AUC values. Thus, the AUC values are
suitable for a rough estimate of the performance of different matchers in supervised
matching scenarios, but Precision@N curves are essential for fine-grained assessments
for individual values of 7.

Since even the best Precision@N curve is not very close to the optimal Precision@N
curve, there is still room for improvement. Due to the large amount of available can-
didate alignments generated by the various matchers, we do not have to focus only on
one candidate alignment but can combine them to obtain alignments that are even more
valuable for the supervised matching use case.

5.2 Combining Matching Strategies Evaluation Results

Figure 5 shows the Precision@N curves for the seven strategies we implemented. Since
it is always the same alignment C,;;, the precision, recall, and F-measure values are
exactly the same for each strategy, but their Precision@N curves fundamentally differ
from each other. Thus, the Precision@N curves reveal significant details between the
approaches. The best strategies commonly start with precision values close to 1 and
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even have a precision value of about 0.8 when n reaches the size of the reference align-
ment. Thus, they are close to the optimal Precision@N curve.

The random strategy is very close to the average precision value (% = 20 —
0.145) over all n. Sorting the correspondences by their confidence value is only slightly
above the random baseline. Since maximum confidences across all matchers are used
for sorting, this strategy is prone to adding up all false positives found by all matchers,
i.e., single matchers assigning large values to single faulty correspondences.

Both recall and F-measure on the partial reference alignment approaches result in a
similar Precision@N curve which is located in the midfield. They remain on a quite sta-
ble precision level for most n up to 5000 but never achieve very high precision values.
The shape of the Precision@N curve highly depends on the matcher with the high-
est recall/F-measure value. For example, Hertuda has the highest recall value on the
partial reference alignment and its candidate alignment already contains 5559 corre-
spondences. Thus, it dominates the results of all other matchers. Similar phenomena
can be noticed for the strategy which is based on F-measure values.

In contrast, the strategy which orders the candidate alignments according to the pre-
cision value of the partial reference alignment shows good results. Most of the correct
correspondences are ranked high, which results in a high precision value for smaller n.
Other promising strategies are the Majority Vote and the Current Leadership. In partic-
ular the Majority Vote outperforms all other strategies for most values of n. Moreover,
in contrast to the Precision on Partial Reference Alignment or the Current Leadership
approach, it does not even require any additional resources like a (partial) reference
alignment. This makes Majority Vote the favorable strategy for combining matchers in
supervised matching scenarios.

Altogether, the experiments show that combining matchers by unifying their can-
didate alignments and applying a proper sorting strategy helps to significantly increase
performance. Thus, a human expert can get (almost) the maximal number of new correct
correspondences within a particular time frame. Furthermore, it can be observed that,
although all strategies yield the same recall, precision, and F-measure, the performance
differs significantly w.r.t. Precision@N curves.

6 Related Work

Supervised ontology matching is related to the employment of automatic indexing sys-
tems as recommender for intellectual indexing, as described in [11]. In most cases,
the terms assigned to publications need to be perfectly correct such that an automatic
approach without any further manual verification of the indexed terms is not feasible.
Semi-automatic indexing approaches automatically generate a list of index terms for
each publication, e.g. with the best x index terms that have been detected [12]. After-
wards, a domain expert can manually check this list and take over the correctly assigned
index terms. It is similar to our use case, whenever the domain expert likes to index as
many publications as possible with a maximal amount of suitable terms.

Also in the field ontology matching, approaches with user involvement have been
developed. Most of these interactive matchers ask the user for the validation of cor-
respondences during the matching process. With the knowledge of the correctness of
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Fig.5: Precision@N curves for the combined strategies

a correspondence, they try to generate a better candidate alignment. For example, the
matchers PROMPT [24] and LogMap?2 [17] use the verifications to detect incorrect cor-
respondences and solve inconsistencies. To et al. describe a whole framework support-
ing supervised and semi-supervised learning approaches [29]. To reduce the amount of
user interactions, active learning [22] can be applied. Other techniques use the manual
input to learn suitable weights to merge different matching strategies [7,9]. Combining
several strategies or even matchers can significantly increase the quality of the resulting
candidate alignment [8].

There are a lot of measures to evaluate matchers according to different criteria.
Since we already compared Precision@N curves to the most related ones during the
experiments, we renounce to list them again as related work.

7 Conclusion and Future Work

In this paper, we have introduced supervised ontology matching as a solution for a
practical problem: the manual ontology alignment generation based on automatically
generated correspondences. With Precision@N curves, we have developed an adequate
visualization of the candidate alignments which is perfectly tailored to our use case.
Precision@N curves show the different characteristics of the matchers in order to de-
cide which matcher performs best as preprocessor for the human expert to generate an
alignment with the maximal number of correct correspondences within a given time
frame. In an optimal case, the expert first checks all correct correspondences followed
by the incorrect ones to always get the maximal amount of correct correspondences.



14 Dominique Ritze, Heiko Paulheim, Kai Eckert

Since most matchers assign confidence values to correspondences, we can use them to
sort the candidate alignment.

Commonly used measures like precision, recall, and F-measure do not leverage con-
fidence values provided by many matchers, do not provide an ordering of the candidate
alignment, and are thus not suitable for the evaluation according to our use case. Mea-
sures such as PR or ROC curves consider the ordering, but they emphasize other facets
of the evaluation, and are thus not suitable for supervised matching. For other use cases,
other measures might be more suitable, and it is not feasible to only have one measure
for all use cases. Reducing the evaluation to the comparison of one single value, e.g.
compare AUC(Pr,) values instead of considering the curves, allows for ranking match-
ers for our use case, but induces a certain loss of information compared to the original
curves.

Using the candidate alignments of several matchers, we have performed experi-
ments on finding the optimal sorting for the union of all alignments. Majority vote has
been shown to be the best suitable strategy for combining matchers. Furthermore, the
combination of all matchers — given a suitable strategy — outperforms even the best
single matcher.

As future work, even more sophisticated strategies for matcher combination can
be developed, e.g., by taking individual characteristics of the matchers into account.
By now, the domain expert manually checks each correspondence. This enormous ef-
fort might get reduced whenever the interactions between human experts and matchers
become more interlinked. For example, if the expert can be sure that some correspon-
dences created by the matcher are correct, they can be just adopted without a manual
verification. This is especially interesting for applications where a high quality of the
alignment is required but it does not harm if a small amount of incorrect correspon-
dences is contained.

Another promising line of research is the combination of supervised and interactive
ontology matching. In this paper, we have strictly separated the matching step from the
manual inspection. However, using the user action as feedback, the matching process
can also be re-tuned according to the user’s needs while it is running, hereby providing
even better results.

In our experiment, we assume that the costs of verifying a correspondence is al-
ways the same. In reality, this is generally not the case because some correspondences
are harder to check than others, for instance obviously incorrect ones. By presenting
the expert related correspondences — containing the same classes or classes which are
close to each other in the hierarchies — the time which is needed for the verification
can be further reduced. This especially holds whenever correspondences are mutually
exclusive or a strict 1:1 alignment is required.
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