
A Probabilistic, Logic-based Framework for
Automated Web Directory Alignment

Henrik Nottelmann1 and Umberto Straccia2

1 Institute of Informatics and Interactive Systems, University of Duisburg-Essen,
Duisburg, Germany nottelmann@uni-duisburg.de

2 ISTI-CNR, Pisa, Italy straccia@isti.cnr.it

Summary. We introduces oPLMap, a formal framework for automatically learning
mapping rules between heterogeneous Web directories, a crucial step towards inte-
grating ontologies and their instances in the Semantic Web. This approach is based
on Horn predicate logics and probability theory, which allows for dealing with un-
certain mappings (for cases where there is no exact correspondence between classes),
and can be extended towards complex ontology models. Different components are
combined for finding suitable mapping candidates (together with their weights), and
the set of rules with maximum matching probability is selected. Our system oPLMap
with different variants has been evaluated on a large test set.

1 Introduction

While the World Wide Web has been merely a collection of linked text and
multimedia documents, it is currently evolving into documents with seman-
tics, the Semantic Web. In this context, ontologies, which have been studied
intensively for a long time, become more and more popular. Ontologies are
formal definitions of concepts and their relationships. Typically, concepts are
defined by classes, which are organised hierarchically by specialization (inher-
itance) relationships. A simple example is a Web directory, which consists of
a simple class hierarchy. For example, the concept “Modern History” in Fig. 1
is a specialization (a sub-class) of the concept “History” 3.

With the emergence of ontologies and their instances in the Semantic Web,
their heterogeneity constitutes a new, crucial problem. The Semantic Web is
explicitly built upon the assumption that there is no commonly used ontology
for all documents; instead, the Semantic Web will be populated by many dif-
ferent ontologies even for the same area. Thus, mapping/alignment between

3 RDF Schema, and the OWL family of languages (OWL Full, OWL DL and OWL
Lite) [21] are becoming major ontology definition languages in the Semantic Web.
The latter ones are related to Description Logics [1], which allow for defining also
properties of instances in addition to concepts

2 Henrik Nottelmann and Umberto Straccia

different ontologies becomes an important task. For instance, an excerpt of
two “course” ontologies is given in Fig. 1. It also reports the mappings be-
tween the classes of the two ontologies. Of course, finding out these mappings
automatically is desirable.

Fig. 1. The excerpt of two ontologies and class matchings

This paper proposes a new approach, called oPLMap, for automatically learn
the mappings among tree like ontologies, e.g. web directories. Web directory
alignment is the task of learning mappings between heterogeneous Web di-
rectory classes. Our approach is based on a logical framework, which is com-
bined with probability theory (probabilistic Datalog), and aims at finding the
optimum mapping (the mapping with the highest matching probability). It
borrows from other approaches like GLUE [11] the idea of combining several
specialized components for finding the best mapping. Using a probabilistic,
logic-based framework bears some nice features: First, in many cases mappings
are not absolutely correct, but hold only with a certain probability. Defining
mappings by means of probabilistic rules is a natural solution to this problem.
Second, classes have often attributes (called properties). These properties can
easily be modelled by additional Datalog predicates. In this paper, however,
we restrict to a fairly simply model where only textual content is considered.

The paper is structured as follows: The next section introduces a formal
framework for learning the mappings, based on a combination of predicate
logics with probability theory. Section 3 presents a theoretically founded ap-
proach for learning these mappings, where the predictions of different classi-
fiers are combined. Our approach is evaluated on a large test bed in section 4.
The last section summarizes this paper, describes how this work is related to
other approaches and gives an outlook over future work.

Title Suppressed Due to Excessive Length 3

2 Web directory alignment

This section introduces a formal, logics-based framework for Web directory
alignment. It starts from the formal framework for information exchange in
[14] and extents it to a framework cable to cope with the intrinsic uncertainty
of the mapping process. The framework is based on probabilistic Datalog [17],
for which tools are available. The mapping process is fully automatic.

2.1 Probabilistic Datalog

In the following, we briefly describe Probabilistic Datalog (pDatalog for
short) [17]. pDatalog is an extension to Datalog, a variant of predicate logic
based on function-free Horn clauses. Negation is allowed, but its use is limited
to achieve a correct and complete model. However, for ease of presentation we
will not deal with negation in this paper. In pDatalog every fact or rule has a
probabilistic weight 0 < α ≤ 1 attached, prefixed to the fact or rule:

α A← B1, . . . , Bn .

Here, A denotes an atom (in the rule head), and B1, . . . , Bn (n ≥ 0) are atoms
(the sub goals of the rule body). A weight α = 1 can be omitted. In that
case the rule is called deterministic. For ease, a fact α A ← is represented
as αA. Each fact and rule can only appear once in the program, to avoid
inconsistencies. The intended meaning of a rule αr is that “the probability that
an instantiation of rule r is true is α”. For instance, assume that we have two
web directories D1 and D2, the class “Aeronautics and Astronautics” belongs
to D1, while the class “Mechanical and Aerospace Engineering” belongs to
D2. Then the following rule (mapping)

0.1062 Mechanical and Aerospace Engineering(x)← Aeronautics and Astronautics(x) .

expresses the fact that a document about “Aeronautics and Astronautics” is
also a document about “Mechanical and Aerospace Engineering” with proba-
bility of 10.62% and, thus, establishes a bridge among the two web directories
D1 and D2.

Formally, an interpretation structure is a tuple I = (W, µ), where W is a
set of possible worlds and µ is a probability distribution overW. The possible
worlds are defined as follows. Given a pDatalog program P , with H(P) we
indicate the ground instantiation of P 4. Then, the deterministic part of P
is the set PD of instantiated rules in H(P) having weight α = 1, while the
indeterministic part of P is the set PI of instantiated rules determined by
4 The set of all rules that can be obtained by replacing in P the variables with

constants appearing in P , i.e. the Herbrand universe.

4 Henrik Nottelmann and Umberto Straccia

PI = {r : αr ∈ H(P), α < 1}. The set of deterministic programs of P , denoted
D(P) is defined as D(P) = {PD ∪ Y : Y ⊆ PI}. Note that any P ′ ∈ D(P)
is a classical logic program. Finally, a possible world w ∈ W is the minimal
model [26] of a deterministic program in D(P) and is represented as the set
of ground atoms that are true in the minimal model (also called Herbrand
model). Now, an interpretation is a tuple I = (I , w) such that w ∈ W. The
truth of formulae w. r. t. an interpretation and a possible world is defined
recursively as:

(I , w) |= A iff A ∈ w ,

(I , w) |= A← B1, . . . , Bn iff (I , w)|= B1, . . . , Bn ⇒ (I , w)|= A ,

(I , w) |= αr iff µ({w′ ∈ W : (I , w′)|= r}) = α .

An interpretation (I , w) is a model of a pDatalog program P , denoted
(I , w)|= P , iff it entails every fact and rule in P :

(I , w)|= P iff (I , w)|= αr, for all αr ∈ H(P) .

In the remainder, given an n-ary atom A for predicate Ā and an interpre-
tation I = (I , w), with AI (an instantiation of A w. r. t. the interpreta-
tion A) we indicate the set of ground facts αĀ(c1, ..., cn), where the ground
atom Ā(c1, ..., cn) is contained in the world w, and µ({w′ ∈ W : (I , w′)|=
Ā(c1, ..., cn)}) = α, i.e. I|= αĀ(c1, ..., cn). Essentially, AI is the set of all in-
stantiations of A under I with relative probabilities, i.e. under I, Ā(c1, ..., cn)
holds with probability α. Finally, given a ground fact αA, and a pDatalog
program P , we say that P entails αA, denoted P |= αA iff in all models I of
P , I|= αA. Given a set of facts F , with say that P entails F , denoted P |= F ,
iff P |= αA for all αA ∈ F . For ease, we will also represent an interpretation
I as a set of ground facts {αA : I|= αA}. In particular, an interpretation may
be seen as a pDatalog program.

2.2 Web directories and mappings

Web directories

A web directory is a pair 〈C,�〉, where C = {C1, ..., Cn} is a finite non-empty
set of classes (or concepts, or categories) and � is a partial order on C with
a top class > (for all C ∈ C, C � >). The intended meaning of C1 � C2 is
that the class C1 is more specific than the class C2, i.e. all instances of C1 are
instances of C2 (see Fig. 1).

From a logical point of view, we assume that each class Ci is an unary
predicate denoting the set of object identifiers of the instances of class Ci.
For ease, in the remaining of this paper, we will always assume that the
object identifiers belong to a set X . Given a web directory (C,�) and an

Title Suppressed Due to Excessive Length 5

interpretation I, we say that I is a model of (C,�) iff CI
1 |= CI

2 whenever
C1 � C2. Essentially, this says that each instance of C1 is an instance of C2

with the same probability. Given a web directory (C,�) and a model I of
it, then the instantiation of (C,�) under I, denoted (C,�)I , is the tuple
CI = 〈CI

1 , ..., CI
n〉, i.e the tuple of all class instantiations under I 5. Of course,

an object being an instance of a class C has also attributes (sometimes called
properties). Each attribute A can be modelled as a predicate A(x, v1, . . . , vl)
indicating that the value of the attribute A of the object identified with the
object identifier x is v1, . . . , vl. For the sake of our purpose, in this paper,
we use one binary relation content only which stores the object identifiers
and the text related to them, i.e. contentI ⊂ X × T , where T is the string
data type. This models scenarios of Web directories where the objects are web
pages. Finally, note that a web directory may easily be encoded into pDatalog
as a set of rules

C(x)← C ′(x) ,

for all C ′ � C.

Web directory mappings

Our goal is to automatically determine “similarity” relationships between
classes of two web directories. For instance, given the web directories in Fig. 1,
we would like to determine that an instance of the class “Latin American His-
tory” in the Cornell Courses Catalogue is likely an instance of the “History
of the Americas” in the Washington Courses Catalogue and that “History
of the Americas” is the most specific class having this property (in order to
prefer the former mapping onto the “Latin American History” 7→ “History”
mapping).

Theoretically, web directory mappings follow the so-called GLaV ap-
proach [25]: a mapping is a tupleM = (T,S, Σ), where T denotes the target
(global) web directory and S the source (local) web directory with no relation
symbol in common, and Σ is a finite set of mapping constraints (pDatalog
rules) of the form:

αj,i Tj(x)← Si(x) ,

where Tj and Si are target and source classes, respectively, and x is a variable
ranging over object identifiers. The intended meaning of the above rules is
that the class Si of the source web directory is mapped onto the class Tj of
the target web directory and the probability that this mapping is indeed true
is given by αj,i. Note that a source class may be mapped onto several target

5 One might wonder why we consider the tuple 〈CI
1 , ..., CI

n〉 rather than the set
{CI

1 , ..., CI
n}. The reason is that in the latter case two classes may collapse to-

gether, a behaviour we want to avoid.

6 Henrik Nottelmann and Umberto Straccia

classes and a target class may be the target of many source classes, i.e. we
may have complex mappings

Σ ⊇ {α1,1 T1(x)← S1(x), α1,2 T1(x)← S2(x), α2,1 T2(x)← S1(x)} .

But, we do not require that we have a mapping for every target class.
For a web directory mapping M = (T,S, Σ) and a fixed model I for

S, a model J for T is a solution for I under M if and only if 〈J, I〉 (the
combined interpretation over T and S) is a model of Σ. The minimal solution
is denoted by J(I,Σ), the corresponding instance of T using interpretation
J(I,Σ) is denoted with T(I,Σ) (which is also called a minimal solution).
Essentially, given a model I of S, T(I,Σ) is the “translation/exchange” of
the instances in the source web directory SI into instances of the target web
directory T.

3 Learning web directory mappings

Learning a web directory mapping in oPLMap consists of four steps:

1. we guess a potential web directory mapping, i.e. a set of rules Σk of the
form Tj(x)← Si(x) (rules without weights yet);

2. we estimate the quality of the mapping Σk;
3. among all possible sets Σk, we select the “best” web directory mapping

according to our quality measure; and finally
4. the weights α for rules in the selected web directory mapping have to be

estimated.

3.1 Estimating the quality of a mapping

Consider a target web directory T = ({T1, . . . , Tt},�T) and a source web
directory S = ({S1, . . . , Ss},�S), and two models I of S and J of T. Consider
I and its minimal solution J(I,Σ) and the corresponding instance, T(I,Σ),
of T using interpretation J(I,Σ). Note that T(I,Σ) contains instances of
classes in T and each instance has its own content. For instance (see Fig. 1),
consider the mappingM = (T,S, Σ), with T and S containing the classes

T = History of the Americas

S = Latin American History

and consider the mapping

Σ ⊇ {T(X)← S(X)} .

Title Suppressed Due to Excessive Length 7

Suppose we have a model I of the source web directory S with two instances
identified with x1 and x2 of the class S,

SI = {S(x1), S(x2)} ,

where their content is

content(x1, “A survey of Mexico′s history...”) ,
content(x2, “...questions of gender in Latin America...”) .

Similarly, suppose we have a model J of the target web directory T with two
instances identified with x3 and x4 of the class T,

TI = {T(x3), T(x4)} ,

where their content is

content(x3, “History of Latin America from colonial
beginnings to the present...”) ,

content(x4, “The American people and their culture in
the modern era...”) .

Then the minimal solution J ′ = J(I,Σ) and the corresponding instance,
T(I,Σ), of T is

TJ′
= {T(x1), T(x2)} .

Note that the facts in TJ and TJ′
differ in their identifiers, but there is some

“semantic overlapping” according to their content.
Our goal is to find this semantic overlapping. In particular, our goal is to

find the “best” set of mapping constraints Σ, which maximises the probability
Pr(Σ, J, I) that the objects in the minimal solution T(I, Σ) under M =
(T,S, Σ) and the objects in TJ are similar.

Formally, consider the minimal solution T(I,Σ) and consider a class Tj of
the target web directory. With Tj(I,Σ) we denote the restriction of T(I, Σ)
to the instance of the class Tj only. Then it can be verified that Σ can be
partitioned into sets Σj , where each rule in Σj refers to the same target class
Tj (all rules in Σj have Tj in the head), whose minimal solutions Tj(I,Σj)
only contain facts for Tj :

Σj = {r : r ∈ Σ,Tj ∈ head(r)} ,

T(I,Σ) = ∪t
j=1Tj(I,Σj) ,

∅ = Tj(I,Σj) ∩ Tk(I,Σk), if j 6= k .

Therefore, each target class can be considered independently:

8 Henrik Nottelmann and Umberto Straccia

Pr(Σ, J, I) =
t∏

j=1

Pr(Σj , J, I) .

We define Tj(I,Σj) and Tj being similar iff Tj(I,Σj) is similar to Tj and
vice-versa. Thus, Pr(Σj , J, I) can be computed as:

Pr(Σj , J, I) = Pr(Tj |Tj(I, Σj)) · Pr(Tj(I,Σj)|Tj)

= Pr(Tj(I,Σj)|Tj)2 ·
Pr(Tj)

Pr(Tj(I,Σj))

= Pr(Tj(I,Σj)|Tj)2 ·
|Tj |

|Tj(I,Σj)|
.

As building blocks of Σj , we use the sets Σj,i containing just on rule:

Σj,i = {αj,i Tj(x)← Si(x)} . (1)

For s source classes and a fixed j, there are also s possible sets Σj,i, and 2s−1
non-empty combinations (unions) of them, forming all possible non-trivial sets
Σj .

To simplify the notation, in the following we set Si = Tj(I,Σj,i) for the
instance derived by applying the single rule (1). For computational simplifi-
cation, we assume that Si1 and Si2 are disjoint for i1 6= i2. Then, for

Σj =
r⋃

l=1

Σj,il

with indices i1, . . . , ir, we obtain:

Pr(Tj(I,Σj)|Tj) =
r∑

l=1

Pr(Sil
|Tj) . (2)

Thus, to compute Pr(Σj , J, I), we need to compute the O(s · t) probabilities
Pr(Si|Tj), which we will address in the next section.

3.2 Estimating the probability of a rule

Computing the quality of a mapping requires the probability Pr(Si|Tj), while
the rule weight is αj,i = Pr(Tj |Si). This latter probability can easily computed
from Pr(Si|Tj) as

Pr(Tj |Si) = Pr(Si|Tj) ·
Pr(Tj)
Pr(Si)

= Pr(Si|Tj) ·
|Tj |
|Si|

. (3)

Similar to GLUE [10, 11], the probability Pr(Si|Tj) is estimated by combining
different classifiers CL1, . . . CLn:

Title Suppressed Due to Excessive Length 9

Pr(Si|Tj) ≈ Pr(Si|Tj , CL1, . . . , CLl) =
n∑

k=1

Pr(Si|Tj , CLk) · Pr(CLk) . (4)

where the predictions Pr(Si|Tj , CLk) is the estimate of the classifier CLk for
Pr(Si|Tj). By combining (2) and (4) we get

Pr(Tj(I, Σj)|Tj) =
n∑

k=1

Pr(CLk) ·
r∑

l=1

Pr(Sil
|Tj , CLk) . (5)

The probability Pr(CLk) describes the probability that we rely on the judg-
ment of classifier CLk, which can for example be expressed by the confidence
we have in that classifier. We simply use Pr(CLk) = 1

n for 1 ≤ k ≤ n, i.e. the
predictions are averaged.

In practice, each classifier CLk computes a weight w(Si, Tj , CLk), which is
the classifier’s initial approximation of Pr(Si|Tj). This weight w(Si, Tj , CLk)
will be then normalized and transformed into a probability

Pr(Si|Tj , CLk) = f(w(Si, Tj , CLk)) ,

the classifier’s approximation of Pr(Si|Tj). All the probabilities Pr(Si|Tj , CLk)
will then be combined together as we will see later on. The normalization
process is necessary as we combine the classifier estimates, which are hetero-
geneous in scale. Normalization is done in two steps. First, we can consider
different normalization functions:

fid(x) = x ,

fsum(x) =
x∑

i′ w(Si′ , Tj , CLk)
,

flin(x) = c0 + c1 · x ,

flog(x) =
exp(b0 + b1 · x)

1 + exp(b0 + b1 · x)
.

The functions fid , fsum and the logistic function flog return values in [0, 1].
For the linear function, results below zero have to mapped onto zero, and
results above one have to be mapped onto one. The function fsum ensures
that each value is in [0, 1], and that the sum equals 1. Its biggest advantage
is that is does not need parameters that have to be learned. In contrast, the
parameters of the linear and logistic function are learned by regression in
a system-training phase. This phase is only required once, and their results
can be used for learning arbitrary many web directory mappings. Of course,
normalization functions can be combined. In some cases it might be useful to
bring the classifier weights in the same range (using fsum), and then to apply
another normalization function with parameters (e.g. the logistic function).

10 Henrik Nottelmann and Umberto Straccia

For the final probability Pr(Si|Tj , CLk), we have the constraint

0 ≤ Pr(Si|Tj , CLk) ≤ min(|Si|, |Tj |)
|Tj |

= min(
|Si|
|Tj |

, 1) .

Thus, the normalized value (which is in [0, 1]) is multiplied with min(|Si|/|Tj |, 1)
in a second normalization step.

It is worth noting that some of the classifiers consider the web directories
only, while others are based on the textual content, i.e. the binary relation
content, which associates a text with an object. The classifiers require in-
stances of both web directories. However, these instances do not need to de-
scribe the same objects. Below, we describe the classifiers used in this paper.

Same class name stems

This binary classifier CLS returns a weight of 1 if and only if the names of
the two classes have the stem (using e.g. a Porter stemmer), and 0 otherwise:

w(Si, Tj , CLS) =
{

1 if Si, Tj have same stem ,
0 otherwise .

Coordination-level match on class names

This classifier CLN−clm employs information retrieval (IR) techniques by ap-
plying the coordination-level match similarity function onto the class name.
For this, the class names Si and Tj are considered as bags (multi-sets) of
words; the words are obtained by converting the name into lower case, split-
ting it into tokens, removing stop words (frequent words without semantics),
and apply stemming on the remaining tokens (which maps different deriva-
tions onto a common word “stem”, e.g. “computer” and “computing” onto
“comput”). The prediction is computed as overlap of the resulting sets of both
class names:

w(Si, Tj , CLN−clm) =
|Si ∩ Tj |
|Si ∪ Tj |

.

Coordination-level match on class path names

This classifier CLPN−clm is equivalent to CLN−clm , but is applied on the
complete “path” of a class C. With C � C1 � · · · � Cn � >, this is the
concatenation of the names of C as well as the names of C1, . . . , Cn. This
concatenation is considered as a bag of words, and the same weights as for
CLN−clm are computed.

Title Suppressed Due to Excessive Length 11

kNN classifier

A popular classifier for text and facts is kNN [35], which also employs IR
techniques. For CLkNN , each class Si acts as a category, and training sets are
formed from the instances of Si:

Train =
s⋃

i=1

{(Si, x, v) : (x, v) ∈ content, x ∈ Si} .

For every instance x ∈ Tj and its content v (i.e., the value v with (x, v) ∈
content)6, the k-nearest neighbours TOPk have to be found by ranking the
values (Si, x

′, v′) ∈ Train according to their similarity RSV (v, v′). The pre-
diction weights are then computed by summing up the similarity values for
all x′ which are built from Si, and by averaging these weights w̃(x, v, Si) over
all instances x ∈ Tj :

w(Si, Tj , CLkNN) =
1
|Tj |

·
∑

(x,v)∈content, x∈Tj

w̃(x, v, Si) ,

w̃(x, v, Si) =
∑

(Sl,x′v′)∈TOPk ,Si=Sl

RSV (v, v′) ,

RSV (v, v′) =
∑

w∈v∩v′

Pr(w|v) · Pr(w|v′) ,

Pr(w|v) =
tf (w, v)∑

w′∈v tf (w′, v)
,

Pr(w|v′) =
tf (w, v′)∑

w′∈v′ tf (w′, v′)
.

Here, tf (w, v) denotes the number of times the word w appears in the string
v (seen as a bag of words). The quantity tf (w, v′) is similar.

Naive Bayes text classifier

The classifier CLB uses a naive Bayes text classifier [35] for text content. As
for the other classifiers, each class acts as a category, and class values are
considered as bags of words (with normalized word frequencies as probability
estimations). For each (x, v) ∈ content with x ∈ Tj , the probability Pr(Si|v)
that the value v should be mapped onto Si is computed. In a second step,
these probabilities are combined by:

6 By abuse of notation, with x ∈ Tj we denote that object x is an instance of
class Tj , i.e. Tj(x) ∈ T J

j . Thus, (x, v) ∈ content is used as a shorthand for
content(x, v) ∈ contentJ .

12 Henrik Nottelmann and Umberto Straccia

w(Si, Tj , CLB) =
∑

(x,v)∈content, x∈Tj

Pr(Si|v) · Pr(v) .

Again, we consider the values as bags of words. With Pr(Si) we denote the
probability that a randomly chosen value in

⋃
k Sk is a value in Si, and

Pr(w|Si) = Pr(w|v(Si)) is defined as for kNN, where v(Si) =
⋃

(x,v)∈content, x∈Si
v

is the combination of all words in all values for all objects in Si (again con-
sidered as bags). If we assume independence of the words in a value, then we
obtain:

Pr(Si|v) = Pr(v|Si) ·
Pr(Si)
Pr(v)

=
Pr(Si)
Pr(v)

·
∏
w∈v

Pr(w|Si) .

Together, the final formula is:

w(Si, Tj , CLB) = Pr(Si) ·
∑

(x,v)∈content, x∈Tj

∏
w∈v

Pr(w|Si) .

If a word does not appear in the content for any object in Si, i.e. Pr(w|Si) = 0,
we assume a small value to avoid a product of zero.

3.3 Exploiting the hierarchical structure

So far, the oPLMap learning approach does not exploit the hierarchical
nature of the web directories, i.e. the partial orders �T and �S. To do
so, we apply additional classifiers after we have computed the prediction
w′(Si, Tj) = Pr(Si|Tj , CL1, . . . , CLl) from the so far considered classifiers
CL1, . . . , CLl. The rationale of this separation is that we want to avoid cyclic
dependencies between hierarchical and non-hierarchical classifiers. The predic-
tions of the hierarchical classifiers can then be combined with the predictions
of the previous classifiers as before. Formally, we introduce the set B with the
best matchings, i.e. where Si is the best attribute on which Tj can be mapped
onto: B = {(Si, Tj) : w′(Si, Tj) ≥ maxS′ w′(S′, Tj)}.

Matching parents

The binary classifier CLP returns 1 if and only if two parents of the two source
and target classes have highest matching prediction for all other Si′ classes:

pS(C) = {C ′ : C �S C ′}
pT(C) = {C ′ : C �T C ′}

w(Si, Tj , CLP) =
{

1 if pS(Si)× pT(Tj) ∩B 6= ∅ ,
0 otherwise .

Title Suppressed Due to Excessive Length 13

Matching children

The classifier CLC returns the amount of matching children:

cS(C) = {C ′ : C ′ �S C}
cT(C) = {C ′ : C ′ �T C}

C(Si, Tj) = cS(Si)× cT(Tj)

w(Si, Tj , CLC) = |C(Si,Tj)∩B|
|C(Si,Tj)| .

3.4 Additional constraints

Additional constraints can be applied on the learned rules for improving preci-
sion. These constraints are used after the sets of rules are learned for all target
classes: we remove learned rules that violate one of these constraints. These
constraints are stated against the hierarchical structure of the web directories:

1. We can assume that parent-child relationships in S and T are not reversed.
In other words, we assume that for Si1 �S Si2 and Tj1 �T Tj2 , it is not
possible to map Si1 onto Tj2 and Si2 onto Tj1 together.

2. We can assume that if a source class Si2 is parent of another source class
Si1 , then target classes onto which Si2 is mapped are parents of tar-
get classes onto which Si1 are mapped. Thus, Si1 �S Si2 and two rules
Tj1(x)← Si1(x) and Tj2(x)← Si2(x) implies Tj1 �T Tj2 .

3. Another assumption is that there is at most one rule for the target class.
This will reduce the number of rules produced, and hopefully increase the
percentage of correct rules.

4. We can drop all rules whose weight αj,i is lower than a threshold ε, e.g.
with ε = 0.1.

5. We can rank the rules according to their weights (in decreasing order),
and use the n top-ranked rules (e.g. n = 50).

If a constraint is violated, the rule with the lower weight will be removed.

4 Experiments

This section describes the results from the oPLMap evaluation.

4.1 Evaluation setup

This section describes the test set (source and target instances) and the clas-
sifiers used for the experiments. It also introduces different effectiveness mea-
surements for evaluating the learned web directory mappings (error, precision,

14 Henrik Nottelmann and Umberto Straccia

recall). Experiments were performed on the “course catalog” test bed 7. The
Cornell University course catalog consists of 176 classes, among them 149 leaf
concepts (in a maximum depth of 4), and 4,360 instances. The University of
Washington contains 147 classes (141 leaf classes, maximum depth is again
4), and 6,957 instances.

Each collection is split randomly into four sub-collections of approximately
the same size. The first sub-collection is always used for learning the parame-
ters of the normalization functions (same documents in both web directories).
The second sub-collection is used as source instance for learning the rules,
and the third sub-collection is used as the target instance. Finally, the fourth
sub-collection is employed for evaluating the learned rules (for both instances,
i.e. we evaluate on parallel corpora). Rules are learned for both directions.

Each of web directory- and text-based classifiers introduced in section 3.2
are used alone, plus the combinations of all of these classifiers. For the hierar-
chical classifiers, none, both classifiers are used alone and in combination. In
every experiment, every classifier used the same normalization function from
section 3.2 and combinations of them.

Pr(Tj(x) ∈ T J
j) denotes the probability of a tuple x to be instance

of the target attribute Tj in the model J of T, i.e.: Pr(Tj(x) ∈ T J
j) =

α iff T J
j |= αTj(x) iff αTj(x) ∈ T J

j . Often the target instance only con-
tains deterministic data, then we have Pr(Tj(x) ∈ T J

j) ∈ {0, 1}. Similarly,
Pr(Tj(x) ∈ Tj(I,Σj)) ∈ [0, 1] denotes the probability of a tuple x to be in-
stance of the target attribute Tj in the minimal model Tj(I,Σj) of the map-
pingM = (T,S, Σ) w. r. t. the model I of the source schema S. Remind that
Tj(I,Σj) is obtained by applying all rules in Σ to the elements in the source
instance SI and then project the result on the target attribute Tj . Finally,
the error of the mapping is defined by:

E(M) =
1∑

j |Uj |
∑

j

∑
x∈Uj

(Pr(Tj(x) ∈ T J
j)− Pr(Tj(x) ∈ Tj(I,Σj)))2 ,

where Uj = {Tj(x) ∈ T J
j }∪{Tj(x) ∈ Tj(I,Σj)}. Furthermore, we evaluated if

the learning approach computes the correct rules (neglecting the correspond-
ing rule weights). Similar to the area of Information Retrieval [2], precision
defines how many learned rules are correct, and how many correct rules are
learned. In the following, RL denotes the set of rules (without weights) re-
turned by the learning algorithm, and RA the set of rules (again without
weights), which are the actual ones.

As we deal with hierarchical web directories, this hierarchy should also be
included in the measures. Thus, for S1 �S S2 and the rules

RL = {T1(x)← S1(x)}
RA = {T1(x)← S2(x)}

7 http://anhai.cs.uiuc.edu/archive/domains/course_catalog.html

Title Suppressed Due to Excessive Length 15

traditional precision and recall would be zero with these definitions:

precisiontrad =
|RL ∩RA|
|RL|

, recall trad =
|RL ∩RA|
|RA|

.

However, the learned rule is too specific, but not completely wrong. The fol-
lowing definition takes that into consideration. With d(C1, C2), we denote the
distance between two classes C1 and C2 (from the same web directory) in the
hierarchy:

d(C1, C2) =


0 if C1 = C2 ,
n if C1 = Ci0 � . . . � Cin = C2 , Cij 6= Cik

for j 6= k ,
n if C2 = Ci0 � . . . � Cin = C1 , Cij 6= Cik

for j 6= k ,
∞ otherwise .

For a mapping rule r = Tj(x) ← Si(x), h(r) = Tj denotes the target class
and b(r) = Si the source class. Then, these similarity measures are defined:

sim(r, r′) =
{ 1

1+d(b(r),b(r′)) if h(r) = h(r′) ,

0 otherwise ,

sim(r, R) = min
r′∈R,sim(r,r′)>0

sim(r, r′) .

These similarities are employed in the definition of hierarchy-based precision
and recall:

precision =

∑
r∈RL

sim(r, RA)
|RL|

, recall =

∑
r∈RA

sim(r, RL)
|RA|

.

Precision measures the average distance of learned rules with the actual ones,
while recall measures the average distance of actual rules with the learned
ones. Traditional precision and recall are defined in a analogous way, but with
equality as similarity measure. In addition, we also combine precision and
recall in the F-measure:

F =
2

1
precision + 1

recall

.

Finally, we also used a variant of traditional precision where we drop all
rules for target classes for which there are no relationships at all. This measure
shows how good our approach is when we only consider the target classes for
which we can be successful.

16 Henrik Nottelmann and Umberto Straccia

4.2 Results

In the experiments presented in this section, the learning steps are as follows:

1. Find the best web directory mapping:
a) Estimate the probabilities Pr(Si|Tj , CL1, . . . , CLl) for every Si ∈ S,

Tj ∈ T using the web directory-based and text-based classifiers;
b) Estimate the probabilities Pr(Si|Tj) for every Si ∈ S, Tj ∈ T using

all classifiers (if any hierarchical classifier is used);
c) For every target relation Tj and for every non-empty subset of web

directory mapping rules having Tj as head, estimate the probability
Pr(Σj , J, I);

d) Select the rule set Σj , which maximizes the probability Pr(Σj , J, I).
2. Estimate the weights Pr(Tj |Si) for the learned rules by converting Pr(Si|Tj),

using (3).
3. Compute the error, precision and recall as described above.

The name-based classifiers are slightly modified, as the class names contain
some identifier suffix like Chinese CHIN 27 (Washington) or Chinese 30 (Cor-
nell). These suffixes are removed before these classifiers are applied.

The results are depicted in tables 1–14. Note that they are averaged over
both mapping directions Cornell to Washington and vice-versa.

Runs without constraints

Here, CLPN−clm minimizes the error (0.1305, averaged over all hierarchi-
cal classifiers and normalization functions and both mapping directions), the
combination of all classifiers performs about 8% worse. The error of the two
content-oriented classifiers–kNN and Naive Bayes–is about 30% worse com-
pared to CLPN−clm , and Naive Bayes is slightly better than kNN. Precision
in general is quite low, the highest value is obtained for CLS (0.2553 on av-
erage). The low precision is due to the fact that the system generates a huge
number of rules (sometimes several hundreds), while the are only about 50
valid mappings. The best recall is achieved by the combination of all non-
hierarchical classifiers with 0.9177 on average. The content-oriented classifiers
perform worst, kNN has recall of 0.2772 (nearly 70% worse), while Naive
Bayes yields a recall of 0.1920 (about 80% worse). The hierarchical precision
and recall values are only slightly better than the traditional ones.

Error and precision is optimized by the fsum normalization function (av-
erage error is 0.1524, average precision is 0.0965). The error of the identity
function is only slightly worse (1.5%). In addition, this function yields the
best recall (0.6322 on average), followed by fsum . Thus, learning parameters
for the linear and logistic mapping function does not help.

Together, the combination of all non-hierarchical classifiers with the iden-
tity normalization function yields the lowest error (0.1145 on average), fol-
lowed by CLPN−clm (about 7% worse). Precision is optimized by using CLS

Title Suppressed Due to Excessive Length 17

Table 1. Error

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.2340 0.2439 0.2980 0.3025
CLN−clm 0.2301 0.2932 0.3136 0.2934
CLPN−clm 0.1786 0.1503 0.1515 0.1931
CLkNN 0.2396 0.1971 0.2214 0.2751
CLB 0.2644 0.1706 0.2252 0.2238
all 0.1139 0.1272 0.1609 0.1611

CLS / CLP 0.0778 0.0798 0.0893 0.0892
CLN−clm / CLP 0.1221 0.1582 0.1616 0.1602
CLPN−clm / CLP 0.0934 0.1274 0.1211 0.1070
CLkNN / CLP 0.1098 0.0946 0.1035 0.0943
CLB / CLP 0.1167 0.0864 0.1160 0.1190
all / CLP 0.1087 0.1317 0.1655 0.1443

CLS / CLC 0.1554 0.1592 0.1843 0.1864
CLN−clm / CLC 0.2201 0.2512 0.2333 0.2073
CLPN−clm / CLC 0.1192 0.1236 0.1228 0.1349
CLkNN / CLC 0.2332 0.2298 0.2213 0.2791
CLB / CLC 0.2771 0.1622 0.2341 0.2413
all / CLC 0.1195 0.1341 0.1580 0.1622

CLS / CLP+CLC 0.1012 0.1019 0.1109 0.1110
CLN−clm / CLP+CLC 0.1472 0.1669 0.1608 0.1528
CLPN−clm / CLP+CLC 0.0971 0.1305 0.1246 0.1129
CLkNN / CLP+CLC 0.1160 0.1069 0.1106 0.1003
CLB / CLP+CLC 0.1230 0.0927 0.1221 0.1224
all / CLP+CLC 0.1159 0.1393 0.1669 0.1480

with any normalization function (virtually the same precision), followed by
CLN−clm with fsum or fid (70% worse). Finally, CLN−clm with fid or fsum

yields highest recall (9520 and 0.9405, respectively), follows by the classifier
combination with the same normalization functions (about 2% worse).

The hierarchical classifier CLP minimizes error with 0.1157, the combi-
nation with CLC is 7.4% worse. CLC alone performs more than 60% worse,
and using no hierarchical classifier at all increases error by 90% compared to
CLP . This order is reversed for precision and (nearly) recall; best precision is
obtained when no hierarchical classifier is used.

Average traditional precision is 0.0919. When only target classes which
there are mappings are considered, then precision increases (0.2280 on aver-
age).

Runs with constraints

In general, precision is quite high, as the number of rules is pruned dramati-
cally. Recall is lower when a constraint is used, but there are often cases where

18 Henrik Nottelmann and Umberto Straccia

Table 2. Traditional precision

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.6909 0.6909 0.6909 0.6909
CLN−clm 0.0875 0.0874 0.0875 0.0779
CLPN−clm 0.0339 0.0339 0.0339 0.0541
CLkNN 0.1479 0.1479 0.1479 0.0714
CLB 0.1525 0.1525 0.1525 0.0939
all 0.0512 0.0685 0.0688 0.0643

CLS / CLP 0.0527 0.0525 0.0516 0.0515
CLN−clm / CLP 0.0680 0.0684 0.0626 0.0549
CLPN−clm / CLP 0.0360 0.0176 0.0168 0.0088
CLkNN / CLP 0.0132 0.0191 0.0190 0.0159
CLB / CLP 0.0091 0.0127 0.0120 0.0116
all / CLP 0.0522 0.0740 0.0725 0.0623

CLS / CLC 0.2249 0.2255 0.2255 0.2255
CLN−clm / CLC 0.0912 0.0958 0.0921 0.0815
CLPN−clm / CLC 0.0356 0.0314 0.0314 0.0448
CLkNN / CLC 0.0964 0.1235 0.1062 0.0741
CLB / CLC 0.0529 0.0993 0.1026 0.0790
all / CLC 0.0514 0.0686 0.0692 0.0648

CLS / CLP+CLC 0.0535 0.0531 0.0525 0.0526
CLN−clm / CLP+CLC 0.0691 0.0698 0.0633 0.0545
CLPN−clm / CLP+CLC 0.0368 0.0170 0.0164 0.0098
CLkNN / CLP+CLC 0.0152 0.0195 0.0191 0.0165
CLB / CLP+CLC 0.0105 0.0141 0.0137 0.0128
all / CLP+CLC 0.0525 0.0741 0.0728 0.0630

both precision and recall is sufficiently high. However, error is much higher;
here, missing rules count much higher than wrong rules with a low weight.

For constraint 1, the differences in the order of the classifiers, normalization
functions, the combination of classifier and normalization functions and the
order of the hierarchical classifiers are small. In the following, we only present
differences to the run without any constraint.

For constraint 2, the differences in the order of the classifiers is neglectable.
In contrast, using a linear or logistic normalization function yields better error
and precision than the other normalization functions.

The situation is different for constraint 3 (“at most one rule per target
rule”), constraint 4 (“only rules with weight above 0.1”) and constraint 5 (“at
most 40 rules”). Here, CLS yields the best error and precision; CLPN−clm

performs quite bad.

Title Suppressed Due to Excessive Length 19

Table 3. Traditional recall

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.6448 0.6448 0.6448 0.6448
CLN−clm 0.9330 0.9330 0.9330 0.9230
CLPN−clm 0.7730 0.7730 0.7730 0.8459
CLkNN 0.2689 0.2689 0.2689 0.2396
CLB 0.1241 0.1241 0.1241 0.2196
all 0.9315 0.9415 0.9415 0.8930

CLS / CLP 0.7119 0.7119 0.7119 0.7119
CLN−clm / CLP 0.9615 0.9337 0.8874 0.7841
CLPN−clm / CLP 0.7922 0.3533 0.3433 0.1633
CLkNN / CLP 0.2319 0.3152 0.3152 0.2774
CLB / CLP 0.1533 0.2004 0.1911 0.1919
all / CLP 0.9315 0.9322 0.9137 0.8374

CLS / CLC 0.7119 0.7119 0.7119 0.7119
CLN−clm / CLC 0.9522 0.9615 0.9515 0.9322
CLPN−clm / CLC 0.8015 0.7052 0.7052 0.7681
CLkNN / CLC 0.2774 0.2689 0.2681 0.2489
CLB / CLC 0.1826 0.2096 0.2296 0.2396
all / CLC 0.9315 0.9415 0.9515 0.9022

CLS / CLP+CLC 0.7219 0.7219 0.7219 0.7219
CLN−clm / CLP+CLC 0.9615 0.9337 0.8867 0.7826
CLPN−clm / CLP+CLC 0.8015 0.3326 0.3226 0.1833
CLkNN / CLP+CLC 0.2596 0.3252 0.3152 0.2867
CLB / CLP+CLC 0.1833 0.2296 0.2311 0.2219
all / CLP+CLC 0.9315 0.9322 0.9237 0.8467

Comparison of constraints

The best error is obtained when no constraint is used at all (0.1622 on aver-
age), followed by constraint 1. All other constraints are more than 90% worse;
the worst result is obtained when applying all constraints (0.7395). Similarly,
recall is maximized when no constraint is used (0.5982 on average), followed by
constraint 1. Again, applying all constraints yields the worst recall (0.2906).
In contrast, the combination of all constraints yields the highest precision with
0.7584.

The F-measure combines precision and recall. Here, constraint 5 is the
best with 0.3745 (where both precision and recall have about the same value),
directly followed by the combination of all constraints.

The values for the hierarchical variants are higher (e.g. highest precision
with 0.8227), but the order is nearly the same.

The highest hierarchical F-measure 0.6912 (precision of 0.7275, recall of
0.6356) is obtained for CLS with any of the four normalization functions,
without hierarchical classifier, and with constraint 4. The combination of all

20 Henrik Nottelmann and Umberto Straccia

Table 4. Traditional precision, Constraint 3

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.7125 0.7125 0.7008 0.7008
CLN−clm 0.2716 0.2716 0.2716 0.2563
CLPN−clm 0.1283 0.1283 0.1283 0.1443
CLkNN 0.4330 0.4330 0.4330 0.2094
CLB 0.1681 0.1873 0.1873 0.2265
all 0.2271 0.2352 0.2383 0.2293

CLS / CLP 0.2038 0.2038 0.2038 0.2038
CLN−clm / CLP 0.2205 0.2112 0.2019 0.1863
CLPN−clm / CLP 0.1365 0.0800 0.0769 0.0241
CLkNN / CLP 0.0415 0.0484 0.0449 0.0487
CLB / CLP 0.0159 0.0399 0.0330 0.0290
all / CLP 0.2269 0.2322 0.2236 0.2264

CLS / CLC 0.5212 0.5125 0.5037 0.5037
CLN−clm / CLC 0.2869 0.2908 0.2944 0.2942
CLPN−clm / CLC 0.1394 0.1151 0.1180 0.1277
CLkNN / CLC 0.4330 0.4523 0.4330 0.2094
CLB / CLC 0.0769 0.1695 0.2265 0.2849
all / CLC 0.2240 0.2414 0.2443 0.2322

CLS / CLP+CLC 0.2069 0.2069 0.2069 0.2069
CLN−clm / CLP+CLC 0.2360 0.2267 0.2112 0.1925
CLPN−clm / CLP+CLC 0.1423 0.0707 0.0707 0.0272
CLkNN / CLP+CLC 0.0415 0.0515 0.0415 0.0487
CLB / CLP+CLC 0.0222 0.0396 0.0321 0.0415
all / CLP+CLC 0.2300 0.2355 0.2267 0.2293

classifiers with all constraints yield a slightly worse quality for CLC and the
flog ◦ fsum normalization function.

Example of learned rules

This rule has been learned using the kNN classifier:

0.1062 Mechanical_and_Aerospace_Engineering_143(X) :-
Aeronautics_and_Astronautics_A_A_133(X).

Actually, this rule described the only mapping onto the target class
Mechanical and Aerospace Engineering 143:

Mechanical_and_Aerospace_Engineering_143(O) :-
Mechanical_Engineering_145(O).

Title Suppressed Due to Excessive Length 21

Table 5. Traditional recall, Constraint 3

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.5978 0.5978 0.5885 0.5885
CLN−clm 0.6856 0.6856 0.6856 0.6470
CLPN−clm 0.4081 0.4081 0.4081 0.4596
CLkNN 0.2204 0.2204 0.2204 0.1078
CLB 0.0848 0.0948 0.0948 0.1156
all 0.7263 0.7511 0.7611 0.7326

CLS / CLP 0.6078 0.6078 0.6078 0.6078
CLN−clm / CLP 0.6856 0.6578 0.6307 0.5830
CLPN−clm / CLP 0.4367 0.2570 0.2470 0.0770
CLkNN / CLP 0.1278 0.1463 0.1370 0.1456
CLB / CLP 0.0493 0.1141 0.0956 0.0878
all / CLP 0.7256 0.7419 0.7148 0.7233

CLS / CLC 0.5978 0.5885 0.5793 0.5793
CLN−clm / CLC 0.7348 0.7448 0.7541 0.7533
CLPN−clm / CLC 0.4459 0.3681 0.3774 0.4089
CLkNN / CLC 0.2204 0.2304 0.2204 0.1078
CLB / CLC 0.0400 0.0863 0.1156 0.1463
all / CLC 0.7163 0.7711 0.7804 0.7419

CLS / CLP+CLC 0.6178 0.6178 0.6178 0.6178
CLN−clm / CLP+CLC 0.7348 0.7078 0.6607 0.6030
CLPN−clm / CLP+CLC 0.4552 0.2270 0.2270 0.0870
CLkNN / CLP+CLC 0.1278 0.1563 0.1278 0.1456
CLB / CLP+CLC 0.0693 0.1148 0.0978 0.1278
all / CLP+CLC 0.7356 0.7526 0.7248 0.7326

5 Conclusion, Related work and outlook

With the proliferation of data sharing applications over the Web, involving
ontologies (and in particular web directories), the development of automated
tools for ontology matching will be of particular importance. In this paper,
we have presented a Probabilistic, Logic-based formal framework (oPLMap)
for ontology Matching involving web directories. The peculiarity of our ap-
proach is that it combines neatly machine learning and heuristic techniques,
for learning a set of mapping rules, with logic, in particular probabilistic Dat-
alog. This latter aspect is of particular importance as it constitutes the basis
to extend our “ontological ”model to more expressive formal languages for
ontology description, like OWL DL [21] in particular (founded on so-called
Description Logics [1]), which are the state of the art in the Semantic Web.
As a consequence, all aspects of logical reasoning, considered as important in
the Semantic Web community 8, can easily be plugged into our model. Our

8 http://www.semanticweb.org/

22 Henrik Nottelmann and Umberto Straccia

Table 6. Traditional precision, Constraint 4

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.7063 0.7215 0.7275 0.7275
CLN−clm 0.1052 0.2519 0.4184 0.5342
CLPN−clm 0.0407 0.0490 0.2500 0.0000
CLkNN 0.0000 0.5441 0.4097 0.0848
CLB 0.0000 0.2833 0.2664 0.1667
all 0.1502 0.5969 0.6892 0.7033

CLS / CLP 0.7158 0.7386 0.7326 0.7326
CLN−clm / CLP 0.1500 0.4319 0.6208 0.6511
CLPN−clm / CLP 0.0520 0.1623 0.5625 0.6250
CLkNN / CLP 1.0000 0.5000 1.0000 0.0884
CLB / CLP 1.0000 0.3182 0.3500 0.7500
all / CLP 0.2045 0.6409 0.7766 0.7710

CLS / CLC 0.7074 0.7367 0.7305 0.7305
CLN−clm / CLC 0.1415 0.4342 0.5741 0.6286
CLPN−clm / CLC 0.0512 0.0833 0.5000 0.1250
CLkNN / CLC 0.7500 0.4929 0.5000 0.0836
CLB / CLC 0.5000 0.2500 0.3167 0.5000
all / CLC 0.2102 0.6307 0.7636 0.7571

CLS / CLP+CLC 0.7136 0.7305 0.7514 0.7403
CLN−clm / CLP+CLC 0.2560 0.5264 0.6186 0.6519
CLPN−clm / CLP+CLC 0.0697 0.5833 0.7500 0.4500
CLkNN / CLP+CLC 0.7500 0.6667 0.7500 0.6250
CLB / CLP+CLC 0.7500 0.3071 0.4167 0.7500
all / CLP+CLC 0.2850 0.6458 0.8001 0.7555

logical foundation also eases the formalization of the so-called query reformu-
lation task [25], which tackles the issue of converting a query over the target
ontology into one (or more) queries over the source ontology.

Our model oPLMap has its foundations in three strictly related research
areas: schema matching [34], information integration [25] and information
exchange [14], in particular, and borrows from them the terminology and
ideas. Indeed, related to the latter, we view the matching problem as the
problem of determining the “best possible set Σ of formulae of a certain
kind” such that the exchange of instances of a source class into a target
class has highest probability of being correct. From information integration we
inherit the type of rules we are looking for. Indeed, we have a so-called GLaV
model [25]. From the former we inherit the requirement to rely on machine
learning techniques to automate the process of schema matching. Additionally,
a side effect is that we can inherit many of the theoretical results developed
in these areas so far, especially from the latter two (see, e.g., [4, 14, 15, 16,
25, 29]).

Title Suppressed Due to Excessive Length 23

Table 7. Traditional recall, Constraint 4

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.6448 0.6448 0.6356 0.6356
CLN−clm 0.9237 0.7441 0.5507 0.4352
CLPN−clm 0.7452 0.0193 0.0100 0.0100
CLkNN 0.0200 0.2019 0.0678 0.2396
CLB 0.0000 0.1241 0.0578 0.0093
all 0.8381 0.6578 0.5152 0.5444

CLS / CLP 0.6263 0.6170 0.5985 0.5985
CLN−clm / CLP 0.8774 0.5793 0.4274 0.3681
CLPN−clm / CLP 0.6989 0.0385 0.0193 0.0293
CLkNN / CLP 0.0385 0.0778 0.0478 0.1463
CLB / CLP 0.0193 0.1041 0.0293 0.0193
all / CLP 0.8004 0.6378 0.4774 0.4574

CLS / CLC 0.6263 0.6170 0.5985 0.5985
CLN−clm / CLC 0.8681 0.5800 0.3804 0.3596
CLPN−clm / CLC 0.6896 0.0200 0.0100 0.0200
CLkNN / CLC 0.0193 0.0885 0.0193 0.1563
CLB / CLC 0.0100 0.0763 0.0393 0.0100
all / CLC 0.8004 0.6193 0.4681 0.4674

CLS / CLP+CLC 0.5985 0.5985 0.5615 0.5330
CLN−clm / CLP+CLC 0.7533 0.4930 0.3041 0.3011
CLPN−clm / CLP+CLC 0.6619 0.0293 0.0193 0.0293
CLkNN / CLP+CLC 0.0193 0.0585 0.0193 0.0478
CLB / CLP+CLC 0.0193 0.0670 0.0193 0.0193
all / CLP+CLC 0.7819 0.5722 0.4389 0.4381

The matching problem for ontologies, as well as the matching problem
for schemas has been addressed by many researchers so far and are strictly
related, as e.g. schemas can be seen as ontologies with restricted relationship
types. The techniques applied in schema matching can be applied to ontology
matching as well. Additionally, we have to take care of the hierarchies.

Related to ontology matching are, for instance, the works [10, 22, 24, 32]
(see [10] for a more extensive comparison). While most of them use a variety
of heuristics to match ontology elements, very few do use machine learning
and exploit information in the data instances [10, 22, 24]. [24] computes the
similarity between two concepts, as the similarity among the vector repre-
sentations of the concepts (using Information Retrieval statistics like tf.idf).
HICAL [22] uses κ-statistics from the data instances to infer rule mappings
among concepts. Finally, [10, 11] (GLUE), but see also [6], is the most in-
volved system. GLUE is based on the ideas introduced earlier by LSD [9].
Similar to our approach, it employed a linear combination of the predictions
of multiple base learners (classifiers). The combination weights are learned via

24 Henrik Nottelmann and Umberto Straccia

Table 8. Traditional precision, Constraint 5

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.6909 0.6909 0.6909 0.6909
CLN−clm 0.5600 0.4800 0.4800 0.4800
CLPN−clm 0.3300 0.0400 0.0400 0.0600
CLkNN 0.2700 0.2700 0.2700 0.1100
CLB 0.1525 0.1525 0.1525 0.1700
all 0.5700 0.6300 0.6600 0.6700

CLS / CLP 0.6500 0.6500 0.6400 0.6400
CLN−clm / CLP 0.5800 0.5100 0.4800 0.4700
CLPN−clm / CLP 0.3400 0.0800 0.0800 0.0800
CLkNN / CLP 0.1500 0.1800 0.1600 0.1300
CLB / CLP 0.0500 0.1500 0.1100 0.0900
all / CLP 0.5900 0.6400 0.6700 0.6700

CLS / CLC 0.6700 0.6700 0.6700 0.6700
CLN−clm / CLC 0.5700 0.4800 0.5000 0.5500
CLPN−clm / CLC 0.3200 0.1400 0.1600 0.1100
CLkNN / CLC 0.2500 0.2700 0.2800 0.1400
CLB / CLC 0.1000 0.1800 0.1800 0.1400
all / CLC 0.5700 0.6400 0.6700 0.6800

CLS / CLP+CLC 0.6500 0.6400 0.6300 0.6300
CLN−clm / CLP+CLC 0.5900 0.5100 0.4800 0.4800
CLPN−clm / CLP+CLC 0.3500 0.1200 0.1300 0.1000
CLkNN / CLP+CLC 0.1500 0.1700 0.1500 0.1400
CLB / CLP+CLC 0.0800 0.1600 0.1200 0.1100
all / CLP+CLC 0.5900 0.6600 0.6700 0.6600

regression on manually specified mappings between a small number of learning
ontologies.

Related to schema matching are, for instance, the works [3, 6, 7, 8, 9, 13,
14, 18, 19, 23, 27, 28, 30, 33, 36] (see [34] for a more extensive comparison).
As pointed out above, closest to our approach is [14] based on a logical frame-
work for data exchange, but we incorporated the inherent uncertainty of rule
mappings and classifier combinations (like LSD) into our framework as well.
While the majority of the approaches focuses on finding 1-1 matchings (e.g.
iMap [6] is an exception), we allow complex mappings and domain knowledge
as well.

As future work, we see some appealing points. The combination of a rule-
based language with an expressive ontology language has attracted the atten-
tion of many researchers (see, e.g., [12, 20] to cite a few) and is considered as
an important requirement. Currently we are combining probabilistic Datalog
with OWL DL so that complex ontologies can be described (so far, none of
the approaches above addresses the issue of uncertainty). Besides this, as then

Title Suppressed Due to Excessive Length 25

Table 9. Traditional recall, Constraint 5

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.6448 0.6448 0.6448 0.6448
CLN−clm 0.5430 0.4637 0.4637 0.4630
CLPN−clm 0.3204 0.0385 0.0385 0.0578
CLkNN 0.2589 0.2589 0.2589 0.1078
CLB 0.1241 0.1241 0.1241 0.1626
all 0.5522 0.6078 0.6370 0.6463

CLS / CLP 0.6263 0.6263 0.6170 0.6170
CLN−clm / CLP 0.5615 0.4930 0.4652 0.4552
CLPN−clm / CLP 0.3304 0.0770 0.0770 0.0770
CLkNN / CLP 0.1478 0.1756 0.1570 0.1263
CLB / CLP 0.0493 0.1433 0.1063 0.0878
all / CLP 0.5715 0.6170 0.6463 0.6463

CLS / CLC 0.6448 0.6448 0.6448 0.6448
CLN−clm / CLC 0.5530 0.4637 0.4837 0.5300
CLPN−clm / CLC 0.3111 0.1356 0.1556 0.1070
CLkNN / CLC 0.2404 0.2589 0.2681 0.1370
CLB / CLC 0.0978 0.1726 0.1726 0.1356
all / CLC 0.5522 0.6178 0.6463 0.6556

CLS / CLP+CLC 0.6263 0.6170 0.6078 0.6078
CLN−clm / CLP+CLC 0.5715 0.4930 0.4659 0.4659
CLPN−clm / CLP+CLC 0.3396 0.1170 0.1270 0.0970
CLkNN / CLP+CLC 0.1478 0.1663 0.1478 0.1363
CLB / CLP+CLC 0.0793 0.1533 0.1178 0.1078
all / CLP+CLC 0.5715 0.6363 0.6463 0.6370

the instances of a class may be structured, e.g. have several attributes, or may
be semi-structured (e.g. XML documents) we have to combine our ontology
matching method with a so-called schema matching method (see, e.g. [9, 34]).
We plan to integrate our model with the method based on [31] for schema
matching, as the latter is rooted on the same principles of the work we have
presented here. In particular, we are investigating several methods to learn
mappings in an environment with ontologies and structured or semi-structured
data: (i) to learn the schema mappings for each ontology class first, and on-
tology mappings in a second step; or (ii) both learning steps are performed
simultaneously, which means that the quality of every possible mapping rule
is estimated, and an overall optimum mapping subset is selected.

Additional areas of intervention rely on augmenting the effectiveness of the
machine learning part. While to fit new classifiers into our model is straight-
forward theoretically, practically finding out the most appropriate one or a
combination of them is quite more difficult, as our results show. In the future,
more variants should be developed and evaluated to improve the quality of

26 Henrik Nottelmann and Umberto Straccia

Table 10. Traditional precision, All constraints

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.7790 0.7790 0.7790 0.7596
CLN−clm 0.5600 0.4900 0.4928 0.5546
CLPN−clm 0.3400 0.0714 0.2500 0.0000
CLkNN 0.0000 0.4722 0.3250 0.1664
CLB 0.0000 0.2798 0.2976 0.1667
all 0.6100 0.6625 0.7393 0.7421

CLS / CLP 0.7625 0.7732 0.7867 0.7663
CLN−clm / CLP 0.5800 0.5100 0.6934 0.7054
CLPN−clm / CLP 0.3400 0.2917 0.6250 0.7500
CLkNN / CLP 1.0000 0.4250 1.0000 0.2929
CLB / CLP 1.0000 0.3289 0.3500 0.7500
all / CLP 0.6200 0.6951 0.7999 0.7952

CLS / CLC 0.7829 0.7936 0.7715 0.7715
CLN−clm / CLC 0.5700 0.4841 0.5872 0.6148
CLPN−clm / CLC 0.3800 0.0714 0.5000 0.0833
CLkNN / CLC 0.5000 0.5000 0.2500 0.1692
CLB / CLC 0.5000 0.2938 0.1500 0.5000
all / CLC 0.6000 0.6970 0.7999 0.7837

CLS / CLP+CLC 0.7887 0.7998 0.8117 0.8099
CLN−clm / CLP+CLC 0.5900 0.5881 0.6952 0.7396
CLPN−clm / CLP+CLC 0.4000 1.0000 1.0000 1.0000
CLkNN / CLP+CLC 1.0000 0.7500 1.0000 0.7500
CLB / CLP+CLC 1.0000 0.3654 0.6667 1.0000
all / CLP+CLC 0.6300 0.7196 0.8090 0.7992

the learning mechanism. Additional classifiers could consider the data types
of two classes, could use a thesaurus for finding synonym class names, or could
use other measures like KL-distance or mutual information (joint entropy).
Furthermore, instead of averaging the classifier predictions, the weights of
each classifier could be learned via regression. Another interesting direction
of investigation would be to evaluate the effect to integrate our model with
graph-matching algorithms like, for instance [23, 30]. These can be considered
as additional classifiers. Last, but not least it would be interesting to evaluate
the effect of allowing more expressive mapping rules, as for instance of the
form αj,iTj(x) ← Si1(x), . . . , Sin

(x) or more generally on full featured logic
programming or of the form presented in [5], as well as to consider the impact
of probabilities Pr(S̄i|Tj), Pr(S̄i|T̄j), Pr(Si|T̄j) 9 (and vice-versa inverting Tj

with Si).

9 X̄ is the complement of X.

Title Suppressed Due to Excessive Length 27

Table 11. Traditional recall, All constraints

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.5785 0.5785 0.5785 0.5785
CLN−clm 0.5430 0.4744 0.4652 0.4259
CLPN−clm 0.3304 0.0100 0.0100 0.0100
CLkNN 0.0200 0.0870 0.0285 0.0778
CLB 0.0000 0.0763 0.0578 0.0093
all 0.5907 0.5815 0.4959 0.4959

CLS / CLP 0.5600 0.5600 0.5415 0.5415
CLN−clm / CLP 0.5622 0.4944 0.4181 0.3589
CLPN−clm / CLP 0.3296 0.0385 0.0193 0.0193
CLkNN / CLP 0.0385 0.0378 0.0478 0.1170
CLB / CLP 0.0193 0.0856 0.0293 0.0193
all / CLP 0.6000 0.5707 0.4581 0.4381

CLS / CLC 0.5600 0.5600 0.5322 0.5322
CLN−clm / CLC 0.5530 0.4652 0.3611 0.3404
CLPN−clm / CLC 0.3696 0.0100 0.0100 0.0100
CLkNN / CLC 0.0100 0.0393 0.0100 0.0685
CLB / CLC 0.0100 0.0670 0.0300 0.0100
all / CLC 0.5807 0.5622 0.4581 0.4381

CLS / CLP+CLC 0.5515 0.5515 0.5237 0.5137
CLN−clm / CLP+CLC 0.5722 0.4652 0.2948 0.2919
CLPN−clm / CLP+CLC 0.3889 0.0293 0.0193 0.0293
CLkNN / CLP+CLC 0.0193 0.0285 0.0193 0.0478
CLB / CLP+CLC 0.0193 0.0670 0.0193 0.0193
all / CLP+CLC 0.6100 0.5344 0.4289 0.4189

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge University Press, 2003.

2. Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval. Addison-Wesley Longman Publishing Co., Inc., 1999.

3. J. Berlin and A. Motro. Database schema matching using machine learning
with feature selection. In In Proceedings of the Conf. on Advanced Information
Systems Engineering (CAiSE), 2002., 2002.

4. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Lossless regular views. In Proc. of the 21st ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS 2002), pages 247–
258, 2002.

5. Hans Chalupsky. Ontomorph: a translation system for symbolic knowledge.
In Proceedings of the 9th International Conference on Principles of Knowledge
Representation and Reasoning (KR-04). AAAI Press, 2000.

28 Henrik Nottelmann and Umberto Straccia

Table 12. Hierarchical precision, All constraints

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.8053 0.8053 0.8053 0.7859
CLN−clm 0.5800 0.5100 0.5087 0.5615
CLPN−clm 0.3683 0.1409 0.5000 0.0714
CLkNN 0.5000 0.6241 0.5833 0.2547
CLB 0.0000 0.3562 0.3704 0.1667
all 0.6433 0.6958 0.7571 0.7514

CLS / CLP 0.7903 0.7946 0.8094 0.7890
CLN−clm / CLP 0.6000 0.5300 0.6934 0.7054
CLPN−clm / CLP 0.3733 0.2917 0.6250 0.7500
CLkNN / CLP 1.0000 0.6333 1.0000 0.3249
CLB / CLP 1.0000 0.3980 0.4167 0.7500
all / CLP 0.6533 0.7241 0.8118 0.8071

CLS / CLC 0.8107 0.8150 0.8018 0.8018
CLN−clm / CLC 0.5950 0.5096 0.5972 0.6248
CLPN−clm / CLC 0.4133 0.3214 0.7500 0.3333
CLkNN / CLC 0.7500 0.7292 0.6250 0.2588
CLB / CLC 0.7500 0.4062 0.3250 0.6250
all / CLC 0.6333 0.7237 0.8118 0.7956

CLS / CLP+CLC 0.8181 0.8226 0.8376 0.8357
CLN−clm / CLP+CLC 0.6100 0.6000 0.6952 0.7396
CLPN−clm / CLP+CLC 0.4283 1.0000 1.0000 1.0000
CLkNN / CLP+CLC 1.0000 0.8750 1.0000 0.7500
CLB / CLP+CLC 1.0000 0.4351 0.6667 1.0000
all / CLP+CLC 0.6633 0.7417 0.8090 0.8117

6. Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro
Domingos. iMAP: discovering complex semantic matches between database
schemas. In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 383–394. ACM Press, 2004.

7. H. Do and E. Rahm. Coma - a system for flexible combination of schema
matching approaches. In Proceedings of the Int. Conf. on Very Large Data
Bases (VLDB-02), 2002., 2002.

8. Anhai Doan, Pedro Domingos, and Alon Halevy. Learning to match the schemas
of data sources: A multistrategy approach. Mach. Learn., 50(3):279–301, 2003.

9. AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of
disparate data sources: a machine-learning approach. In Proceedings of the
2001 ACM SIGMOD international conference on Management of data, pages
509–520. ACM Press, 2001.

10. AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon
Halevy. Learning to match ontologies on the semantic web. The VLDB Journal,
12(4):303–319, 2003.

11. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning
to map between ontologies on the semantic web. In Proceedings of the eleventh

Title Suppressed Due to Excessive Length 29

Table 13. Hierarchical recall, All constraints

fid fsum flin ◦ fsum flog ◦ fsum

CLS 0.5970 0.5970 0.5970 0.5970
CLN−clm 0.5615 0.4930 0.4791 0.4306
CLPN−clm 0.3573 0.0177 0.0146 0.0100
CLkNN 0.0200 0.1140 0.0509 0.1194
CLB 0.0000 0.1043 0.0757 0.0093
all 0.6220 0.6083 0.5052 0.5006

CLS / CLP 0.5785 0.5739 0.5554 0.5554
CLN−clm / CLP 0.5807 0.5130 0.4181 0.3589
CLPN−clm / CLP 0.3616 0.0385 0.0193 0.0193
CLkNN / CLP 0.0385 0.0555 0.0478 0.1301
CLB / CLP 0.0193 0.1085 0.0426 0.0193
all / CLP 0.6312 0.5930 0.4628 0.4428

CLS / CLC 0.5785 0.5739 0.5507 0.5507
CLN−clm / CLC 0.5761 0.4883 0.3657 0.3450
CLPN−clm / CLC 0.4012 0.0146 0.0146 0.0146
CLkNN / CLC 0.0146 0.0566 0.0196 0.1020
CLB / CLC 0.0146 0.0963 0.0446 0.0146
all / CLC 0.6120 0.5811 0.4628 0.4428

CLS / CLP+CLC 0.5700 0.5654 0.5376 0.5276
CLN−clm / CLP+CLC 0.5907 0.4744 0.2948 0.2919
CLPN−clm / CLP+CLC 0.4159 0.0293 0.0193 0.0293
CLkNN / CLP+CLC 0.0193 0.0335 0.0193 0.0478
CLB / CLP+CLC 0.0193 0.0817 0.0193 0.0193
all / CLP+CLC 0.6412 0.5487 0.4289 0.4235

Table 14. Overall traditional precision, recall and F-Measure

Precision Recall F-Measure

No constraint 0.0919 0.5982 0.1307
Constraint 1 0.0939 0.5970 0.1323
Constraint 2 0.1495 0.4677 0.1856
Constraint 3 0.2185 0.4365 0.2621
Constraint 4 0.4995 0.3451 0.3012
Constraint 5 0.3821 0.3676 0.3745
All constraints 0.5979 0.2819 0.3284

30 Henrik Nottelmann and Umberto Straccia

international conference on World Wide Web, pages 662–673. ACM Press, 2002.
12. Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.

Combining answer set programming with description logics for the semantic
web. In Proceedings of the 9th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR-04). AAAI Press, 2004.

13. David W. Embley, David Jackman, and Li Xu. Multifaceted exploitation of
metadata for attribute match discovery in information integration. In Workshop
on Information Integration on the Web, pages 110–117, 2001.

14. Ronald Fagin, Phokion G. Kolaitis, Reneé Miller, and Lucian Popa. Data ex-
change: Semantics and query answering. In Proceedings of the International
Conference on Database Theory (ICDT-03), number 2572 in Lecture Notes in
Computer Science, pages 207–224. Springer Verlag, 2003.

15. Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting to
the core. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 90–101. ACM Press, 2003.

16. Ronald Fagin, Phokion G. Kolaitis, Wang-Chiew Tan, and Lucian Popa. Com-
posing schema mappings: Second-order dependencies to the rescue. In Proceed-
ings PODS, 2004.

17. Norbert Fuhr. Probabilistic Datalog: Implementing logical information retrieval
for advanced applications. Journal of the American Society for Information
Science, 51(2):95–110, 2000.

18. MingChuan Guo and Yong Yu. Mutual enhancement of schema mapping and
data mapping. In In ACM SIGKDD 2004 Workshop on Mining for and from
the Semantic Web, Seattle, 2004.

19. Bin He and Kevin Chen-Chuan Chang. Statistical schema matching across
web query interfaces. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 217–228. ACM Press, 2003.

20. Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules lan-
guage. In Proc. of the Thirteenth International World Wide Web Conference
(WWW-04). ACM, 2004.

21. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics, 1(1):7–26, 2003.

22. R. Ichise, H. Takeda, and S. Honiden. Rule induction for concept hierarchy
alignment. In Proceedings of the Workshop on Ontology Learning at the 17th
International Joint Conference on Artificial Intelligence (IJCAI-01), 2001.

23. Jaewoo Kang and Jeffrey F. Naughton. On schema matching with opaque col-
umn names and data values. In Proceedings of the 2003 ACM SIGMOD in-
ternational conference on on Management of data, pages 205–216. ACM Press,
2003.

24. Martin S. Lacher and Georg Groh. Facilitating the exchange of explicit knowl-
edge through ontology mappings. In Proceedings of the Fourteenth Interna-
tional Florida Artificial Intelligence Research Society Conference, pages 305–
309. AAAI Press, 2001.

25. Maurizio Lenzerini. Data integration: a theoretical perspective. In Proceed-
ings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS-02), pages 233–246. ACM Press, 2002.

26. John W. Lloyd. Foundations of Logic Programming. Springer, Heidelberg, RG,
1987.

Title Suppressed Due to Excessive Length 31

27. J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and P. Shenoy. Corpus-based
schema matching. In Workshop on Information Integration on the Web at
IJCAI-03, 2003.

28. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. In Proc. 27th VLDB Conference, pages 49–58, 2001.

29. Ronald Fagin Marcelo Arenas, Pablo Barcelo and Leonid Libkin. Locally con-
sistent transformations and query answering in data exchange. In Proceed-
ings of the 23st ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (PODS-04), pages 229–240. ACM Press, 2004.

30. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Proceed-
ings of the 18th International Conference on Data Engineering (ICDE’02), page
117. IEEE Computer Society, 2002.

31. Henrik Nottelmann and Umberto Straccia. A probabilistic approach to schema
matching. Technical Report 2004-TR-60, Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy, 2004.

32. Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and tool for
automated ontology merging and alignment. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on Inno-
vative Applications of Artificial Intelligence, pages 450–455. AAAI Press / The
MIT Press, 2000.

33. Lucian Popa, Yannis Velegrakis, Renee J. Miller, Mauricio A. Hernandez, and
Ronald Fagin. Translating web data. In Proceedings of VLDB 2002, Hong Kong
SAR, China, pages 598–609, 2002.

34. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, 2001.

35. Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, 2002.

36. Ling Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fagin. Data-driven
understanding and refinement of schema mappings. In Proceedings of the 2001
ACM SIGMOD international conference on Management of data, pages 485–
496. ACM Press, 2001.

