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Abstract—Since the beginning of the evolution of Semantic  In many methods, it is quite common to first define a set
Web in the late 90's, many different aspects of it have received of similarity measures, and then apply them likeanpound

a great interest in both academy and technology. Alongside, <inilari ; . ot
because many problems get reduced to the problem of Ontology similarity measure(See Fig. 1 for example.) With application

Matching, so many researches across the world have been devoteopf_ _th's set of (Compeund) similarity then, they com_e to E_m
to this. Amongst these researches, one can find a variety ofinitial guess. There is afterwards another phase in which

techniques employed for dealing with the problem. In all such they make the final decision. In this phase, they decide on
techniques, there usually exist two different phases in coming to a the ultimate set of satisfactory correspondence between the
to-be-proposed matching; Firstly, they come to an initial estimate ontologies. From this point of view, alignment refinement (or

for the similarity of the concepts involved. Secondly, based on ; . ; . . .
certain criteria, they offer a (set of) matching(s). In this paper, matching refinement) is the methods for improving the quality

we are about to present a new criteria for that final phase. or ease of alignment extraction (or mapping extraction). (One
possible way of using refinement is like Fig. 1.)
I. INTRODUCTION

Semantic Web, as like as the web itself, is by design @ —
distributed and heterogeneous. Alongside, ontology is used to Similarity Compount Mapping
. - h Features mpou Extraction

support interpretability and common understanding between Similarity

the different peers of the task. However, in many real cases, the

ontologies themselves also suffer from some heterogeneity. It

is along tackling this heterogeneity where Ontology Alignment Fig. 1. A Simplified Alignment Framework

is used for finding semantic interrelationships amongst the

entities of ontologies. [1] defines ontology alignment as:
... given two ontologies which describe each a set of
discrete entities (which can be classes, properties,
rules, predicates, etc.), find the relationships (e.g.,

In this paper, it is first tried to justify ounew method
and the theoretical background behind it. Then, there will be
a workaround for dealing with the complexity of solution.
We finalise by presenting a pseudo-code for the our entire
equivalence or subsumption) holding between these work, and apply that to an example. It 'is qut.h mentioning

that our entire work presented here is original, and our

entities. method combines different ideas from different realms of

Many of the existing methods for ontology alignment cOMsgjence and engineering, including Ontology Matching, Graph

pare similarity of entities using some predefined MeasUrR3 morphism, Metric Spaces, and Domain Theory.
(phase 1), and via the interpretation of the results, they put ’ ’

forward some possible set of semantic relationships amongst 1. RELATED WORKS

the entities. Considering, and O as the ontologies we are  aq it is listed in [1], the works on the alignment extraction

about to put into alignment, defin@ = O, U O,. With this n456 are not so many. Ehrig and Sure [2] present a variety of

nomination in mind, typically a similarity measure is formally, eshold-based tricks for that, and Valtchev [3] considers this

defined as below [1]: _ _ _ problem as an optimization one, and offers a solution based
A Similarity § : O x O — R is a mapping from a pair o this interpretation. In [4], on the other hand, ts@ble

of entity to a real number - expressing the similarity betweeﬂarriage problem([5] and [11]) is exploited for coming to

two objects such that: a more reasonable extraction. However, in all of the above
works, the sole of the ontologies tsxonomiesis neglected.
Va,y € O,6(z,y) >0 (positiveness) Let’s put it this way: Ontologies, from the graph theoretical
Ve € O,Vy,z € O,6(x,z) > 0(y,z) (mazimality) viewpoint, are directed acyclic graphs [12] with edges having
Ve,y € 0,0(x,y) = (y,x) (symmetry) types. To the knowledge of the authors, no work is so far



done on the problem of Ontology Alignment or Ontology. Theoretical Background

Matching in which this graph theoretic backbone of problem a5 also mentioned in the previous sections, it is assumed
is scrutinised. In fact, all the existing works have neglectagbre that, in phase one, based on certain methods, we have
the fact that asingle ontology is inherently atructure, and  come to a matrixd) containing initial guesses for the similar-
hasinterconnections between its own concepts. ity of the concepts involved. Looking more precisely would

We believe that there is a vast area for new works Wveal the fact that this gives usMetric Space?, d is the
Semantic Web for adding to the precision of the existingietric of which. [6] defines a metric space as:

works, based on restoring this backbone. This paper is indeed A set X whose elements we shall call points, is said
trying to leverage that for a special area in Semantic Web, 5 pe a metric space if with any two pointsand ¢

which is Ontology Matching. Unlike all of the above works, in X there is associated a real numkép, ), called
we give this backbone a great role in the extraction phase. inhe gistance fronp to ¢, such that: ’

This role is in fact our new method of matching refinement. .
¢ e a.d(p,q) > 0if p# g;d(p,p) = 0;

[self-distance]

I1l. JUSTIFICATION OF OURMETHOD AND ITS e b.d(p,q) = d(g, p); [symmetry]

BACKGROUND e C.d(p,q) < d(p,r)+d(r,q), for any r € X.
In this section, we first give an intuition for our method, take [triangular inequality]®
a look to the theoretical background. Finally, a precise speci- Any function with these three properties is called a
fication of the problem using this background is presented. distance function, or metric.
Another piece of theory which is of help is the notion of
A. Intuition Typed Graphg'. In general, we call a grap&' typedif each

edge of it has a type. In other words, let's formally define

Before saying egactly _how it is that wg care about th (V. E, T) atyped graph i is of typeV x VV — T, in which
structure of ontologies, whilst the rest do not: For one moment,: ; . .
is a set of predefined types. An edgef typet is writtene :

forget about ontology matching, and consider the followin . :
basic-geometry problem: When do you call a pair of trianglegsAn isomorphism from a typed graphi(V, £, T') to a typed

the sam& When they are equal in the geometric sense? Y ra;: dG‘//(,Vl\}Vgl’Wz;l)l icsalzli g::e;jo—g:(e %c;rfefp;ngenr(;(as;ste\/:;een
mean you consider the two triangles in Fig. 2@ same . : , geela,b) : e
We do doubt!! Now, take a look to Fig. 2.b. (The solid “nesunderm iff there is an edge’(m(a), m(b)) : ¢ € E'. If both

; .
indicate one triangle, the dotted ones indicate another, Wh@s&agdol} ?et etmtfept\?vi(lr:fn (S(;n;i dver('t;;( \Ixie’ V?//rei:et;e];r(e IS )n 0
the vertices of the triangles coincide.) Up to our understandi g yp ¢ ) & m)-

we - human-beings - consider these two triandles same r\ﬂ/e will call a typed graptt:(V, I, T') vertices of which are

Now consider the case of Fig. 2.c and Fig. 2.d in comparisorr)f')'m"5 in (X, d) embedded od¥, and writeG(V, £, T, X, d).

. ) . . - . And, the final piece of theory is the notion partial order.

trying to give a fuzzy interpretation to the concept of "bein ) . . o

. L . . ) %13] defines aPartially Ordered Setike this:
the same” - orcoincidence it should be said that: the two A set P with a b lati ) lled il
triangles in Fig. 2.d are more the same than that of Fig. 2.c! get dW't a marylfrer?tl?(r% IS ca i ?dpafma %I
And, the two of Fig. 2.b coincide even more. oraere ]s;:tor posetif the following holds for a

This is what we are about to inject in the world of ontology ~ ** %% € £~ -
extraction. That is, given that the phase one of ontology align- 1) @ & = (Reflexivity) o
ment gives us a measure for similarity across the ontologies, 2) * =y /Ay E 2z = x L 2 (Transitivity)
we consider this measure as an estimate for the distance ) *EYAyCz —wlw (Antlsymmetry)
between each pair of point, and suite it for estimating the We add that_ above is called a partial order.
extent to which the two ontologies - as the whole graphsc. Theoretical Specification of Problem
coincide. Alongside, we first offer an estimate for the extent of _. . .

g First of all, let's mention once more that — although some
coincidence between two edges, and then accumulate all these . )
as our final estimate for the coincidence of the two ontologi %xperts may consider our work a method for extraction — we

élieve that this work offers a new criteria which hetfecid-
ing on extraction, as opposed to extraction itself. Secondly,

e e let's formulate the problem of Matching Refinement using our
q v \ / q q theoretical background:
o Input: A pair of ontologies, and a matrix, rows and columns
of which stand for concepts from one ontology, and concepts
from the other, respectively. Each cell shows the distance

Fig. 2. Matching of Shapes .
g g P between the corresponding concepts.

2Not exactly a metric space! Please see the commentary section.

1In mathematical topology, these two triangles are the same in that theréPlease see the commentary section for the notes on this property.
is a continuous bijection between them, inverse of which is also continuous#There is no consensus in mathematics on this name.



From our point of view, this input is interpreted as a pair of Category |. Here,a and a’ are too close, likeb and b'.
directed acyclic graphs embedded on a metric space. So, ndine fact that(a, b) is preserved is of much importance to us
ing the input ontologies O and O’, we do not distinguish thefmecause it means that the twdgescoincide too much. So,
from G(V, E, T, X,d) andG'(V',E', T, X, d) respectively. we want this preserved edge to bring a great weight. If you

Output: A ranking of possible matchings which can be are not justified on this, consider the case when a and b are
help for better extraction. From our point of view this is dAnimal” and "Jaguar” respectively, and a’ and b’ are "Living
partial order on the possible isomorphisms between G and Greature” and "Tiger”. The fact that there is an edge (of type
That is a mapping between V and V'. redfs:typ@ between both a and b, a’ and b’, means very much

To produce the above output, this paper first enumerateghat the two Ontologies are perhaps describing the same world.

list of rationales for the above partial order, and then presents ] ]
one possible candidate for that. We will then discuss on Category Il Inthis category, the edge is preserved, but only

possible axes along which one can tune our proposed orderifi§e Peer of the edge is close to its image. As an example of
such cases, one can considerbe describing a Zoo, an@’

D. Properties of the Desired Partial Order a Museum. Furthermore, suppose thandb are "Elephant”
nd "4-legged”, andg’ andb’ are "Mammoth” and "Ancient

Here will be a set of properties which we believe any parti . . L
prop yp ?rreature". An interpretation of this is that althoughand O’

order for matching refinement should convince, along with o d bing two diff t ds. th h i
reasons. Our proposed partial order is in fasteaght function are e”scrl ing two di ertin worlas, they are pernaps getiing
r%ose from the side of a”. Therefore, we would like in such

for matchings, so hereafter we use weight in place of it. T ¢ tal iaht. vet ller than th .
set of properties are divided into 6 categories, based up%%ses 0 getalarge weight, yet smatler than the previous case.

preservation of the edge (under the mapping), and upon the-ateqory I1I. The third category is the one where an edge

distance between its heads. o . is not preserved whilst the relevant concepts are so close.
Please note that in all of the following figureS, and 0" consider, e.g., whe® is describing the Glazing Technology,

are th/e mpu:[ted °”t°|°9'e$/’* and b will be concepts inO, \yhilst 0’ is the ontology of a simple glasses manufacturing

and,a’ and b’ concepts in0’. The closer a pair of conceptssy,gio. In retrospecy andb could be ”Glass” and "Frame”,

is depicted in figures, the closer the concepts are intendggly ./ and b’ the same respectively. Of courgéa, a’) and

to be in the(X, d). (That is, th‘? closen anda’ are shown ;4 1) may both be very small here. We consider the non-

in the figures, the smalled(a,q’) is.) We do not force the preservation of edge a negative point, but because the vertices

ontologies to be disjoint, so, in each figure, you can see thafincide, let us not to penalise this matching that much. This

t_he surface of ontologies may ove_rlap. Furthermore, in ea&hlogical because the closeness(afa’) and (b, ') means
figure, the arrows show the mapping. (That is, the source @& the edgéda’, ') is perhaps mistakenly missed.
arrow is intended to be said is mapped to its destination.) And,

the lines — be it solid or dotted — show the edges of graphs.Category IV. Next, we come to the category where an
(Solid lines show the edges betweeandb, and dotted edges edge is not preserved, whilst only one side of the edge is
show the edges between and?’.) too close to what it is mapped to. A mapping which has done
this is perhaps trying to make a mistake, but not as big as
category VI. So, we will not penalise it that much. As an
example of such a case, consider tli)ss describing a glasses
manufacturing studio, an@’ is a car factory. Assume that a
is "Glasses” ands’ is "Glass”, b could be "Frame”, whilst

b’ is "Chassis”. Like category Il which is somehow dual of
category |, this category can be considered dual of category
Il.

Category V. and VI. If the edge is preserved, although this
increases the likelihood of preservation of the whole shape, if
the pairs of concepts are not close at all, this should not look
like a great success because the two edges are not that much
coincident. In other words, although the preservation of shape
is important, we do not care it that much if the edges coincide
at neither end. For an example of when this looks rational,
consider the case whenis "Vehicle”, b is "4-wheeled”, a’
is "Animal”, and ¥’ is "4-legged”. Therefore, for the category
V, we would like the mapping to receive a low benefit. The
situation is completely similar to that of category VI, so, we
do not try to justify why a mappings of that category will be
Fig. 3. Properties of Metrics penalised in a large extent.




IV. THE METHOD enumerated. As a further benefit of our proposed weighting
In this section, we present our proposed partial Ordénethod, we would like to notify the following: Consider the

consider the extent to which this can be appropriate, and RPPINgm in which a is mapped tar/, b to ¥/, with an edge
tune that, offer a set of heuristics. Finally, putting all the parR€tween andb, type of which is different from that between

together, we present the entire method. a anq b'. In this case, our weighting methqd Would_ penalise
m twice; once because the edge connectingnd b is not
A. Our Proposed Partial Order preserved, and another time for when the edge betwéen

Adding the fact that the weighting system is expected @1db’ is not.
be symmetric in its arguments, we observed that one possibld e special case where this will become more interesting is
such weighting is the following: (By being symmetric in its When (a,b) : subClassOf, and(b',a’) : subClassOf. Here,
argument, we meaw(m(G,G")) = w(m~ (G, G)).) our weight will recognise the fact that a mapping which maps
a andb to two concepts between which there is no edge at all,
is better than when they get mapped to a pair of edges where

w(m) = wo(m) — wi(m) — wy(m), where . . .
there is an edge between themith an inverse type

wo(m) = Z Flvr) + Flvo) B. Commentary
(v1,v3):tE€E As told in footnote-5, there are cases in which what the
(m(v1),m(v2)):t€E’ inputted matrix gives us may not be a metric space. In fact,
as told in the section for mathematical background, a metric
wi(m) = Z g(v1) +9(v2) space is needed to have symmetry. However, as listed in
Tg;’(l(’gf);gfffn) [7], there are schema-based matching techniques which use
(m(v1),m(v2)):t B’ linguistics resources. These techniques may not convince this
property. That is, for example: In the Webster Collegiate
wy(m) = Z g(v1) + g(ve) Dictionary [8], "quick” is in the 12th place in the list of
(v1,02):t¢E synonyms of "swift”, whilst "swift” is second in the list of
“’;(;1)771(?2)){?‘9' synonyms of "quick”. In such a case, the symmetry property
((a”6,m ™) may not hold. Therefore, what we get may be a quasi-metric
<N 1 space [9] rather than a metric space. However, as [1] also
f(d(x,m(x))) mentions, only few authors may consider similarity metrics
which do not have symmetry. So, the existing weighting
g(z) = g(d(z,m(z))) formula and the assumption with it will almost always be

] . o convincing. Even in case one is faced with an application
The functionsf andg can be considered awrmalisation  \here there inherently exists no symmetry, a little tweak in
functions. Their common property is that being restrictively,e formula will give rise to symmetric weighting formula

increasing. Otherwise, one can always find one of the Sphich still convinces all the conditions listed in section 4:
categories above in whiclv will misbehave. Furthermore,

f should have another property as well; its range should w'(m) = wo(m) — wi(m) — wy.(m)
be outside a certain neighbourhood around origin. For the

A ) ; . . -wherewg(m) andw;(m) remain the same, but
case when this will result a misbehaviour, consider a pair of

ontologies across which there exists a pair of concepts with _ _ _
distance0. If £(0) is 0, thenw will become 4o, regardless wr(m) " ;@E g(vr) +3(v2)
of the rest of mapping. And, this obviously is a big anomaly (m(o1).m(v2)) € B’

because it will cause a big class of mappings to look the SaM&- v ermore. there seems Nno way to guarantee that the
whilst they are not inherently the same. That is, in such a cage '

w does not do much for a big class of mappings. riangular inequality holds for any output of the phase 1.

. Ipespite that, it seems quite reasonable to assume that this
In presence of a vertex which does not get mapped fo . L
roperty holds for any such guess. In fact, we believe finding

anything, all the edges from that vertex — or to it — are ntgt e[al guess in which this does not hold is unlikely.

preserved. In these cases, the mapping should get more weig . . . . .
: . > Another question which may arise here is about complexity
than a mapping which has mapped such edges to edges wi . o .
of the problem. Supposing that it is efficient, one can come to

wrong types. To tune our formula to reflect this, virtually Iy : : . )
] . . : : . an efficient way for solving the graph isomorphism problem;
consider it being mapped to an imaginary vertex, existence

: . : . i .diven a pair of (un-typed) graphs (not embedded on a metric
of which does not give us any information. In this case, 'gsl’pace), assign a fixed typeo all of the edges, embed them

distance ought to bé from any other concept. One can easn)()n a metric space in which the distance of any pair of points

verify it that the above weight satisfies all the condmonlsé 1, and run our algorithm on themin an efficient time.

5For a note on how to prevent this formula to approach to infinity, pleas_-ghe heav_'eSt matchings can be efficiently checked for being an
refer to the commentary. isomorphism, because one can remove the types and the metric



space backbone. It is easy to verify that there is a isomorphism Owl:inscr)?ﬁsgt{bl it Ngu P(')+ P(;'
between the original graphs iff the mapping with the biggest owl-alldifferent 13 0.0L | 0.01
weight is a isomorphism between them. owl:differentfrom 13 0.01 | 001
In this paper, we assume that for considering all the possible _rdfs.datatype 11 o | ool
matchings, one iterates through matchings until making sure °W"s{,rvnvﬂ“s§;‘g§pe“y i; 8:8; 8:35
they are finished. This means the algorithm iterates exponential owl:equivalentproperty 70 0.03 | 0.05
times. Nevertheless, considering all the possible matchings | owlinversefunctionalproperty 100 | 0.04 | 0.08
is not needed. As Papadimitriou and Steigiltz show in [10], Owl:tr;)r‘:"s';ttir\‘lg‘gmperty ggg 8:251’ 8:2?
there exist heuristics for dealing with this in a P time. For owloneof 313 | 012 | 024
the moment, however, we do not consider those heuristics. owl:maxcardinality 807 032 | 0.63
Despite that, we are not about to leave this problem in owl:inverseof 932 | 037 | 073
. . . . owl:mincardinality 1315 0.52 | 1.02
its general form; We believe that the following ontology- PRI 1629 T 065 127
matching-specific heuristics can decrease the runtime. For each owl-cardinality 2416 | 0.96 | 1.88
of these heuristics, a rational is also presented. owl:allvaluesfrom 2841 | 1.12 [ 221
rdfs:subpropertyof 2893 1.15 2.25
C. Heuristics for Decreasing the Runtime owl:equivalentclass 4836 | 1.91 | 3.76
All the heuristics presented here are based on the types of Owgmgit';j’giilts\:gﬁerty ;ggg g:(l)g Z:?i
edges. The following list shows the whole idea: (Let’s call this rdfs:domain 8476 | 3.36 | 6.59
list the recipes for discard and contraction.) In this list, for the owl:intersectionof 9482 | 3.75 | 7.38
first and third item, we change the initial graph via contraction OWE;?Tei‘;ﬁgﬁﬂrom égizg zgiofe ﬂ;?
along its certain parts, then apply our refinement method to rdfs:subclassof 124005 49 1 .
the resulting reduced graph, and finally transform the graph Sum 2525652 | - -
back to what it has originally been. Having done this, we Sum without subclass of | 128547] - -
consider completing the proposed mappings by moving back TABLE |
to consideration the neglected parts during the period when FREQUENCY OFOWL (AND RDF) PROPERTIES

the graph was in its contracted form. We will call this restore
of contracted vertices thexpansion phase

o IS-A (rdfs:subClassOf)Contract all the paths into a pair
of vertices between which there is an edge of type is mapped toa’. Note that becausé IS — A(n) a, and
IS-A. The source of this edge will the source of thé’ IS — A(n) d/, it is not wise to mapb to o/, and there
original path, whilst the destination will be a new vertexiemains no choice for either @fandc. With this schema in
similarity of which is the maximum of the similarities of mind, a solution to the expansion will become trivial, and the
the original path excluding the source. At the expansigiomplexity of which will definitely be too small - sa@(n)!
time, consider this problem as an independent matchiigerefore, we will not delve into details of this.
problem, but with the explanation stated below.

« Disjoint (owl:disjointWith) If the difference between the
distances of a concept in one ontology from a couple of
disjoint concepts in another is above a certain threshold,
remove the possibility of mapping the first concept with
the one in the couple which is farther.

« Equivalence (owl:equivalentClassJontract all such ver-

tices into one representing the whole group. Assign the (Il an
maximum similarity of group to this new node. On ex-
pansion, there is no difference between different choices Fig. 4. Notes on Expansion Phase of IS-A

for matching between the two graphs.

« owl:functionalProperty Functional properties should be A question which may arise here is that "Why are there

mapped to functional properties, so, discard all the magnly a few properties chosen amongst the set oO8lIL and

pings in which this does not hold. RDF properties?” The reason behind this choice is a survey
As far as the authors understand, all of the above heuristige have performed on a set of 545 ontologies. The following

should seem rational except the first one. To have an intuitidable | shows the results of this survey (wh&eU = Numb
on the contraction, one can consider it like Query Expansiaf Usage,Pl+ = Percent of usage withS-A PIl- = Percent

in the Information Retrieval [14] terminology. The expansionf usage withoutS-A). As you can see here, amongst all the
however is a little tricky. There is a fine observation whiclproperties taking part in this survey, only the ones we have
should be made on an IS-A paths. Consider Fig. 4.1, in whidihosen heuristics for have a considerable percent of usage.
after expansion, it is chosen to mago «’, andb to v'. Here, This means that our choice should be enough here — which is

there remains no choice for c! Now, consider fig. 4.11, in whickhe best estimate so far on how appropriate our work is.



—— o TP _
b 090104 (P [ (o
(bd) | 09 | 05
c|06] 0701
d|04]05] 06 (e | 09 | 05
e[ 04 05]04 © 06 |01
TABLE II

DISTANCE OFNODESBEFORE ANDAFTER OFCONTRACTION

17 (b,d), (p,n) | (be), (o) 0 14 | 1.4 | —2.8

2 | (be), (p,n) | (b,d), (0) 0 14 | 1.4 | —2.8

3| (b,d), (p,n) (¢), (o) 0 1.0 | 1.0 | —1.4

41 (0, (n) [ (bd),(0) | g5+5-] 0 | O 3

5| (be), (p,n) (¢), (0) 0 1.0 | 1.0 | —2.0

6] (9. (n) | (el | ge+gz] 0] 0 3
TABLE Il

THE EXAMPLE AFTER CONTRACTION

D. Our entire Mechanism

from O; to O}, which will be an exponential piece of job.
Therefore, one possibility for future works is considering the
works of Papadimitriou and Steigiltz [10], and try to inject
them into this problem to come to a polynomial algorithm.
Another possibility could be considering other works in which
Graph Theory and Metric Spaces are considered together,
and find new ideas for further reduction of the size of this
method. One can consider [15] for example. Given that it
is common to use Domain Theory [13] for evaluating the
semantics of programming languages [16], we believe that
there is a vast room for injecting those ideas in the realm
of ontology mapping, especially in better adjustment of the
partial order we were speaking about in this paper.
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Putting all the above ideas together is not hard. To makeyi§ed here. Furthermore, we would like to give a thank to all

short, here is a pseudo-code:

1) InputO andO'.

2) Apply a Threshold Based Refinement Gnand O’.

3) Apply the recipes for Discard and Contraction@nO’;
call the resulting ontologie®; and O;.
Weight all the remained possible mappings frém to
01.
Expand back the contracted parts(@f and O].
Output the mappings along with their weights.

an example of how this works, consider Fig. 5:

@ e‘
O @® O® <0
zi}x

a

4)

5)
6)
As

Fig. 5. The Example, I- Before, II- After Contraction, Ill- Final Mapping. [7]

In this figure, you can see two ontologiés and O’, and

lI-left d showing the distance between concepts across theris]

Suppose that the d above is the one after the second

s
By the end of the third step, Fig. 5-II will be the result, anc{;ﬁﬂ

d will then change to Table ll-right.
Choosing f(z) = = + 0.1 and g(z) = z, Table Il will

the people at the Ontology and DL mailing list who helped.
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