
Coincidence-Based Refinement of Ontology
Matching

S. H. Haeri
School of Computer Science

Department of Mathematical Sciences
Sharif University of Technology,

Tehran, Iran
shhaeri@math.sharif.edu

B. Bagheri Hariri
Semantic Web Research Laboratory
Computer Engineering Department
Sharif University of Technology,

Tehran, Iran
hariri@ce.sharif.edu

H. Abolhassani
Semantic Web Research Laboratory
Computer Engineering Department
Sharif University of Technology,

Tehran, Iran
abolhassani@sharif.edu

Abstract— Since the beginning of the evolution of Semantic
Web in the late 90’s, many different aspects of it have received
a great interest in both academy and technology. Alongside,
because many problems get reduced to the problem of Ontology
Matching, so many researches across the world have been devoted
to this. Amongst these researches, one can find a variety of
techniques employed for dealing with the problem. In all such
techniques, there usually exist two different phases in coming to a
to-be-proposed matching; Firstly, they come to an initial estimate
for the similarity of the concepts involved. Secondly, based on
certain criteria, they offer a (set of) matching(s). In this paper,
we are about to present a new criteria for that final phase.

I. I NTRODUCTION

Semantic Web, as like as the web itself, is by design
distributed and heterogeneous. Alongside, ontology is used to
support interpretability and common understanding between
the different peers of the task. However, in many real cases, the
ontologies themselves also suffer from some heterogeneity. It
is along tackling this heterogeneity where Ontology Alignment
is used for finding semantic interrelationships amongst the
entities of ontologies. [1] defines ontology alignment as:

... given two ontologies which describe each a set of
discrete entities (which can be classes, properties,
rules, predicates, etc.), find the relationships (e.g.,
equivalence or subsumption) holding between these
entities.

Many of the existing methods for ontology alignment com-
pare similarity of entities using some predefined measures
(phase 1), and via the interpretation of the results, they put
forward some possible set of semantic relationships amongst
the entities. ConsideringO1 andO2 as the ontologies we are
about to put into alignment, defineO = O1 ∪ O2. With this
nomination in mind, typically a similarity measure is formally
defined as below [1]:

A Similarity δ : O × O → R is a mapping from a pair
of entity to a real number - expressing the similarity between
two objects such that:

∀x, y ∈ O, δ(x, y) ≥ 0 (positiveness)
∀x ∈ O, ∀y, z ∈ O, δ(x, x) ≥ δ(y, z) (maximality)
∀x, y ∈ O, δ(x, y) = δ(y, x) (symmetry)

In many methods, it is quite common to first define a set
of similarity measures, and then apply them like acompound
similarity measure. (See Fig. 1 for example.) With application
of this set of (compound) similarity then, they come to an
initial guess. There is afterwards another phase in which
they make the final decision. In this phase, they decide on
the ultimate set of satisfactory correspondence between the
ontologies. From this point of view, alignment refinement (or
matching refinement) is the methods for improving the quality
or ease of alignment extraction (or mapping extraction). (One
possible way of using refinement is like Fig. 1.)

Fig. 1. A Simplified Alignment Framework

In this paper, it is first tried to justify ournew method
and the theoretical background behind it. Then, there will be
a workaround for dealing with the complexity of solution.
We finalise by presenting a pseudo-code for the our entire
work, and apply that to an example. It is worth mentioning
that our entire work presented here is original, and our
method combines different ideas from different realms of
science and engineering, including Ontology Matching, Graph
Isomorphism, Metric Spaces, and Domain Theory.

II. RELATED WORKS

As it is listed in [1], the works on the alignment extraction
phase are not so many. Ehrig and Sure [2] present a variety of
threshold-based tricks for that, and Valtchev [3] considers this
problem as an optimization one, and offers a solution based
on this interpretation. In [4], on the other hand, thestable
marriage problem([5] and [11]) is exploited for coming to
a more reasonable extraction. However, in all of the above
works, the sole of the ontologies astaxonomiesis neglected.

Let’s put it this way: Ontologies, from the graph theoretical
viewpoint, are directed acyclic graphs [12] with edges having
types. To the knowledge of the authors, no work is so far



done on the problem of Ontology Alignment or Ontology
Matching in which this graph theoretic backbone of problem
is scrutinised. In fact, all the existing works have neglected
the fact that asingle ontology is inherently astructure, and
has interconnectionsbetween its own concepts.

We believe that there is a vast area for new works in
Semantic Web for adding to the precision of the existing
works, based on restoring this backbone. This paper is indeed
trying to leverage that for a special area in Semantic Web,
which is Ontology Matching. Unlike all of the above works,
we give this backbone a great role in the extraction phase.
This role is in fact our new method of matching refinement.

III. JUSTIFICATION OF OURMETHOD AND ITS

BACKGROUND

In this section, we first give an intuition for our method, take
a look to the theoretical background. Finally, a precise speci-
fication of the problem using this background is presented.

A. Intuition

Before saying exactly how it is that we care about the
structure of ontologies, whilst the rest do not: For one moment,
forget about ontology matching, and consider the following
basic-geometry problem: When do you call a pair of triangles
the same? When they are equal in the geometric sense? You
mean you consider the two triangles in Fig. 2.athe same?
We do doubt1! Now, take a look to Fig. 2.b. (The solid lines
indicate one triangle, the dotted ones indicate another, whilst
the vertices of the triangles coincide.) Up to our understanding,
we - human-beings - consider these two trianglesthe same!
Now consider the case of Fig. 2.c and Fig. 2.d in comparison;
trying to give a fuzzy interpretation to the concept of ”being
the same” - orcoincidence, it should be said that: the two
triangles in Fig. 2.d are more the same than that of Fig. 2.c!
And, the two of Fig. 2.b coincide even more.

This is what we are about to inject in the world of ontology
extraction. That is, given that the phase one of ontology align-
ment gives us a measure for similarity across the ontologies,
we consider this measure as an estimate for the distance
between each pair of point, and suite it for estimating the
extent to which the two ontologies - as the whole graphs -
coincide. Alongside, we first offer an estimate for the extent of
coincidence between two edges, and then accumulate all these
as our final estimate for the coincidence of the two ontologies.

Fig. 2. Matching of Shapes

1In mathematical topology, these two triangles are the same in that there
is a continuous bijection between them, inverse of which is also continuous.

B. Theoretical Background

As also mentioned in the previous sections, it is assumed
here that, in phase one, based on certain methods, we have
come to a matrix (d) containing initial guesses for the similar-
ity of the concepts involved. Looking more precisely would
reveal the fact that this gives us aMetric Space2, d is the
metric of which. [6] defines a metric space as:

A setX, whose elements we shall call points, is said
to be a metric space if with any two pointsp andq
in X there is associated a real numberd(p, q), called
the distance fromp to q, such that:
• a. d(p, q) > 0 if p 6= q; d(p, p) = 0;

[self-distance]
• b. d(p, q) = d(q, p); [symmetry]
• c. d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.

[triangular inequality]3

Any function with these three properties is called a
distance function, or metric.

Another piece of theory which is of help is the notion of
Typed Graphs4. In general, we call a graphG typed if each
edge of it has a type. In other words, let’s formally define
G(V,E, T ) a typed graph ifE is of typeV ×V → T , in which
T is a set of predefined types. An edgee of typet is writtene :
t. An isomorphism from a typed graphG(V,E, T ) to a typed
graphG′(V ′, E′, T ) is a one-to-one correspondence between
V and V ′. We will call an edgee(a, b) : t ∈ E preserved
underm iff there is an edgee′(m(a),m(b)) : t ∈ E′. If both
a and b get mapped to some vertex inV ′, yet there is no
edge of typet betweenm(a) andm(b), we write TP (e,m).
We will call a typed graphG(V,E, T ) vertices of which are
points in(X, d) embedded onX, and writeG(V,E, T, X, d).

And, the final piece of theory is the notion ofpartial order.
[13] defines aPartially Ordered Setlike this:

A setP with a binary relationv is calleda partially
ordered setor poset if the following holds for all
x, y, z ∈ P :

1) x v x (Reflexivity)
2) x v y ∧ y v z ⇒ x v z (Transitivity)
3) x v y ∧ y v x⇒ x v x (Antisymmetry)

We add thatv above is called a partial order.

C. Theoretical Specification of Problem

First of all, let’s mention once more that – although some
experts may consider our work a method for extraction – we
believe that this work offers a new criteria which helpsdecid-
ing on extraction, as opposed to extraction itself. Secondly,
let’s formulate the problem of Matching Refinement using our
theoretical background:

Input : A pair of ontologies, and a matrix, rows and columns
of which stand for concepts from one ontology, and concepts
from the other, respectively. Each cell shows the distance
between the corresponding concepts.

2Not exactly a metric space! Please see the commentary section.
3Please see the commentary section for the notes on this property.
4There is no consensus in mathematics on this name.



From our point of view, this input is interpreted as a pair of
directed acyclic graphs embedded on a metric space. So, nam-
ing the input ontologies O and O’, we do not distinguish them
from G(V,E, T, X, d) andG′(V ′, E′, T, X, d) respectively.

Output : A ranking of possible matchings which can be a
help for better extraction. From our point of view this is a
partial order on the possible isomorphisms between G and G’.
That is a mapping between V and V’.

To produce the above output, this paper first enumerates a
list of rationales for the above partial order, and then presents
one possible candidate for that. We will then discuss on
possible axes along which one can tune our proposed ordering.

D. Properties of the Desired Partial Order

Here will be a set of properties which we believe any partial
order for matching refinement should convince, along with our
reasons. Our proposed partial order is in fact aweight function
for matchings, so hereafter we use weight in place of it. The
set of properties are divided into 6 categories, based upon
preservation of the edge (under the mapping), and upon the
distance between its heads.

Please note that in all of the following figures,O and O′

are the inputted ontologies,a and b will be concepts inO,
and,a′ and b′ concepts inO′. The closer a pair of concepts
is depicted in figures, the closer the concepts are intended
to be in the(X, d). (That is, the closera and a′ are shown
in the figures, the smallerd(a, a′) is.) We do not force the
ontologies to be disjoint, so, in each figure, you can see that
the surface of ontologies may overlap. Furthermore, in each
figure, the arrows show the mapping. (That is, the source of
arrow is intended to be said is mapped to its destination.) And,
the lines – be it solid or dotted – show the edges of graphs.
(Solid lines show the edges betweena andb, and dotted edges
show the edges betweena′ andb′.)

Fig. 3. Properties of Metrics

Category I. Here, a and a′ are too close, likeb and b′.
The fact that(a, b) is preserved is of much importance to us
because it means that the twoedgescoincide too much. So,
we want this preserved edge to bring a great weight. If you
are not justified on this, consider the case when a and b are
”Animal” and ”Jaguar” respectively, and a’ and b’ are ”Living
Creature” and ”Tiger”. The fact that there is an edge (of type
redfs:type) between both a and b, a’ and b’, means very much
that the two Ontologies are perhaps describing the same world.

Category II. In this category, the edge is preserved, but only
one peer of the edge is close to its image. As an example of
such cases, one can considerO be describing a Zoo, andO′

a Museum. Furthermore, suppose thata andb are ”Elephant”
and ”4-legged”, and,a′ andb′ are ”Mammoth” and ”Ancient
Creature”. An interpretation of this is that althoughO andO′

are describing two different worlds, they are perhaps getting
close ”from the side of a”. Therefore, we would like in such
cases to get a large weight, yet smaller than the previous case.

Category III. The third category is the one where an edge
is not preserved whilst the relevant concepts are so close.
Consider, e.g., whenO is describing the Glazing Technology,
whilst O′ is the ontology of a simple glasses manufacturing
studio. In retrospect,a and b could be ”Glass” and ”Frame”,
and a′ and b′ the same respectively. Of coursed(a, a′) and
d(b, b′) may both be very small here. We consider the non-
preservation of edge a negative point, but because the vertices
coincide, let us not to penalise this matching that much. This
is logical because the closeness of(a, a′) and (b, b′) means
that the edge(a′, b′) is perhaps mistakenly missed.

Category IV. Next, we come to the category where an
edge is not preserved, whilst only one side of the edge is
too close to what it is mapped to. A mapping which has done
this is perhaps trying to make a mistake, but not as big as
category VI. So, we will not penalise it that much. As an
example of such a case, consider this:O is describing a glasses
manufacturing studio, andO′ is a car factory. Assume that a
is ”Glasses” anda′ is ”Glass”, b could be ”Frame”, whilst
b′ is ”Chassis”. Like category III which is somehow dual of
category I, this category can be considered dual of category
II.

Category V. and VI. If the edge is preserved, although this
increases the likelihood of preservation of the whole shape, if
the pairs of concepts are not close at all, this should not look
like a great success because the two edges are not that much
coincident. In other words, although the preservation of shape
is important, we do not care it that much if the edges coincide
at neither end. For an example of when this looks rational,
consider the case whena is ”Vehicle”, b is ”4-wheeled”,a′

is ”Animal”, and b′ is ”4-legged”. Therefore, for the category
V, we would like the mapping to receive a low benefit. The
situation is completely similar to that of category VI, so, we
do not try to justify why a mappings of that category will be
penalised in a large extent.



IV. T HE METHOD

In this section, we present our proposed partial order,
consider the extent to which this can be appropriate, and to
tune that, offer a set of heuristics. Finally, putting all the parts
together, we present the entire method.

A. Our Proposed Partial Order

Adding the fact that the weighting system is expected to
be symmetric in its arguments, we observed that one possible
such weighting is the following5: (By being symmetric in its
argument, we meanw(m(G, G′)) = w(m−1(G′, G)).)

w(m) = w0(m)− wl(m)− wr(m), where

w0(m) =
∑

(v1,v2):t∈E
(m(v1),m(v2)):t∈E′

f(v1) + f(v2)

wl(m) =
∑

(v1,v2):t∈E
TP ((v1,v2),m)

(m(v1),m(v2)):t/∈E′

g(v1) + g(v2)

wr(m) =
∑

(v1,v2):t/∈E
(m(v1),m(v2)):t∈E′

TP ((a′,b′),m−1)

g(v1) + g(v2)

f(x) =
1

f(d(x, m(x)))

g(x) = g(d(x, m(x)))

The functionsf andg can be considered asnormalisation
functions. Their common property is that being restrictively
increasing. Otherwise, one can always find one of the six
categories above in whichw will misbehave. Furthermore,
f should have another property as well; its range should
be outside a certain neighbourhood around origin. For the
case when this will result a misbehaviour, consider a pair of
ontologies across which there exists a pair of concepts with
distance0. If f(0) is 0, thenw will become +∞, regardless
of the rest of mapping. And, this obviously is a big anomaly
because it will cause a big class of mappings to look the same
whilst they are not inherently the same. That is, in such a case,
w does not do much for a big class of mappings.

In presence of a vertex which does not get mapped to
anything, all the edges from that vertex – or to it – are not
preserved. In these cases, the mapping should get more weight
than a mapping which has mapped such edges to edges with
wrong types. To tune our formula to reflect this, virtually
consider it being mapped to an imaginary vertex, existence
of which does not give us any information. In this case, its
distance ought to be0 from any other concept. One can easily
verify it that the above weight satisfies all the conditions

5For a note on how to prevent this formula to approach to infinity, please
refer to the commentary.

enumerated. As a further benefit of our proposed weighting
method, we would like to notify the following: Consider the
mappingm in which a is mapped toa′, b to b′, with an edge
betweena andb, type of which is different from that between
a′ and b′. In this case, our weighting method would penalise
m twice; once because the edge connectinga and b is not
preserved, and another time for when the edge betweena′

andb′ is not.
The special case where this will become more interesting is

when (a, b) : subClassOf , and(b′, a′) : subClassOf . Here,
our weight will recognise the fact that a mapping which maps
a andb to two concepts between which there is no edge at all,
is better than when they get mapped to a pair of edges where
there is an edge between themwith an inverse type.

B. Commentary

As told in footnote-5, there are cases in which what the
inputted matrix gives us may not be a metric space. In fact,
as told in the section for mathematical background, a metric
space is needed to have symmetry. However, as listed in
[7], there are schema-based matching techniques which use
linguistics resources. These techniques may not convince this
property. That is, for example: In the Webster Collegiate
Dictionary [8], ”quick” is in the 12th place in the list of
synonyms of ”swift”, whilst ”swift” is second in the list of
synonyms of ”quick”. In such a case, the symmetry property
may not hold. Therefore, what we get may be a quasi-metric
space [9] rather than a metric space. However, as [1] also
mentions, only few authors may consider similarity metrics
which do not have symmetry. So, the existing weighting
formula and the assumption with it will almost always be
convincing. Even in case one is faced with an application
where there inherently exists no symmetry, a little tweak in
the formula will give rise to asymmetric weighting formula
which still convinces all the conditions listed in section 4:

w′(m) = w0(m)− wl(m)− w′
r(m)

wherew0(m) andwl(m) remain the same, but

wr(m) =
∑

(v1,v2):t/∈E
(m(v1),m(v2)):t∈E′

g(v1) + g(v2)

Furthermore, there seems no way to guarantee that the
triangular inequality holds for any output of the phase 1.
Despite that, it seems quite reasonable to assume that this
property holds for any such guess. In fact, we believe finding
a real guess in which this does not hold is unlikely.

Another question which may arise here is about complexity
of the problem. Supposing that it is efficient, one can come to
an efficient way for solving the graph isomorphism problem;
given a pair of (un-typed) graphs (not embedded on a metric
space), assign a fixed typet to all of the edges, embed them
on a metric space in which the distance of any pair of points
is 1, and run our algorithm on them -in an efficient time.
The heaviest matchings can be efficiently checked for being an
isomorphism, because one can remove the types and the metric



space backbone. It is easy to verify that there is a isomorphism
between the original graphs iff the mapping with the biggest
weight is a isomorphism between them.

In this paper, we assume that for considering all the possible
matchings, one iterates through matchings until making sure
they are finished. This means the algorithm iterates exponential
times. Nevertheless, considering all the possible matchings
is not needed. As Papadimitriou and Steigiltz show in [10],
there exist heuristics for dealing with this in a P time. For
the moment, however, we do not consider those heuristics.
Despite that, we are not about to leave this problem in
its general form; We believe that the following ontology-
matching-specific heuristics can decrease the runtime. For each
of these heuristics, a rational is also presented.

C. Heuristics for Decreasing the Runtime

All the heuristics presented here are based on the types of
edges. The following list shows the whole idea: (Let’s call this
list the recipes for discard and contraction.) In this list, for the
first and third item, we change the initial graph via contraction
along its certain parts, then apply our refinement method to
the resulting reduced graph, and finally transform the graph
back to what it has originally been. Having done this, we
consider completing the proposed mappings by moving back
to consideration the neglected parts during the period when
the graph was in its contracted form. We will call this restore
of contracted vertices theexpansion phase.

• IS-A (rdfs:subClassOf): Contract all the paths into a pair
of vertices between which there is an edge of type
IS-A. The source of this edge will the source of the
original path, whilst the destination will be a new vertex,
similarity of which is the maximum of the similarities of
the original path excluding the source. At the expansion
time, consider this problem as an independent matching
problem, but with the explanation stated below.

• Disjoint (owl:disjointWith): If the difference between the
distances of a concept in one ontology from a couple of
disjoint concepts in another is above a certain threshold,
remove the possibility of mapping the first concept with
the one in the couple which is farther.

• Equivalence (owl:equivalentClass): Contract all such ver-
tices into one representing the whole group. Assign the
maximum similarity of group to this new node. On ex-
pansion, there is no difference between different choices
for matching between the two graphs.

• owl:functionalProperty: Functional properties should be
mapped to functional properties, so, discard all the map-
pings in which this does not hold.

As far as the authors understand, all of the above heuristics
should seem rational except the first one. To have an intuition
on the contraction, one can consider it like Query Expansion
in the Information Retrieval [14] terminology. The expansion
however is a little tricky. There is a fine observation which
should be made on an IS-A paths. Consider Fig. 4.I, in which
after expansion, it is chosen to mapa to a′, andb to b′. Here,
there remains no choice for c! Now, consider fig. 4.II, in which

Property NoU PI+ PI-
owl:incompatiblewith 0 0 0

owl:alldifferent 13 0.01 0.01
owl:differentfrom 13 0.01 0.01

rdfs:datatype 11 0 0.01
owl:symmetricproperty 27 0.01 0.02

owl:sameas 43 0.02 0.03
owl:equivalentproperty 70 0.03 0.05

owl:inversefunctionalproperty 100 0.04 0.08
owl:thing 233 0.09 0.18

owl:transitiveproperty 266 0.11 0.21
owl:oneof 313 0.12 0.24

owl:maxcardinality 807 0.32 0.63
owl:inverseof 932 0.37 0.73

owl:mincardinality 1315 0.52 1.02
owl:unionof 1629 0.65 1.27

owl:cardinality 2416 0.96 1.88
owl:allvaluesfrom 2841 1.12 2.21
rdfs:subpropertyof 2893 1.15 2.25
owl:equivalentclass 4836 1.91 3.76

owl:functionalproperty 7625 3.02 5.93
owl:disjointwith 7892 3.12 6.14

rdfs:domain 8476 3.36 6.59
owl:intersectionof 9482 3.75 7.38

owl:somevaluesfrom 22874 9.06 17.79
owl:restriction 53440 21.16 41.57
rdfs:subclassof 124005 49.1 -

Sum 252552 - -
Sum without subclass of 128547 - -

TABLE I

FREQUENCY OFOWL (AND RDF) PROPERTIES

a is mapped toa′. Note that becauseb IS − A(n) a, and
b′ IS − A(n) a′, it is not wise to mapb to a′, and there
remains no choice for either ofb and c. With this schema in
mind, a solution to the expansion will become trivial, and the
complexity of which will definitely be too small - sayO(n)!
Therefore, we will not delve into details of this.

Fig. 4. Notes on Expansion Phase of IS-A

A question which may arise here is that ”Why are there
only a few properties chosen amongst the set of allOWL and
RDF properties?” The reason behind this choice is a survey
we have performed on a set of 545 ontologies. The following
Table I shows the results of this survey (whereNoU = Numb
of Usage,PI+ = Percent of usage withIS-A, PI- = Percent
of usage withoutIS-A). As you can see here, amongst all the
properties taking part in this survey, only the ones we have
chosen heuristics for have a considerable percent of usage.
This means that our choice should be enough here – which is
the best estimate so far on how appropriate our work is.



- n o p
b 0.9 0.1 0.4
c 0.6 0.7 0.1
d 0.4 0.5 0.6
e 0.4 0.5 0.4

- (p,n) (o)
(b,d) 0.9 0.5
(b,e) 0.9 0.5
(c) 0.6 0.1

TABLE II

DISTANCE OFNODESBEFORE ANDAFTER OFCONTRACTION

1 (b, d), (p, n) (b, e) , (o) 0 1.4 1.4 −2.8
2 (b, e), (p, n) (b, d), (o) 0 1.4 1.4 −2.8
3 (b, d), (p, n) (c), (o) 0 1.0 1.0 −1.4

4 (c), (p, n) (b, d), (o) 1
0.6

+ 1
0.7

0 0 3
5 (b, e), (p, n) (c), (o) 0 1.0 1.0 −2.0

6 (c), (p, n) (b, e),(o) 1
0.6

+ 1
0.7

0 0 3

TABLE III

THE EXAMPLE AFTER CONTRACTION

D. Our entire Mechanism

Putting all the above ideas together is not hard. To make it
short, here is a pseudo-code:

1) Input O andO′.
2) Apply a Threshold Based Refinement onO andO′.
3) Apply the recipes for Discard and Contraction onO, O′;

call the resulting ontologiesO1 andO′
1.

4) Weight all the remained possible mappings fromO1 to
O′

1.
5) Expand back the contracted parts ofO1 andO′

1.
6) Output the mappings along with their weights.
As an example of how this works, consider Fig. 5:

Fig. 5. The Example, I- Before, II- After Contraction, III- Final Mapping.

In this figure, you can see two ontologiesO and O′, and
II-left d showing the distance between concepts across them.

Suppose that the d above is the one after the second step.
By the end of the third step, Fig. 5-II will be the result, and
d will then change to Table II-right.

Choosingf(x) = x + 0.1 and g(x) = x, Table III will
be the outcome of step 4. This shows that, so far, either of
mappings4 or 6 can be chosen as an ideal. This means that the
problem is now reduced to two simpler subproblems: In the
first, one should decide on mapping either ofp andn to c, and,
in the second, on choosing betweenb andd to be mapped too.
Considering the individual distances between vertices, one can
easily choose to mapb to o, andc to p. The final matching,
therefore, will be what is depicted in Fig. 5-III.

V. FUTURE WORKS

As told in the text, in the current work, we suppose that, in
the step 4 above, we iterate through all the possible mappings

from O1 to O′
1, which will be an exponential piece of job.

Therefore, one possibility for future works is considering the
works of Papadimitriou and Steigiltz [10], and try to inject
them into this problem to come to a polynomial algorithm.
Another possibility could be considering other works in which
Graph Theory and Metric Spaces are considered together,
and find new ideas for further reduction of the size of this
method. One can consider [15] for example. Given that it
is common to use Domain Theory [13] for evaluating the
semantics of programming languages [16], we believe that
there is a vast room for injecting those ideas in the realm
of ontology mapping, especially in better adjustment of the
partial order we were speaking about in this paper.

VI. A CKNOWLEDGMENTS

Many thanks to Prof. Richard M. Wilson for his kind
comments on typed graphs, Dr. Mohammad Mahdian for his
notes on the heuristics on isomorphism, and Taowei David
Wang for his fertile data set containing the ontologies we have
used here. Furthermore, we would like to give a thank to all
the people at the Ontology and DL mailing list who helped.

REFERENCES

[1] P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and
S. Tessaris, “Specification of a common framework for characterizing
alignment,” Knowledge web NoE, deliverable 2.2.1, 2004.

[2] M. Ehrig and Y. Sure, “Ontology mapping – an integrated approach,”
in Proc. 1st European Semantic Web Symposium (ESWS), ser. Lecture
Notes in Computer Science, C. Bussler, J. Davis, D. Fensel, and
R. Studer, Eds., vol. 3053. Hersounisous (GR): Springer Verlag, May
2004, pp. 76–91.

[3] P. Valtchev and J. Euzenat, “Dissimilarity measure for collections of
objects and values,” inProc. 2nd Symposium on Intelligent Data Analysis
(IDA), P. C. X. Liu and M. Berthold, Eds., vol. 1280, 1997, pp. 259–272.

[4] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: a ver-
satile graph matching algorithm,” inProc. 18th International Conference
on Data Engineering (ICDE), San Jose (CA US), 2002, pp. 117–128.

[5] A. Gibbons,Algorithmic Graph Theory. Cambridge University Press,
1985.

[6] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

[7] P. Shvaiko and J. Euzenat, “A survey of schema-based matching ap-
proaches,”Journal on Data Semantics, vol. IV, 2005.

[8] Webster’s New World College Dictionary, 4th ed. New York: Macmil-
lan, 1998.

[9] W. A. Wilson, “On quasi-metric spaces,”American Journal of Mathe-
matics, vol. 43, pp. 675–684, 1931.

[10] C. Papadimitriou and K. Steiglitz,Combinatorial Optimization : Algo-
rithms and Complexity. Prentice-Hall, 1998.

[11] G. Polya, R. E. Tarjan, and D. R. Woods,Notes on Introductory Com-
binatorics, ser. Progress in Computer Science. Boston/Basel/Stuttgart:
Birkhaeuser, 1983, vol. 4.

[12] D. West, Introduction to Graph Theory (2nd Edition). Upper Saddle
River): (Prenctice Hall, 2001.

[13] S. Abramsky, “Domain Theory in Logical Form,” 1987.
[14] R. Baeza-Yates and B. Ribeiro-Neto,Modern Information Retrieval.

Addison-Wesley, 1999.
[15] B. Xiao, H. Yu, and E. Hancock, “Graph matching using spectral

embedding and semidefinite programming,” inProceedings of the 15th
British Machine Vision Conference, 2004.

[16] R. Tennent, “The denotational semantics of programming languages,”
Communications of the ACM, vol. 19, p. 437, 1976.


