Pay-As-You-Go Mapping Selection in Dataspaces:-

Cornelia Hedeler, Khalid Belhajjame, Norman W. Paton, Alvaro A.A. Fernandes,

Suzanne M. Embury, Lu Mao, Chenjuan Guo
School of Computer Science, University of Manchester, Oxford Road, Manchester, UK

{chedeler, khalidb, norm, afernandes, sembury, maol, guoc}@cs.man.ac.uk

ABSTRACT

The vision of dataspaces proposes an alternative to classi-
cal data integration approaches with reduced up-front costs
followed by incremental improvement on a pay-as-you-go ba-
sis. In this paper, we demonstrate a system that allows users
to provide feedback on results of queries posed over an in-
tegration schema. Such feedback is then used to annotate
the mappings with their respective precision and recall. The
system then allows a user to state the expected levels of pre-
cision (or recall) that the query results should exhibit and,
in order to produce those results, the system selects those
mappings that are predicted to meet the stated constraints.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems
General Terms

Dataspaces, User feedback

1. INTRODUCTION

Data integration is a challenging task. In time, the recog-
nition has grown that specifying an integration schema against
which users pose queries, as well as the mappings between
that schema and the source schemas, is both hard and time-
consuming. To reduce up-front costs, a new class of data
integration platforms, called dataspaces, has been proposed
[4]. that use a pay-as-go approach for continuous, gradual
improvement.

Several proposals have emerged recently (e.g., [3, 10, 7]).
We observe, that, although the idea of incremental improve-
ment is an integral part of the dataspace vision, proposals
that support it are few. Incremental improvement based
on user feedback can take a variety of forms, e.g., through
the manual provision of mappings (e.g., [10]); through the
annotation of query results as to which items are spurious
or which should be ranked higher (e.g., [9]); or through a

*The work reported in this paper was supported by a grant
from the EPSRC. We are grateful for the support.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

S GMOD '11 Athens, Greece

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Presentation Layer

Ir tion Usage Improvement
Model Management Query Evaluation Mapping annotation
Operators Parser and selection
=
[Match Validator
8| InferCorrespondence Global Translator
3 Merge Expander<C____[3 Select mappings
E Diff Optimiser Annotate mappings
2] Compose Localiser
ViewGen Evaluator

‘ Connectivity Layer ‘

——— —

Figure 1: Layered architecture of DSToolkit

Dataspace Layer

process by which mappings are debugged (e.g., [8]). We ob-
serve that all these approaches require, to different degrees,
an understanding of the syntax and semantics of mapping
and schema languages on the part of the person providing
the feedback. This has the drawback that only experts can
provide feedback, shutting out non-expert users.

We have implemented and will demonstrate a dataspace
management platform, DSToolkit, and in particular its tech-
niques for incremental improvement. Rather than requiring
users to have an understanding of schemas and mappings,
we only ask the user to provide feedback on the results of
queries over an integration schema. Such feedback is then
used to annotate the mappings that produced the corre-
sponding query results. On the basis of these annotations,
DSToolkit is able to estimate the precision and recall that
will be exhibited by subsequent queries depending on the
mappings used. Thus, DSToolkit allows a user to state the
expected levels of precision (or recall) that the query results
returned should exhibit and, in order to produce those re-
sults, the system selects those mappings that are estimated
to meet the stated constraints.

DSToolkit demonstrates the following features: (i) a datas-
pace architecture that supports a complete lifecycle includ-
ing bootstrapping, improvement and maintenance; (ii) in-
cremental annotation of schema mappings based on used
feedback on query results; and (iii) mapping selection at
query execution time based on user-specified QoS criteria.
The techniques that underpin (ii) and (iii) are reported in
[1]; this paper describes how the techniques can be incorpo-
rated into a dataspace architecture, and the demonstration
shows how they can be exploited by users in practice.

Section 2 introduces the system and the background on
mapping annotation and selection, Section 3 introduces the
demonstration scenarios, and Section 4 concludes.

2. SYSTEM OVERVIEW

In this section, we provide information on the main archi-
tectural aspects of DSToolkit, briefly describe how the stages

of the dataspace lifecycle can be supported and focus on the
functionality to be demonstrated, viz., feedback-based im-
provement via annotation and selection of mappings.

Architecture. Broadly speaking, DSToolkit uses a lay-
ered architecture summarised in Fig.1. The dataspace layer
persistently stores the model-independent representation of
schemas, the elicited matches, the schematic correspondences
supported by the matches, the mappings derived from the
latter, the user feedback collected and the corresponding
query results. Access to the persistently stored information
is provided by the connectivity layer. This layer is used, in
turn, by the service layer where the functionality resides,
viz., the model management operators, the query processor
and the improvement techniques. The presentation layer
exposes a user interface through which the user can access
the functionality provided. The service layer in Fig.1 cov-
ers the three basic phases of the dataspace lifecycle [5], viz.,
initialisation, usage and improvement.

Initialisation. The initialisation phase, which aims to
identify the data resources and integrate them, is also re-
ferred to as bootstrapping. 1t is supported predominantly by
the standard model management operators [2], augmented
with operations that infer high-level schematic correspon-
dences from matches and that generate mappings from the
correspondences. By providing implementations of these
operators over a model-independent representation of con-
structs, DSToolkit supports the integration of heterogeneous

data sources through manipulation of schemas and the schematic

correspondences that hold between them. As such, DSToolkit
supports the coexistence of different integration schemas,
e.g., one that unions the source schemas, one that merges
them, and even one that selects one of the source schemas
as the integration schema.

Usage The integrated data sources are queried during the
usage phase. The query engine in DSToolkit extends the
OGSA-DQP distributed query engine [6] with an expander
(expands the query using the mappings selected by the map-
ping selection operator) and a localiser (generates source-
specific subqueries in the query language of the source).

As the demo focusses on the improvement phase, the map-
ping annotation and mapping selection operators are intro-
duced in slightly more detail in what follows (see also [1]).

Improvement: Mapping Annotation. Given the re-
sult tuples, users are invited to state, for a subset of their
own choosing, whether the tuple was expected to be present
(i.e., true positive (TP)) or whether it was expected not to
be present (i.e., false positive (FP)). Users can also input
a tuple that was not returned but that they expected to
see (i.e., a false negative (FN)). Fig.3(b) and (e) show the
relevant part of the user interface.

The user feedback provides partial information on the ex-
tent of a construct in an integration schema. Using the
(partial) TP, FP, and FN annotations on the query result,
we calculate the precision and recall of a mapping m (rel-
ative to the user feedback UF provided) that was used in
producing those results, as follows:

Precision(m,UF) = [TP(m, UF)
|TP(m,UF)|+ |FP(m,UF)|
|TP(m,UF)| @)
|TP(m,UF)| + |FN(m,UF)|
where |TP(m,UF)|, |FP(m,UF), |FN(m,UF)| denote, resp.,
the number of TPs, FPs and FNs returned by mapping m
according to user feedback UF on query results involving m.

(1)

Recall(m,UF) =

ml: SELECT name, province, country FROM organization
m2: SELECT mountain as name, province, country

FROM geo_mountain
m3: SELECT name, province, country FROM city

Figure 2: Mappings for populating city in the inte-
gration schema.

Table 1: Query result returning all cities.

Name Province | Country| Expected| Not | Mapping
exp.

UN NY USA Y | ml

Ben Nevis | Highland | GB v | m2

Berlin Berlin D v m3

Consider, as an example, the Mondial' database and an
integration schema with the construct city(name,province,
country). Assume that city is populated by the mappings
shown in Fig.2 that have been derived automatically (hence
the rather odd nature of mt and m2) during the initialisation
phase. Also consider the query SELECT * FROM city posed
over the integration schema. Table 1 shows a subset of the
result with the per-tuple feedback and the mapping involved
in producing the tuple. The feedback suggests that the user
only expected to see the last tuple produced by (the correct)
mapping m3 and did not expect the first two tuples produced
by mappings m1 and m2. Based on this feedback, the three
mappings m1, m2 and m3 will be annotated with precision and
recall computed by Eq. 1 and 2, respectively.

Improvement: Mapping Selection. After annotating
the mappings, this information can be used to select the
mappings to be used to answer a query posed by a user.
Not all users may require the same precision and recall with
respect to the query results returned. As such, we allow
users to choose the desired precision or recall target that
the query results should meet (see Fig.3(d)) and the selection
operator chooses mappings so as to reach the specified target
and maximise the unconstrained value.

Given a set of Mappings M, selecting the mappings sm C
M to be used for answering a query given a target of A (say,
precision) that the result should at least achieve is formu-
lated as a constrained optimisation problem that aims to
maximise the unconstrained variable (say, recall) over the
union of the results returned by the selected mappings sm.
The problem is solved using simulated annealing.

3. DEMONSTRATION SCENARIOS

The demo will focus on mapping annotation and selection
based on user feedback. This is motivated by the fact that
feedback-based incremental improvement is central to the
dataspace vision, as is the expectation that relatively small
amounts of feedback can underpin significant improvements
in outcomes. We assume that a dataspace consists of an
integration schema, which will either have been provided
manually or obtained automatically using the model man-
agement operators mentioned earlier. We also assume that
a number of mappings have been provided manually or ob-
tained using the model management operators, which can
result in mappings of mixed quality.

The demo will show the following. Starting with an ini-
tial query that is unfolded using all applicable mappings
and evaluated over the sources (see Fig.3(a)), results are
returned and the user is given the opportunity to provide
feedback indicating TP and FP results as well as supply-

"http://www.dbis.informatik.uni-goettingen.de/Mondial /

myDataspace (a) myDataspace
Evaluate Query Evaluate Query Results1
Queries Query results Precision = NA Recall = NA
Select the query you would like to evaluate or add a new query: Query results -]
Name ~ Province Country Expected Not expected
Queries °
- Albany Western Australia AUS 4 2] m
id Name Description Schema Query i ted Naflans New York Ty o]
1 Alcities Get all cities Mondiallntegr ~ Select = frem city
Ben Nevis Highland GB]]
2 |NameProvinceCountryOFAICi Get the name, province etc. of all cities Mondiallntegr | Select name, country, province, population, longitude, lat ’
Commonwealth Greater London GB 5] & <
3 AProvinces Get all provinces Mondiallntegr Select = from province
: Alexandria Virginia USA o [a] Y
4 | NameCountryPopulationOfAllGet the name, country, population etc. of all province Mondiallntegr | Select name, country, population, area, capital, capprov fi - —_—= v
€ = RIS Page T Jof 200 » » (1018 View 1- 11 0f 2 517

- (09

Page T 02 »

Precision and Recall

Select precision- or recall-target that should be met by the query result. Using the given value as constraint, the other
value will be maximised.

View 1- 10 of 20

Add missing result tuple Load Feedback ‘ ‘Apply Feedhackl

Mappings

This is the list of mappings that have been used to retrieve the results shown above.

O Precision: 0 Mappings °
id: Schemal Query1 Schema2 Query2 Precision Recall
O Recall: 0 1 |Mondiallntegr Select name, provi Mondial Select name, province, country frem organization NA Nnm
Add Query ‘ ‘ Run Query 2 |Mondiallntegr Select name, provi Mondial Select mountain as name, province, country from NA NAT
3 gr|Select name, provi Mondial | Select name, province, country from city NA NAS
- e P O I BT o = —
Page[T |of 1 [) View 1-50f 5
Mappings Evaluate Query Results1 Results2 Results3 Results4
This is the list of mappings that have been used to retrieve the results shown above. Query results Precision = 1.0 Recall
Mappings -] Query results o
id: Schemal Queryl Schemr Query2 Precision Recall Name - Province Country Expected Not expected
1 Mondiallnteg Select name, Mondial |Select name, province, country from organization 0 nm Albany Western Australia AUS] 8 m
Alexandria Virginia UsA 4 5]
2 Mondiallnteg Select name|Mondial | Select mountain as name, province, country from geo_mount] 0
'y Antakya Hatay 1)]]
3 Mondiallnteg Select name, Mendial |Select name, province, country from city 1 1 §
£3 Antalya Antalya TR =] =] ¢
—_——— = R0 Aosta Valle dAosta 1 [=] v
PageT Jof1 5 5 View1-50f 5 - = 4ir

Page T 10f 150 »» » (10 18) View 1- 11 of 1 547

- Add missing result tuple

Load Feedback ‘ ‘)\pply Feedback

Precision and Recall

Select precision- or recall-target that should be met by the query result. Using the given value as constraint, the other
value will be maximised.

Mappings (-]
® Precision: 0.6

id Schemal Queryl Schema2 Query2 Precision Recall
O Recall: 0 1 |Mondiallntegr |Select name, province| Mondial Select name, province, country from city 1.0 10

€ >

d)

— Mappings

This is the list of mappings that have been used to retrieve the results shown above.

Add Query | | Run Query

GEC] View 1- 1of 1

Page[T Jof1

Figure 3: User Interface for demonstrating mapping annotation and selection for query evaluation.

ing FN results (see Fig.3(b)). Assuming that no feedback
had been provided yet, the mappings are not yet annotated
with precision and recall. We will show how the feedback
now provided is then used to annotate the mappings by re-
running the same query (see Fig.3(c)).

To demonstrate the mapping selection for query evalua-
tion, we will provide the user with the opportunity to re-run
a number of queries with different precision or recall tar-
gets (see Fig.3(d)). This will show how the choice by the
user of one quality of service (either precision or recall) for
maximisation, subject to a user-provided minimal threshold
on the other quality being met, informs the search among
alternative mappings for those that meet user requirements.
We will show that this affects the selection of the mappings
used for unfolding the query and, the query results returned.

4. CONCLUSIONS

DSToolkit is a flexible toolkit for initialising, using and im-
proving dataspaces in a wider range of usage scenarios than
hitherto implemented. In particular, the demo will show the
improvement in query results that can be obtained by feed-
back instances that require no specific expertise from the
user. The demo will show how a user can trade off precision
and recall subject to a threshold on the non-selected qual-
ity; DSToolkit uses annotations derived from user feedback
on past query results to guide the selection of mappings for
answering the query that are estimated to meet the targets
set by the user.

5. REFERENCES

(1] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. A.
Fernandes, and C. Hedeler. Feedback-based annotation,
selection and refinement of schema mappings for
dataspaces. In EDBT, 2010.

P. A. Bernstein and S. Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD, 2007.

A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In SIGMOD, 2008.
A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In PODS 06, 2006.

C. Hedeler, K. Belhajjame, A. A. A. Fernandes, S. M.
Embury, and N. W. Paton. Dimensions of dataspaces. In
BNCOD, 2009.

S. Lynden, A. Mukherjee, A. C. Hume, A. A. A. Fernandes,
N. W. Paton, R. Sakellariou, and P. Watson. The design
and implementation of OGSA-DQP: A service-based
distributed query processor. Future Generation Comp.
Syst., 25(3):224-236, 2009.

J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R.
Jeffery, D. Ko, and C. Yu. Web-scale data integration: You
can afford to pay as you go. In CIDR, 2007.

G. Mecca, P. Papotti, S. Raunich, and M. Buoncristiano.
Concise and expressive mappings with +spicy. PVLDB,
2(2):1582-1585, 2009.

P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer,
Z. G. lves, F. Pereira, and S. Guha. Learning to create
data-integrating queries. PVLDB, 1(1):785-796, 2008.

M. A. Vaz Salles, J.-P. Dittrich, S. K. Karakashian, O. R.
Girard, and L. Blunschi. itrails: Pay-as-you-go information
integration in dataspaces. In VLDB, 2007.

[6]

7]

(10]

