
Detecting Semantic Matching in Service Oriented System Integration

Dario Saveliovsky, Jiayao Zhou, Yuhong Yan
Dept. of Computer Science and Software Engineering, Concordia University, Montreal, Canada

Abstract—In the real world, Web services are developed by
independent service providers. Even if the services provide
the same functionality, the names for the service parameters
and the data structures of these parameters do not follow
any standards. This kind of interface incompatibility is a
major obstacle when people try to automate service integration,
i.e. to connect services by using the outputs of a service as
the inputs of another. In the existing research, people try
to classify the interface incompatibility into several patterns
and provide resolutions on these patterns. However, real world
services largely do not follow these patterns. This paper tries to
find element mappings across service interfaces by employing
schema matching techniques extended for the specifics of Web
service definitions. In this method, the matching of the XML
elements is not only based on their semantics, but also their
data structure. In addition, several techniques, such as stop
words removal, are developed to improve the performance. A
proof of concept service integration assistant is presented and
tested on sample data sets that include a real world case which
is the collaboration between mainstream Enterprise Resource
Planning and Product Lifecycle Management software systems.

Keywords-semantic matching; service adaptation; service
composition; service integration

I. INTRODUCTION

Service Oriented Architecture (SOA) is a software devel-
opment paradigm that is based on the design of services
which are published and provided over a network through
a set of common interfaces [11]. These services can be
described in machine-readable formats based on open stan-
dards, which allows for the possibility of services to be
automatically integrated. This is a major breakthrough from
previous technologies, where integration of multiple infor-
mation systems was a necessarily labour-intensive task with
developers having to write adaptors manually. Therefore, as
the SOA paradigm is adopted by more and more software
systems, it becomes more relevant to find an efficient way
for services to be integrated seamlessly.

Some of the proposed solutions for the automatic integra-
tion of services (such as [16], [15], [4]) suggest the inclusion
of metadata in service definitions in order to provide a
semantic description of the services, extending current web
service standards to include links to predefined ontologies.
However, for this technique to work, a standard would need
to be adopted by the industry. As this has not happened
yet, the majority of web services in existence today do
not include semantic information in their definitions [16].
Other approaches –such as the ones in [9] and [13]– try
to work around the lack of semantic information in service

definitions by analyzing their contents and finding recurring
patterns across services. An important issue that arises in
this situation is the identification of semantically equivalent
concepts across services –i.e., a mapping between elements
representing the same concepts over multiple services. These
approaches tend to focus on the control flow part of the
problem, either leaving out the problem of interface mapping
or dedicating limited resources to it.

In this paper, we develop a method for the automated
identification of semantically equivalent elements across
services –which distinguishes itself from other works in
the fact that it targets the specific particularities of the
WSDL format, making it a more appropriate strategy for
web service integration.

This paper is organized as follows. Section II is an initial
introduction to the problem of service integration along with
a survey of the literature on the subject. Section III presents
our method in detail. Section IV delineates the features
and implementation of the service integration assistant tool
and describes the experiments to evaluate our method. To
conclude, Section V offers a review of the contributions of
this paper as well as the ideas to be explored in future work.

II. THE SYSTEM INTEGRATION PROBLEM

A. Modeling the Problem

Service integration is the action of bringing together
individual services into one system to provide new func-
tionality. In the real world, stateless services are the most
common services that a service interface specified in WSDL
declares. Although there are ways to automatically analyze
WSDL files and generate service invocation code, this kind
of analysis is based on XML data types. The semantics
interoperability problem is not well solved.

For this research, we have teamed up with our industry
partner Helix Systems Inc [5] to provide a real-world case
study.

Example 1: Helix’s PLM360 has multiple modules cov-
ering all the functions from project management to product
data management. The modules can be installed in different
servers and they communicate via SOAP messages. Many
PLM360 users are also users of ERP systems. Instead of
using PLM360 to manage their employee information, these
companies store their employee information in an ERP sys-
tem. Ideally employees would need to enter their time sheet
information into the ERP system only, and an automated
process would transfer this data into the PLM360 system.

In theory, these two pieces of software could be made to
communicate with each other through their Web services in
order to transfer data from the ERP to the PLM360 system.
However, for this integration to happen, an adaptor is needed
since the two applications were not specifically designed
to work together. A similar situation arises when a user
switches from one ERP system to another, e.g.,from SAP to
PeopleSoft. The messages that invoke SAP services cannot
be used to invoke PeopleSoft services. Instead of developing
a client from scratch, we want to use an adaptor between
the client and the new service.

We consider services described in WSDL files in this
paper. We begin with the interface definition, which is
essentially a simple formalization of WSDL.

Definition 1: Given a set C of concepts, a service w
is a set O of operations, where for each o ∈ O, Mo =
{min,mout} is the set of messages associated with o:
o : min ↔ mout. A message m ∈ M has optionally
i ≥ 1 parts, represented as m = 〈c1, c2, . . . , cn〉, ci ∈ C,
i ∈ [1, . . . , n].

In this definition, the operations are modeled as functions
between the messages. min and mout are input and output
messages respectively. Faulty messages are considered as
a special case of input or output messages. min and mout

can be an empty set ∅, meaning there is no input message or
output message for this operation. The concepts C represent
the parts in the messages. The concepts used in the messages
are nested like a tree, e.g.,address has sub-parts like street
name and zip code etc. Each concept ci ∈ C has a
correspondent xml data type dj ∈ D, where D is a set
of xml data types.

Assume two services, ws = (Cs,Ms, Os) as the provider
service and wc = (Cc,Mc, Oc) as the client service. If wc
needs to send a message to invoke ws, we need to consider
their compatibility in three levels1:
• Semantics compatibility: the same names in different

services may not mean the same thing, e.g.,address
can contain different parts. Or vice versa, different
names may mean the same thing, e.g.,“employee” and
“worker”.

• Data type compatibility: even if two names have the
same semantics, their xml data types may be different.
For example, “date” can be defined as xml “date” type
in one service and xml “string” type in another.

• Data value compatibility: an operation may have valid
inputs and invalid inputs. For example, for a stock quote
service, the valid inputs are the valid stock names.
Other names may trigger exceptions.

Both semantics and data types for a service are defined in
its WSDL file. Therefore, analyzing the xml schema of the

1If the services are modeled as stateful, i.e.,there is a communication
protocol to define the sequence orders of the messaging, protocol compat-
ibility is another level to consider. Related research can be found in [13],
[9]

WSDL files is a way of solving the incompatibility problem.
Data values, if collectible, can also contribute to xml schema
matching [12]. However, data values are not used in this
paper due to lack of data.

Figure 1. Interface mapping problem

As a solution to service integration, a service adaptor
can be built. This adaptor is responsible for the mediation
between the two services not originally designed to work
together [7]. We define our Web service interface mapping
problem as follows:

Definition 2: Given two services ws = (Cs,Ms, Os) and
wc = (Cc,Mc, Oc), a service adapter of ws and wc is also
a service a = (Ca,Ma, Oa) such that: for an operator p :
min ↔ mout, p ∈ Os and q : min′ ↔ mout′, q ∈ Oc, there
are an operation a : mout′ → min, a ∈ Oa, and an operation
b : mout → min′, b ∈ Oa.

Figure 1 presents this definition. The adaptor works
between two services. After the message matching, the
adaptor can transform one SOAP message to another, using,
for example, an XSLT based technique [3]. For the non-
matching part, the adaptor needs to fill the data fields with
some default values. One can see that after the message
matching is done, programming the adaptor is trivial.

B. Schema Matching and Previous Work

Schema matching is the task of identifying semantic
correspondences among elements across different schemas.
It plays a central role in many data application scenarios:
in data integration to identify and characterize inter-schema
relationships across multiple schemas; in data warehousing
to map data sources to a warehouse schema; in E-business
to map messages between different xml formats; in the
semantic Web to establish semantic correspondences be-
tween concepts of different ontologies [1]. In the survey pa-
per [12], different automatic schema matching methods are
summarized. These methods can be classified using different
criteria, for example schema vs. instance (i.e.,data values);
element vs structure; language vs. constraints (e.g.,based
on keys and relationships). For WSDL files, schema-level
techniques are more suitable for our purposes, since in-
stances of service invocations are not always available.
Linguistic similarity and structural information are the kinds
of information we can use.

An XML schema can be modeled as a tree structure, using
nodes to represent elements and attributes in the schema, and
edges to represent the relationships between them. A formal
definition of this structure can be seen in Definition 3 [1].

Definition 3: A schema tree T is a 4-tuple T =
(NT , ET , LabNT , l) where:
• NT = {n1, n2, ..., nn} is a set of uniquely identified

nodes, which represent either an element or an attribute
definition in the XML schema.

• ET = {(ni, nj)|ni, nj ∈ NT } is a set of edges,
which represent a parent-child relationship between two
nodes.

• LabNT is a set of labels, which represent node prop-
erties, including name and data type.

• l : NNT → LabNT which maps every node to its
labels.

The following linguistic measures are used in our method:
Levenshtein or Edit Distance: This is a measure of the

number of character operations needed to transform one
string into another. The allowed operations are insertion,
deletion and substitution. For example, the distance between
the words manually and January is 3, obtained by replacing
m for j, removing the first l, and replacing the second one by
an r. This metric can be normalized into a [0, 1] interval, as
in [2]: norm ed dist(t1, t2) =

max(|t1|,|t2|)−ed dist(t1,t1)
max(|t1|,|t2|) .

Dice Coefficient or n-gram Distance: n-grams are the
sequences of n contiguous characters contained in a string.
For example, the 3-gram sets for manually and January
are {man, anu, nua, ual, all, lly} and {jan, anu, nua,
uar, ary} respectively. The ratio of common n-grams over
the total number of n-grams is computed, the following
formula: dist(s1, s2) = 2 ∗ |ngrams(s1)∩ngrams(s2)||ngrams(s1)|+|ngrams(s2)| [6].
The common 3-gram between manually and January are
anu and nua, so the distance is 2 ∗ 2/11 = 0.3636.

These metrics can be used to compare the terms that are
extracted from node names by splitting these names into
tokens. The process then continues by comparing the token
sets of each pair of nodes nS and nT belonging to the source
and target tree respectively. The data types of the XML
elements are also compared during this phase, by using a
lookup table [1] that assigns compatibility values between
pairs of XML data types. For example, the compatibility
value between string and string is 1, between string
and decimal is 0.2. The combination of these measures is
called linguistic similarity.

We look at the XPrüM system [1] for addressing struc-
ture similarity. A node is associated with its post-order
number and its parent’s post-order number. A node’s parents,
children, and siblings can easily be computed with these
numbers. A node n is said to have: a) a child context,
containing the immediate children of n; b) a leaf context,
containing all leaf nodes descending from n; and c) an
ancestor context, containing all nodes in the path from the
root node to n.

Figure 2. Schema tree with post order numbers

Example 2: Figure 2 shows a sample schema tree
with its nodes labeled with both their names and
their post order numbers. We present the tree as
(n4(4), n5(4), n6(4), n2(6), n3(6), n1(−)), where the
names are sorted by their post order numbers and their
parents’ post order numbers are in the bracket. From the
sequence (4, 4, 4, 6, 6,−), we can easily know the root of
the tree, the parent, children, and the siblings of a node.
The child context of n1 is {n2, n3}. The leaf context of
node n1 is {n4, n5, n6, n3}. The ancestor context of node
n4 is {n1 \ n2}.

To structurally compare a pair of nodes, the similarity of
each of these contexts is measured, and the three values
are combined. The child contexts of nodes nS and nT
are compared by finding, for each child of nS , the child
of nT which has the maximum linguistic similarity to it,
then computing an average of these maximum linguistic
similarity values. This grants higher child context similarity
values to pairs of nodes with higher proportion of children
that are linguistically similar. Leaf context similarity is
based on the gap vectors of the nodes being compared. A
gap vector contains the differences between the post order
number of a node and that of each of its descending leaves.
For example, the gap vector of n1 in Figure 2 is {5, 4, 3, 1}.
The similarity between two leaf contexts is then defined as
the cosine measure of their gap vectors. Ancestor context
similarity is a measure of how two paths –from the tree root
to the node being compared– resemble each other. This is
obtained by computing the weighted sum of three measures,
all of them normalized to fit in the [0, 1] range:

• A measure of the gaps between the nodes in the paths,
in order to give higher scores to nodes that are closer
together. We set the initial gap value to the longest
length of two nodes’ paths (P1 and P2). Then we find
the occurrences of the nodes in P1 and the nodes in P2
that are close to each other. If the linguistic similarity
between the node in P1 and the one in P2 exceeds a
predefined threshold, the gap reduces.

• The difference between the lengths of the paths, assign-
ing a higher value to paths of similar length.

• The longest common sequence between the paths, to
ensure similar nodes in both paths appear in the same
order. To determine if two nodes are common, their

linguistic similarity is checked against a predefined
threshold. The following equation shows how to com-
pute the longest common sequence, where lsim(ni, nj)
is a function that returns the linguistic similarity be-
tween the two nodes ni and nj , and th is a predefined
threshold:

LCS[i, j] =
0 i = 0, j = 0

LCS[i− 1, j − 1] + 1 lsim(ni, nj) > th

max(LCS[i− 1, j], LCS[i, j − 1]) lsim(ni, nj) < th
(1)

III. TECHNIQUES FOR WSDL SCHEMA MATCHING

A. The Challenges in WSDL Schema Matching
Web service parameters are defined as XSD schemata.

Therefore, the identification of semantically equivalent pa-
rameters across a couple of services can be seen as a type
of schema matching. However, the nature of WSDL adds
some particularities to this variation of schema matching,
which makes it worth studying as a separate problem. We
summarize some of these issues below:
• Lack of a formal ontology. Web service parameters

are defined using terms that are meaningful to the
designers and the intended main target users of the
service. However, these terms do not usually conform
to a standard industry-agreed ontology.

• Stop words. Some of the terms which appear in
parameter names do not contribute to the meaning of
the fields in which they occur.

• Highly context dependent. The terms used to define
fields have a specific meaning in the context of the
industry to which the service belongs. Resulting from
this, a generic stop word list may not be useful to
filter out non-meaningful terms. Similarly, when trying
to match terms sharing the same meaning, a standard
thesaurus does not usually help.

• Random schema structure. Some schema matching
techniques put emphasis in the similarity of their
structures [14]. However, the structure of web service
parameters can vary greatly and this practise may not
help identifying semantically equivalent elements.

• Variation in cardinality. Another item that varies from
service to service is the cardinality of the elements.
One operation may handle a list of a specific concept
while the other one works with individual instances.
Therefore, this cannot be used as a comparison factor.

• Random data types. Similarly to the previous two
points, the choice of XML data types for the definition
of atomic fields can vary among multiple services, so
using it as a similarity factor may not improve the
results.

• Non-matchable concepts. The occurrence of concepts
in one schema that have no matching counterpart in

the other makes some branches of the schema non-
matchable.

B. Processing

Our approach starts by building a schema tree for each
of the two operations involved. The one corresponding to
the consumer operation parameters will be called the source
tree, while the tree that represents the parameters from the
producer operation will be called the target tree.

Having constructed the trees, the next steps will analyze
their node names to extract the terms that will be used for
comparison. Following are the series of steps performed to
accomplish this:

1) Tokenization. Node names can often contain multiple
terms, formatted in different ways. For instance, they
can be underscore separated or space separated. Thus,
node names have to be tokenized and normalized.
For example, a node called employeeStartDate will
be tokenized into {employee, start, date}.

2) Elimination of stop words. The next task we want
to accomplish is cleaning up the schema trees from
terms that are not relevant with a list of stop words.
Examples of generic stop words are “a” and “and”. In
our real-world case, the data set includes time sheet
information. Therefore, the words “time” and “sheet”
are associated to the data set in general, but do not
provide meaning about the individual nodes. These
words will thus be added to the stop word list. Nodes
in both trees will be scanned and any occurrences of
stop words in their token sets will be removed from
them.

3) Addition of synonyms. As similar concepts are often
described using different terms by the distinct services,
we use a thesaurus to find synonyms for these terms.
For each node in the schema trees, tokens are looked
up in the thesaurus, and their synonyms are added to
the node’s token set.

4) Combination of parent and child nodes. Because of
the hierarchical structure of Web service parameters,
it is common to have nodes whose names are not
sufficiently descriptive of the concept they represent.
Instead, the concept is defined by both the node and its
ancestors. To circumvent this issue, we have decided to
propagate a node’s tokens toward its descendants. One
possibility was to assign, for a given node, the union
of all tokens found in the path from it to the root. The
problem with this option is that it essentially flattens
the tree structure, and makes most nodes similar to
each other. Therefore, a better option was to combine
only a node’s tokens with the ones from its parent.
As shown on section IV-D, our experiments have
confirmed that this mechanism produces better results.

5) Removal of non-matchable elements. When we can
be sure that some terms in one service do not have

matching terms in the other service, we can add
them to a list which is ignored by the matching
algorithm. This is one manual function in our tool (cf.
Subsection IV-C).

C. Computing Linguistic Similarities between Nodes Tokens

Having obtained and cleaned up the token sets for the
tree nodes, the next step consists in measuring the similarity
between nodes in the source and target trees. To this end,
we use the measure of linguistic similarity in Definition 4.

Definition 4: A measure of linguistic similarity Lsim is
computed as follows:

Lsim(n1, n2) = w1 ∗Tcomp(n1, n2)+w2 ∗Nsim(n1, n2)
(2)

where,
• Tcomp is a lookup function that checks the data types

of two nodes and returns a value between 0 and 1
representing their type compatibility.

• w1 and w2 where w1+w2 = 1, are the weights assigned
to type compatibility and name similarity respectively.

• Nsim is a metric of name similarity between two
nodes. We define T1 and T2 as the token sets of n1
and n2 and the name similarity between T1 and T2 as
the average best similarity between each token in T1
and T2. For (∀t1 ∈ T1,∀t2 ∈ T2), sim(t1, t2) is a
combination of bigram measure and a normalized edit
distance (cf. Subsection II-B). The name similarity is
computed as follows:

Nsim(T1, T2) =∑
t1∈T1

[max
t2∈T2

sim(t1, t2)] +
∑
t2∈T2

[max
t1∈T1

sim(t2, t1)]

|T1|+ |T2|
(3)

Intuition suggested that name similarity is a more impor-
tant factor in determining node similarity so we should give
it a higher weight than that of data type compatibility. Our
experiments have shown that this is in fact the case, with
the best results obtained when the value of w2 is five times
that of w1.

D. Complex nodes matching

With the linguistic similarities computed, we continue by
comparing all pairs of complex nodes (nS , nT) where both
nS and nT have children. We use an average of three metrics
for this comparison:
• The child context similarity measure of nS and nT .
• The leaf context similarity measure of nS and nT .
• The linguistic similarity of nS and nT .
By using these three metrics, we can consider not only

the similarity of the two nodes being compared, but also
the similarity of the nodes that descend from them. In other
words, for a pair of nodes, the similarity of their descendants
contributes to their own similarity. We then proceed to select

compatible nodes, i.e. the pairs of complex nodes whose
similarity exceeds a predetermined threshold.

E. Simple nodes matching

Simple nodes are the leaf nodes. For WSDL, simple
nodes are the ones that matter, because they correspond to
the parts in the messages. The correct matching of the simple
nodes determines the effectiveness of our method. As simple
nodes do not have child context and leaf context, only the
ancestor context and linguist similarity are used.

We assume only the simple nodes within the matching
complex nodes need to be examined. For each pair of the
matching complex nodes, we extract their category sets as
done in [1]. A category set is built from the union of: a)
all its leaf children; b) all its non-leaf children that are not
compatible nodes; and c) all the children of the latter which
are leaves.

Example 3: Examine n1 in Figure 2. If its child n2 is a
compatible node, the category set of n1 is {n3}. Otherwise,
the category set of n1 is {n3, n4, n5, n6}.

We start to compare the similarity between all pairs of
simple nodes (nS , nT) in the two category sets using:
• The ancestor context similarity of nS and nT .
• The linguistic similarity of nS and nT .

Algorithm 1 Three Thresholds Filter
Data: nS : a source leaf node; [n1, n2, . . . , nα]: a sorted list
of leaf candidates; THtc, THdf , THcs: three thresholds;
Functions: SSV : calculate simple similarity
value; CSV : calculate candidate similarity
value

1: if SSV (nS , n1) ≥ THtc then
2: matchings ← n1
3: for ni ∈ [n2, . . . , nα] do
4: if SSV (nS , n1)− SSV (nS , ni) ≤ THdf then
5: positiveList ← ni
6: end if
7: end for
8: for ni ∈ positiveList do
9: if CSV (n1, ni) ≥ THcs then

10: matchings ← ni
11: end if
12: end for
13: end if
14: return matchings;

We get one Simple Similarity Value (SSV) by combining
the above two metrics. Assume function SSV (p, q) com-
putes SSV. It would be possible at this point to take the top
target node —or the top k target nodes— for each source
node and present them as the matches. However, some of
these candidate matches may not be strong enough, and
we would like to filter them out. Normally one predefined

threshold is used as the cut line, for example in [1]. However,
we have found that there is considerable variation between
the similarity values of different correct matches. In addition,
we want to be able to find multiple matches (i.e.,one node
has multiple matches), if they exist. To get a better filtering
mechanism, we propose a more complex filtering algorithm,
Algorithm 1, where three thresholds are used.

First, we have a source element nS and top α matching
candidates [n1, . . . , nα] sorted by their SSV values (Inputs
in Algorithm 1). We compare nS with its top candidate
n1 against the first threshold THtc called “top candidate
threshold” (Line 1 in Algorithm 1). If the similarity value
exceeds the threshold, n1 is considered as a positive match
(Line 2). Then we check how close are the SSV values of
the other candidates to the SSV values of the top candidate
(Line 3). If the difference is lower than the second threshold
THdf called “difference threshold” (Line 4), we add the
candidate into a potential positive list (Line 5). Now we
begin to compare the similarity of the top candidate n1 with
other candidates np in the potential positive list. For this
comparison, we use two metrics:
• The linguistic similarity of n1 and np.
• The gap difference to ensure the occurrences of Pn1

(path from root node to n1) nodes in the Pnp
(path

from root node to np) are close to each other.
The combination of the above two metrics is called

Candidate Similarity Value (CSV). Assume CSV (p, q) is
a function to compute CSV value between two nodes p
and q. If a CSV value exceeds the third threshold THcs

called “candidate similarity threshold” (Line 9), we consider
the candidate as a positive match (Line 10). This method
guarantees that multiple matches can be totally identified.
And section IV-D offers a comparison of the results ob-
tained using the one-threshold and three-threshold selection
methods.

IV. EXPERIMENTAL RESULT

A. Data Collection

In order to test our method for service parameter match-
ing, we have compiled a series of sample data sets for
both real-world and synthetic cases. The real-world example
using the PLM360 software from our industry partner Helix
is taken from their employee time sheet web service. As a
matching counterpart we selected an employee time sheet
query operation provided by SAP.

As synthetic examples, we defined two pairs of services
for a computer repair context (“Suppliers” and “Order”
in Table I). In the first case, the source service offers
a getSupplier operation while the target service offers its
counterpart called addSupplier. The second pair of ser-
vices offer operations getOrder and placeOrder respectively,
which deal with purchase orders of computer parts. The last
pair of sample services was defined based on Amalgam, a

schema and data integration benchmark suite developed at
the University of Toronto [8]. This suite contains a set of
schemata of bibliographic databases (“Biblio” in Table I).
We used two of these schemata as a basis for two library
operations called getBookByAuthor and addBook. Table I
shows details about each of these data sets. All the data sets
are downloadable from our site [17].

SAP/PLM360 Suppliers Biblio Orders

Nodes
(source / target) 157/250 15/19 18/31 19/50

matching nodes 20 7 8 12

Table I
DATA SETS

B. Evaluation Criteria

To evaluate the effectiveness of our approach, we ran it
over the data sets and analyzed the results obtained. Before
running the experiment on a data set, we manually identified
the semantically equivalent parameters between the two
services involved. We then checked how many of these
computed mappings are in the list of correct mappings —
these are called the true positives. Conversely, the computed
mappings that do not occur in the list of manually identified
mappings are the false positives. Finally, the source nodes
for which no match has been found are also checked against
the correct mappings. The ones that have in fact a correct
mapping are our false negatives. With these three values,
we can compute three measures: precision, recall and F-
measure, as shown below [10].

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
,

F −measure = 2
1

precision + 1
recall

Precision measures the correctness of the results. Recall,
on the other hand, is a measure of the completeness of the
results. The F-measure is defined to combine both of these
metrics in a single value by computing their harmonic mean.

C. Semi-automatic WSDL Schema Matcher

We have developed a semi-automatic tool, WSDL Schema
Matcher, aimed at aiding developers in the finding of seman-
tical matches across two web services. We have run tests
using this tool on the data described in Section IV-A. Figure
3 shows the architecture of our tool. The inputs of our tool
are a pair of WSDL documents and the output is a list of
matching pairs. The tool has several modules for a series of
tasks, such as WSDL file parsing, name tokenization, stop
words removal, and various similarity calculations (cf. the
boxes at the right end in Figure 3). Some of the modules
use auxiliary information, such as stop words, thesaurus, and
a list of non-matchable concept terms. These modules are

Figure 3. Semi-automatic WSDL Schema Matcher

Figure 4. Data sets: Precision

semi-automatic, in the sense that the user can manually add
domain specific stop words, synonyms, etc., if the generic
ones are not sufficient. Semi-automatic tasks have a mark
“S” at the right corner of its box. The calculations of
linguistic and structure similarities are fully automatic. It is
because no techniques can match schemas 100% correctly
that we need human intervention to improve performance.

D. Experimental results

All the results presented below have been obtained by
running an implementation of the techniques described in
section III and on the sample data described in Section IV-A.

The first experiment is to evaluate the impacts of the
different techniques on the performance of our Matcher.
These techniques are: combining parent node name, three
threshold filtering, the usage of stop words, and the
usage of ancestor similarity. Our baseline is to use all
these four techniques. Then, we drop one technique from
the baseline at a time. We test the precision, recall, and F-
measure on each case and present the results in Figure 4, 5,
and 6. The technique of removing non-matchable elements
is very helpful to improve precision and recall, if the user
understands the domain. However, we regard it is not very

Figure 5. Data sets: Recall

Figure 6. Data sets: F-measure

meaningful to evaluate its efficiency, because of strong
human intervention.

In Figure 6, we can see that our method has the highest
F-measure for all the four datasets, which means our method
has the best performance. Among the matching techniques,
we can see missing one technique lowers the performance in
most of the cases, however, not always. One reason should
be related to the nature of the data, which we do not fully
understand. Others reasons like not combining parent name
makes nodes less similar so that the precision of this method
when compiling “orders” is 1 but recall is very low. In
the case of SAP and PLM360, precision of one threshold
filtering is higher than three threshold filtering’s due to the
latter being able to identify multiple matchings, improving
recall but losing precision. Without ancestor similarity, the
results will include many false positives although many right
matching pairs will be identified.

Our second experiment is comparison with COMA++.
The COMA++ system is a generic schema matching tool
developed at the University of Leipzig, aimed at different
schema formats and application domains.

Table II shows the results, using both our technique and
COMA++. The outcomes from our approach are better
than the ones from COMA++. This works as evidence
that our contributed methods provide an improvement when
working with the matching of Web services, since they

TPs FPs FNs PREC. REC. F

suppliers

our method 4 0 1 1.0000 0.8000 0.8889

COMA++ 3 3 2 0.5000 0.6000 0.5455

biblio

our method 8 1 1 0.8889 0.8889 0.8889

COMA++ 6 3 3 0.6667 0.6667 0.6667

orders

our method 5 1 7 0.8333 0.4167 0.5556

COMA++ 4 4 8 0.5 0.3333 0.4000

sap - PLM360

our method 14 7 16 0.6667 0.7000 0.6829

COMA++ 4 40 16 0.0909 0.2000 0.1245

Table II
COMPARING RESULTS FROM OUR TECHNIQUE AND COMA++

are specifically directed toward the features of the WSDL
format.

V. CONCLUSION

In this paper we have offered a look into the major issue
of the automated service integration problem which consists
in finding semantically equivalent elements across service
definitions. Our methods leverage schema matching tech-
niques to take advantage of the XSD format of Web service
operation parameters, while at the same time expanding
them to tackle specific features of WSDL —namely, the lack
of formal ontologies, highly context dependent meaning of
terms, randomness in the schema structures and cardinality
of elements and data types, and the presence of non-
matchable terms. We have built a prototype of an interactive
tool which implements our techniques and tested this on
data samples. The samples include the real-world case study
of the integration of time sheet information between Helix’
PLM360 and SAP’s ERP software, and synthetic examples.
The results from our experiments look promising, comparing
positively against the ones obtained by using a general-
purpose schema matching tool. Moreover, the results of this
tool can then be used in the building of a script to transform
instances of messages between the formats of the services
involved. In future work, we will concentrate our efforts on
the automation of this task, which will bring us closer to the
goal of an automated service integration solution.

REFERENCES

[1] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Im-
proving XML schema matching performance using Prüfer
sequences. Data Knowl. Eng., pages 728–747, 2009.

[2] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. A
sequence-based ontology matching approach, 2009.

[3] Altova. Mapforce. http://www.altova.com/mapforce.html,
2014.

[4] Ajay Bansal, Srividya Kona, Luke Simon, and Thomas D.
Hite. A universal service-semantics description language.
In Proceedings of the Third European Conference on Web
Services, ECOWS ’05, pages 214–, Washington, DC, USA,
2005. IEEE Computer Society.

[5] Helix. Plm360 website. http://www.helix-sys.com/, 2014.

[6] Grzegorz Kondrak. N-gram similarity and distance. In
Proc. Twelfth Intl Conf. on String Processing and Information
Retrieval, pages 115–126, 2005.

[7] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad,
Boualem Benatallah, Fabio Casati, and Regis Saint-Paul.
Mismatch patterns and adaptation aspects: A foundation for
rapid development of Web service adapters. IEEE Trans.
Serv. Comput., 2(2):94–107, April 2009.

[8] Renée J. Miller, Daniel Fisla, Mary Huang, David Kymlicka,
Fei Ku, and Vivian Lee. The Amalgam Schema and Data
Integration Test Suite. www.cs.toronto.edu/ miller/amalgam,
2001.

[9] Hamid Reza Motahari Nezhad, Boualem Benatallah, Axel
Martens, Francisco Curbera, and Fabio Casati. Semi-
automated adaptation of service interactions. In Proceedings
of the 16th international conference on World Wide Web,
WWW ’07, pages 993–1002, New York, NY, USA, 2007.
ACM.

[10] David L. Olson and Dursun Delen. Advanced Data Mining
Techniques. Springer, 2008.

[11] Michael P. Papazoglou. Web Services: Principles and Tech-
nology. Pearson, 2008.

[12] Erhard Rahm and Philip A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J., 10(4):334–350,
2001.

[13] Zhe Shan, Akhil Kumar, and Paul Grefen. Towards integrated
service adaptation a new approach combining message and
control flow adaptation. In Proc. of International Conference
of Web Services, pages 385–392, 2010.

[14] Pavel Shvaiko and Jrme Euzenat. A survey of schema-based
matching approaches. In Journal on Data Semantics IV,
volume 3730 of Lecture Notes in Computer Science, pages
146–171. Springer Berlin / Heidelberg, 2005.

[15] Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, and
John Miller. Adding semantics to Web services standards,
2003.

[16] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and
Naveen Srinivasan. Automated discovery, interaction and
composition of semantic Web services. Web Semantics:
Science, Services and Agents on the World Wide Web, 1(1),
2011.

[17] Yuhong Yan. Testing data sets. http://users.encs.concordia.
ca/∼yuhong/2014/data/data set.rar, 2014.

