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Abstract. In this paper we propose an ontology matching paradigm
based on the idea of harvesting the Semantic Web, i.e., automatically
finding and exploring multiple and heterogeneous online knowledge sources
to derive mappings. We adopt an experimental approach in the context
of matching two real life, large-scale ontologies to investigate the poten-
tial of this paradigm, its limitations, and its relation to other techniques.
Our experiments yielded a promising baseline precision of 70% and iden-
tified a set of critical issues that need to be considered to achieve the
full potential of the paradigm. Besides providing a good performance as
a stand-alone matcher, our paradigm is complementary to existing tech-
niques and therefore could be used in hybrid tools that would further
advance the state of the art in the ontology matching field.

1 Introduction

1.1 The Matching Problem in Ontologies and Databases

The issue of finding correspondences between heterogeneous conceptual struc-
tures is inherent to all systems that combine multiple information sources. The
database community has identified schema matching as a core task in many
application domains, such as integrating different databases (i.e., establishing
mappings between their schemas), data warehousing and E-commerce (match-
ing between different message schema) [39]. Matching also plays a major role in
approaches that rely on ontologies to solve the semantic heterogeneity problem
between information systems [25, 38, 52]. While both database schemas and on-
tologies provide a vocabulary of terms to describe a domain of interest, database
schemas do not make explicit the semantics of their elements while ontologies, by
definition (“a formal, explicit, specification of a domain conceptualization” [19]),
do [44]. A direct implication is that matchers can try and exploit the explicit
semantics of ontologies to improve their performance.

In this context, the appearance and growth of the Semantic Web,“an ex-
tension of the current Web in which information is given well-defined meaning,
better enabling computers and people to work in cooperation” [4], marks an im-
portant stage in the evolution of the matching problem. Technologies such as
RDF(S) and OWL, which allow to represent ontologies and information in a



2 M. Sabou et al.

formal, machine understandable way, have led to a rapid increase in the amount
of online ontologies and semantic documents [26]. This online knowledge can be
explored through novel infrastructures such as the Swoogle [11] semantic search
engine or the Watson Semantic Web Gateway [10], which collect and index Se-
mantic Web documents. These changes have important consequences for the
design of Semantic Web applications. While early tools, resembling ontology-
based information systems [12, 23, 29, 36], relied on a small number of ontologies
selected and configured at design time, we are now witnessing the emergence of
a new generation of Semantic Web applications [37], which aim to dynamically
select, combine and exploit online ontologies [28]. Needless to say, matching is a
key component of this new class of applications.

The approaches developed both for database schemas and ontologies follow
two major paradigms depending on the types of information they use to derive
mappings [25, 38, 39, 44]. Internal approaches typically explore information pro-
vided by the matched ontologies such as their labels, structure or instances [44].
Indeed, all the ontology matching tools evaluated within the Ontology Alignment
Evaluation Initiative (OAEI’06)1 primarily exploit label and structure similarity
to derive correspondences associated to varying confidence values [14]. A limita-
tion of such approaches is that they depend on the richness and the similarity
of the internal information of the matched ontologies. For example, Aleksovski
et al. [2] used two state of the art matchers, FOAM [13] and Falcon-AO [24], to
match weakly structured medical vocabularies with a low overlap in their labels
and obtained precision values of only 30% and 33%.

External (or background knowledge
based) techniques aim to address this
limitation by exploring an external re-
source to bridge the semantic gap be-
tween the matched ontologies. Indeed,
continuing the example above, Aleksovski
et al. obtained a precision value of 76%
on the same dataset in the medical do-
main by exploring the DICE ontology as
background knowledge [2]. As depicted
in Figure 1, matchers from this category
exploit an external resource by replac-
ing the original matching problem (be-
tween concepts A and B) with two indi-
vidual matching and an inference step:
the two concepts are first matched to so

Fig. 1: Background knowledge based
matching.

called anchor terms (A’, B’) in the background source, and then mappings are
deduced from the semantic relations of these anchors.

A pre-requisite for the success of such matchers is the availability of back-
ground knowledge sources with an appropriate coverage of the matched ontolo-
gies. Some approaches rely on readily available, large-scale, generic resources

1 http://oaei.ontologymatching.org/2006/
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such as WordNet or Cyc [9, 15, 22]. However, even if these resources cover a
broad range of domains they might not cover specific domains (e.g., medicine,
transportation planning) to the depth required by the matching task. In these
cases, an appropriate domain ontology is either built manually (e.g., for the SIMS
system [3]) or selected prior to the matching process [2]. As discussed in [3], the
manual acquisition (or selection) of domain knowledge with appropriate coverage
represents a considerable effort that should ideally be avoided.

1.2 Our Proposal: Exploiting the Semantic Web as Background
Knowledge for Ontology Matching

We propose a paradigm to ontology matching based on the idea of harvesting
the Semantic Web, i.e., automatically finding and exploring multiple and het-
erogeneous online knowledge sources. For example, when matching two concepts
labeled Researcher and AcademicStaff, a matcher based on this paradigm would
1) identify (during matching) online ontologies that can provide information
about how these two concepts inter-relate and then 2) combine this information
to infer the mapping. The mapping can be either provided by a single ontology
(e.g., stating that Researcher v AcademicStaff ), or by reasoning over informa-
tion spread in several ontologies (e.g., that Researcher v ResearchStaff in one
ontology and that ResearchStaff v AcademicStaff in another).

While this approach enjoys the advantages derived from the use of back-
ground knowledge, it provides an elegant solution to the tradeoff between the
availability and the coverage of background knowledge. First, instead of rely-
ing on a single (generic or domain) ontology, we maximize the coverage of the
background knowledge by exploring multiple online ontologies. Second, instead
of selecting or building a domain ontology prior to matching, we minimize
any knowledge acquisition effort prior to matching through the automatic selec-
tion of the background knowledge. Such an approach can be particularly helpful
when a large, domain ontology does not exist but, nevertheless, the required
knowledge is potentially spread over multiple different ontologies, or when the
matched ontologies spread over several domains, requiring the use of a variety
of ontologies.

A small-scale, preliminary evaluation of this paradigm provided encouraging
results but gave little insight in its strengths and weaknesses when faced with
real life situations [40]. The objective of this paper is to report on an in-depth
investigation of this paradigm along the line of three main research questions:

Does it work? The main research question focuses on the feasibility of this
paradigm to be successfully applied in real life matching cases. In practice
this means assessing the two core assumptions that underlie this work. First,
that the amount and quality of online ontologies are sufficient to be used as
a basis for matching and that an alignment can be obtained in a reasonable
amount of time. Second, that it is possible to build algorithms that automat-
ically discover and combine this knowledge in an intelligent (useful) way. A
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proof that the use of such a paradigm is feasible and therefore worth pursu-
ing further, would be to achieve a good performance in a real life matching
experiment by using a simple, baseline implementation.

What are the limitations and how can they be avoided? Our preliminary
experiments described in [40] provided limited insight 1) about the main
steps needed for implementing a matcher based on this paradigm (e.g., on-
tology selection, knowledge combination), 2) about their relative influence
on the quality of the derived mappings (e.g., are false mappings due more to
the inability to select the right ontology or to the use of simple knowledge
combination algorithms?), as well as 3) about typical problematic cases that
need to be solved for each step (e.g., which ontology characteristics lead to
false mappings and should be avoided through the selection process?). Gain-
ing an understanding of all these issues is a pre-requisite for designing an
improved technique based on the proposed paradigm.

How does it compare to other techniques? The third aim of this paper is
to position the proposed paradigm in the landscape of the ontology match-
ing field. On the one hand, we investigate the levels of performance that
can be achieved with a stand-alone matcher based on this paradigm. On
the other hand, since our goal is not to provide a stand-alone matcher but
rather a complement to existing approaches, we analyze strengths and weak-
nesses with respect of other techniques in order to understand how the pro-
posed paradigm would benefit from being combined with them, in hybrid
approaches.

We rely on an experimental approach to answer these research questions.
Our methodology consists of three major stages which are reflected in the struc-
ture of the paper. In the first stage, we propose two possible implementations
of the paradigm and analyze the steps that are core to both (Section 3). In
the second stage, we provide a baseline implementation based on the simplest
solution for each of these steps (Section 4) and apply it on a real life, large-
scale matching case using the experimental setup described in Section 5. The
last and most important stage of our work consists in analyzing the results of
the experiments (Sections 6 to 9). The performance of the implemented matcher
represents a baseline that can be achieved with our paradigm and thus addresses
the first question regarding its feasibility. The second research question, focusing
on possible limitations, is answered by analyzing the evaluation results (Section 6
and 7). In Section 8 we assess our assumption that multiple online sources can be
used for matching by providing some statistics about the number of ontologies
explored to derive mappings. We address our final research question in Section 9,
by comparing our results, strengths and weaknesses to those of other techniques.
We conclude and point out future work in Section 10.

2 Related Work

A first body of related work consists of approaches to matching that rely on the
use of background knowledge. We distinguish two categories of such matchers
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depending on the type of the explored external resource, i.e., an ontology [2, 3,
6, 9, 48] or online textual sources [50].

Several ontology based matchers rely on a large-scale generic resource such as
Cyc or WordNet. The Carnot system [9, 22] explores the Cyc knowledge base as
a global context for achieving a semantic level integration of various information
models (e.g., database schemas, knowledge bases). CTxMatch [6] (and its follow-
up, SMatch [15]) translates ontology labels into logical formulae between their
constituents, and maps them to the corresponding WordNet senses. A SAT solver
is then used to derive mappings between the concepts. This approach has been
extended to handle the problem of missing background knowledge [16]: if the sim-
ple techniques used to explore WordNet fail, then a second set of more complex
and computationally expensive heuristics are applied to gain more knowledge.

While readily available, generic resources might fail to provide the appropri-
ate coverage when matching is performed in a specific domain, such as medicine.
In these cases, several matching approaches have opted for the use of a domain
ontology. The SIMS system [3] relies on a manually built ontology about trans-
portation planning for integrating several databases in this domain. In [2], the
authors match two weakly structured vocabularies of medical terms by using
the DICE ontology. Similarly, in [48] mappings between two medical ontologies
(Galen and Tambis) are inferred from manually established mappings with a
third medical ontology (UMLS), and by using the reasoning mechanisms per-
mitted by the C-OWL language. Unfortunately, building (and even selecting)
an appropriate domain ontology prior to matching is a considerable effort and
represents a drawback of these techniques [3].

van Hage et. al [50] use the combination of two “linguistic ontology matching
techniques” that exploit online texts to resolve mappings between two thesauri
in the food domain. First, they rely on Google to determine subclass relations be-
tween pairs of concepts using the Hearst pattern based technique introduced by
the PANKOW system [8]. Then, they exploit the regularities of an online cooking
dictionary to learn hypernym relations between concepts of the matched ontolo-
gies. The strength of this approach is that, in principle, it is domain independent
and therefore it does not require manual background knowledge selection. In re-
ality, however, its precision dramatically decreases when relying on a corpus of
general texts (50%), as opposed to a domain specific one (75%).

While the paradigm proposed in this paper explores ontologies as background
knowledge, it differs from the above described matchers in several ways. First, we
tackle the issue of coverage by exploring multiple rather than a single ontology.
Second, we reduce the knowledge acquisition effort prior to matching by auto-
matically selecting these ontologies. Finally, unlike some of the matchers which
exploit the particularities of the background ontology [2, 15], our approach is
entirely domain and ontology independent.

Besides matchers based on background knowledge, our work is also related
to approaches that explore multiple (online) ontologies. The idea of finding map-
pings between two ontologies by exploring other ontologies as semantic bridges
has been discussed in [46] where a finite set of small, independently developed
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ontologies are interrelated by finding mappings between their concepts. These
mappings are often discovered through a semantic bridge consisting of many
other ontologies. Because the set of ontologies is finite, the technique can es-
tablish pairwise relations between the concepts of all ontologies (using a variety
of matching techniques) and then rank and eliminate the redundant or useless
ones. Our work is similar from the perspective that mappings are derived by
exploring third party ontologies. However, a major difference is that we use a
large set of heterogeneous ontologies where an exhaustive technique like the one
of Stephens et al. cannot be applied.

The same paradigm of automatically selecting and exploring online ontologies
has been proposed for solving other tasks than ontology matching. First, Alani
proposes a method for ontology learning that relies on cutting and pasting ontol-
ogy modules from online ontologies relevant to keywords from a user query [1].
Second, in [18] the authors describe a multi-ontology based method to disam-
biguate the senses of keywords that are given as a query to a search engine (e.g.,
star is used in its sense of celestial body in [astronomy, start, planet ]). While
the authors had previously relied on WordNet alone to collect possible senses for
each keyword, now they exploit online ontologies to gather a larger set of senses
and thus increase the quality of their method. Unfortunately, from these two
methods, only the disambiguation process has been implemented and partially
evaluated. Therefore, the contribution of our work to this line of research is to
provide a first evaluation of automatically exploring online ontologies.

3 Proposed Paradigm

In the terminology of [44], we describe an element level matcher which relies
on the use of external knowledge sources to derive mappings. In this section we
investigate a set of issues that need to be considered when implementing this
paradigm and conclude on a set of fine-grained research questions that should
be experimentally investigated.

We describe two increasingly sophisticated strategies to discover and exploit
online ontologies for matching. The first strategy derives a mapping between two
concepts if this relation is defined within a single online ontology (Section 3.1).
The second strategy (Section 3.2) addresses those cases when no single online
ontology states the relation between the two concepts by combining relevant
information which is spread over two or more ontologies. Both strategies need to
address a set of tasks such as finding ontologies that contain equivalent concepts
to those being matched (i.e., anchoring), selecting the appropriate ontologies,
and using rules to derive mappings. We discuss all of these tasks in Sections 3.3
to 3.5. In Section 3.6 we discuss mechanisms for dealing with contradictory
mappings derived from different sources.

Each strategy is presented as a procedure that takes two candidate concepts
as an input and returns the discovered mapping between them. We use the letters
A and B to refer to these candidate concepts. The corresponding concepts to
A and B in an online ontology Oi are A′i and B′i (“anchor terms”). We rely on



Exploiting the Semantic Web for Ontology Matching 7

the description logic syntax for semantic relations occurring between concepts
in an online ontology Oi, e.g., A′i v B′i means that A′i is a sub-concept of B′i in
Oi. The returned mappings are expressed using C-OWL like notations [5], e.g.,

A
v−→ B. Note that we are using the C-OWL notations without relying on the

formalism itself and on its semantics.

3.1 Strategy S1: Mappings Within One Ontology

The first strategy consists of finding ontologies containing concepts similar with
the candidate concepts (e.g., by relying on Swoogle) and then deriving map-
pings from their relations in the selected ontologies. Figure 2 (a) illustrates this
strategy with an example where three ontologies are discovered (O1, O2, O3)
containing the concepts A’ and B’ corresponding to A and B. The first ontology
contains no relation between the anchor concepts, while the other two ontologies
declare a subsumption relation. The concrete steps of this strategy are:

1. Anchor A and B to corresponding concepts A′ and B′ in online ontologies;
2. Select ontologies containing A′ and B′;
3. For a given ontology (Oi) apply the following rules:

– if A′i ≡ B′i then derive A
≡−→ B;

– if A′i v B′i then derive A
v−→ B;

– if A′i w B′i then derive A
w−→ B;

– if A′i⊥ B′i then derive A
⊥−→ B;

4. Combine all mappings derived from the considered ontologies.

(a) (b)

Fig. 2. Ontology matching (a) within one ontology (S1) and (b) across ontologies (S2).
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For example, when matching two concepts labeled Drinking Water and tap water,
appropriate anchor terms are discovered in the TAP ontology and the follow-
ing subsumption chain in the external ontology is used to deduce the mapping:
DrinkingWater v FlatDrinkingWater v TapWater.

This strategy can be implemented in a multitude of ways depending on the
type of anchoring mechanism applied in step 1, the criteria used to select the
right ontologies in step 2, the complexity of the inferences employed by the
derivation rules in step 3 or the strategy for integrating mappings originating
from different sources in step 4. We discuss all these issues in the upcoming
sections (Sections 3.3 to 3.6).

3.2 Strategy S2: Cross-Ontology Mapping Discovery

The previous strategy assumes that a relation between the candidate concepts
can be discovered in a single ontology. However, some relations could be dis-
tributed over several ontologies. Therefore, if no ontology is found that relates
both candidate concepts, then the mapping should be derived from two (or more)
ontologies. In this strategy, matching is a recursive task where two concepts can
be matched because the concepts they relate to in some ontologies are themselves
matched. Figure 2 (b) illustrates this strategy where no ontology is available that
contains anchor terms for both A and B, but where one of the parents (P2) of
the anchor term A′2 can be matched to B in the context of a third ontology (O3).
For example, a mapping between Cabbage and Meat can be derived by taking
into account that Cabbage v Vegetable2 and then discovering that Vegetable ⊥
Meat3 through another matching step. The concrete steps are:

1. Anchor A and B to corresponding concepts A′ and B′ in online ontologies;
2. If no ontologies are found that contain both A′ and B′ then select all on-

tologies containing A′;
3. For a given ontology Oi apply the following rules:

(a) for each Pi such that A′i v Pi, search for mappings between Pi and B;
(b) for each Ci such that A′i w Ci, search for mappings between Ci and B;
(c) derive mappings using the following rules:

– (r1) if A′i v Pi and Pi
v−→ B then A

v−→ B

– (r2) if A′i v Pi and Pi
≡−→ B then A

v−→ B

– (r3) if A′i v Pi and Pi
⊥−→ B then A

⊥−→ B

– (r4) if A′i w Ci and Ci
w−→ B then A

w−→ B

– (r5) if A′i w Ci and Ci
≡−→ B then A

w−→ B
4. Combine all mappings derived from the considered ontologies.

The matching processes in steps 3(a) and 3(b) can be realized using either
strategy S1 or S2. These two steps correspond to the recursive part of the algo-
rithm and therefore a concrete implementation will need to avoid the exhaustive
2 http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf
3 http://www.co-ode.org/resources/ontologies/Pizzademostep1.owl
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search of the semantic space. For example, mappings could be established only
with the direct parents/children of A′i (instead of all), the matching could stop
as soon as a mapping is found or when a given amount of time has elapsed. As
in the case of S1, strategy S2 can also be implemented differently depending on
the chosen anchoring mechanism, ontology selection, the types of rules used and
the way the final mappings are derived, as we discuss in the next sections.

3.3 Step1: Anchoring

Anchoring is a core part of all background knowledge based techniques: its role
is to identify the appropriate part of the background knowledge that should
be used for the matching (i.e., the part that refers to the two concepts being
matched). Several anchoring mechanisms are reported in the literature.

The anchoring described in [2] is based on partial lexical matches between
concept labels (i.e., it is sufficient that they share a subset of tokens) following
the intuition that additional words added to a label denote a more specialized
concept by constraining its meaning. For example, “long brain tumor” is an-
chored (as narrower-than) to “long tumor” because they share two tokens. Un-
fortunately, this strategy also introduces incorrect matches such as “long brain
tumor” being anchored (i.e., as narrower-than) to “brain” [2].

The authors of [50] impose a strict string matching between concept labels
and tokens in online texts (i.e., web pages) to establish equivalences between
them. This stricter matching is likely to be more precise than the one in [2] but
it still falls short of correctly anchoring polysemous words (e.g., Squash can be
equally matched to words referring to a vegetable or a sport).

Unlike the previous two approaches which only exploit labels, S-Match [15]
goes one step further and also relies on the structural information of a concept
(i.e., its place in the concept hierarchy) when anchoring it into WordNet. First,
the approach identifies all the WordNet senses relevant for the concept label.
Then, the right sense is filtered out depending on the senses of the surrounding
concepts in the hierarchy (using an algorithm presented in [30]). This approach
ensures that concepts are anchored to concepts with the same sense in WordNet.

In the case of our technique, the anchoring is special because a concept is
anchored to (possibly) many online ontologies with varying semantic richness.
While anchoring should identify semantically (and not just syntactically) equiv-
alent concepts (thus taking into account the semantic context of the concepts
similarly to S-Match), it also needs to be light-weight enough to be usable dur-
ing matching (in the case of S-Match, because a single background ontology is
used, anchoring can be performed a priori). Before implementing a precise and
optimal anchoring, we wished to find out:

RQ1: How well do simple anchoring techniques work? In our first im-
plementation we use an anchoring technique similar to that of van Hage
and we wish to assess the quality of the obtained results. If the results are
reasonable, implementing a more complex and time consuming anchoring
might not be worthwhile.
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3.4 Step2: Ontology Selection

Anchoring identifies a set of ontologies that can lead to a mapping (e.g., in the
example for S1, Figure 2, three such ontologies are identified). The choice of
the ontologies that are used to derive mappings depends on two main design
decisions: (1) the number of ontologies to be used and (2) the way they are
selected. For the first design decision, we distinguish two situations:

Using a single ontology is the easiest way to deal with the multiple returned
ontologies but it assumes that the discovered relation can be trusted and
there is no need to inspect the other ontologies as well. In the example for
S1, this would mean deriving the mapping from one of the three ontologies.

Using a subset (or all) of the returned ontologies is computationally more
expensive but it has a higher accuracy by taking into account all the informa-
tion that can be possibly derived from the returned ontologies. In this cases
a mapping relation is derived from each ontology and then these are com-
bined into a final mapping (see Section 3.6 for strategies about combining
multiple, possibly inconsistent, mappings).

In both cases, whether using one or more ontologies, it is important to decide
on some selection criteria. We distinguish two approaches to this issue:

Use the ranking mechanism of the underlying ontology search engine
as the implicit selection mechanism. For example, in strategy S1 the map-
ping can be derived from the first ontology returned by Swoogle. Note that
this ontology does not necessarily contain a relation between the candidate
concepts (e.g., O1 in Figure 2 (a)). In such cases, it could be considered that
if an ontology covers the candidate concepts without relating them, then no
mapping should be derived. Or, the algorithm could explore the remaining
ontologies until a relation is provided by one of them (this will be the final
mapping returned by the algorithm).
The selection criteria used by the search engine might not be appropriate
for matching. For example, similarly to Web search engines such as Google,
Swoogle ranks ontologies based on their popularity computed with a modified
version of the PageRank algorithm which takes into account how many times
an ontology is referenced by others [11]. Popularity, however, is not always
a good indicator of an ontology’s suitability for matching. Indeed, because
it is frequently imported by other ontologies, FOAF is often ranked as the
“best” ontology, even if this weakly structured vocabulary is of little help
for deriving mappings.

Use predefined selection criteria to select the ontology (when using one on-
tology) or the ontologies (when using a subset of ontologies) that have the
highest quality and can potentially lead to the best mapping. A pre-requisite
to build a good selection mechanism that would identify the “good” ontolo-
gies is a better understanding of the ontology characteristics that typically
result in good/false mappings. These could range from structural character-
istics such as depth or width (i.e., deeper ontologies have a richer structure
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thus they would lead to more mappings than shallow ones), to domain sim-
ilarity with the matched ontologies or to qualitative characteristics such as
the absence of certain modeling errors.

The need to better understand what constitutes a good ontology for matching
leads us to the second research question:

RQ2: Which ontology characteristics lead to false mappings? One of the
goals of our experiments is to determine some of these characteristics so that
they can be used to build an appropriate selection mechanism.

3.5 Step 3: Derivation Rules

The derivation rules defined for both strategies can be implemented by consid-
ering different levels of inferences. In the simplest implementation, we can rely
on direct and declared relations between A′ and B′ in the selected ontology.
But, for better results, indirect and inferred relations should also be exploited
(e.g., if A′ v C and C ⊥ B′, then A′⊥ B′). Different levels of inferences can
be considered (no inference, basic transitivity, description logic reasoning), each
of them representing a particular compromise between the performance of the
matching process and the completeness of the obtained alignment.

3.6 Step 4: Combining Mappings

Unlike previous techniques where mappings were based on a single ontology
([2, 15]), our approach derives mappings from a variety of sources. However,
mappings resulting from different sources can contradict each other.

At a simple level, different ontologies can lead to different and incoherent
relations between the same pair of concepts. For example, Seafood is subsumed
by Meat in one ontology4, and disjoint with it in another5, leading to two di-
rectly contradictory mappings. If the final mapping between a pair of concepts is
derived from several ontologies (Section 3.4), situations when such contradictory
relations are returned need to be considered. For example:

Keep all mappings. In the simplest case, all derived mappings can be re-
turned, thus allowing the user to select the right mapping (favoring recall).

Keep mappings without contradiction. To favor precision, the algorithm
could return a mapping between two concepts iff all the inferred intermediary
mappings were the same (i.e., there was no contradiction).

Keep the most frequent mapping. Given a set of mappings, return the most
frequent mapping (i.e., the mapping that was derived from most sources).

Keep the trusted mappings only. Return mappings derived from sources
that satisfy certain trust criteria.

4 http://reliant.teknowledge.com/DAML/Economy.owl
5 http://www.w3.org/2001/sw/WebOnt/guide-src/food



12 M. Sabou et al.

At a more complex level, the combina-
tion of several mappings in the alignment
can lead to intricate contradictions. Fig-
ure 3 provides an example of such a situa-
tion, where the concepts of Tomatoes and
V egetable can be related, directly or indi-
rectly, on the basis of four different map-
pings, potentially derived from four differ-
ent ontologies. The contradiction appears
because Tomatoes can be inferred to be at

V egetablei Fruit (Food)j
⊥

Fruiti

v
66nnnnnnnnnnnn

Tomatoesj

v
hhPPPPPPPPPPPP

v

``BBBBBBBBBBBBBBBBBBB

Fig. 3: Contradictory mappings.

the same time disjoint with V egetable, and a sub-class of it. This situation can
be described as an incoherence in the sense that the class Tomatoes is unsat-
isfiable: there cannot be any instance of Tomatoes, since such an object would
have to be an instance of two disjoint classes: V egetable and Fruit (Food).

Generating such contradictions is a particularity of our technique, which com-
bines information from different, heterogeneous knowledge sources. Incoherences
are complex to detect as they require the use of reasoning mechanisms upon the
source ontologies and the alignment. Handling these contradictions is a difficult
task, requiring to select the appropriate strategy for removing the contradictory
mappings. Therefore, an important research question is:

RQ3: How often do contradictions appear? The problem of dealing with
contradictory mappings (both simple and complex) only needs to be ad-
dressed if such situations arise at all. We wish to get an insight in the scale
of this phenomenon through experimental investigation.

4 Implementation Details

As described in Section 1, our methodology for exploring the proposed ontology
matching paradigm consists in building and evaluating a baseline implementa-
tion. In this section we present the details of such a prototype which was built
by using the simplest approach to implement all the tasks described in Section 3.
We rely on Swoogle’056 which crawls and indexes a large amount of semantic
metadata thus allowing access to a considerable part of the Semantic Web. We
experiment with three implementations of the paradigm (these correspond to
different configurations of the prototype):

Strategy S1, first variant stops as soon as one of the examined ontologies
contains a relation between the matched concepts. We use this variant to
evaluate the baseline performance of the paradigm for S1 (Section 6.1) and
to understand the influence of anchoring and ontology selection (Section 6.2).

Strategy S1, second variant inspects all the ontologies that contain infor-
mation about the two concepts to be matched and returns all the obtained

6 At the time of the experiments, Swoogle’06 was too unstable to allow extensive
experiments.
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mappings. We use this implementation to investigate how often simple con-
tradictory mappings are derived between two given concepts (Section 6.3).

Strategy S2 derives a mapping between two concepts by combining informa-
tion spread over several ontologies. Given the recursive nature of S2 which
can lead to long execution times, we took the following design decisions to
limit the search space of the matcher. First, we avoid infinite recursion by
using the non-recursive S1 strategy in steps 3(a) and 3(b). Indeed, this strat-
egy will always investigate a restricted number of ontologies (those in which
the concepts to match appear). Second, we restrict the recursive part (steps
3(a) and 3(b)) to find matches only between the direct parents and children
(P and C) of the anchor terms corresponding to the source concept and the
target concept (B). Finally, the matcher stops as soon as a mapping is found
between A and B. We evaluate the baseline performance of the paradigm for
S2 in Section 7.1 and investigate typical errors in Section 7.2.

We now discuss the details common to all these individual implementations.

4.1 Anchoring Mechanism

The anchoring mechanism (i.e., finding A′, B′) in the case of all implementations
is based on strict string matching between concept labels, similar to that of van
Hage [50]. We allow for variations in naming conventions and lexical form. For
simple labels (made up of one word) we find anchors that match this word as
well as it’s lemma (i.e., base form): a label Persons will be anchored to concepts
labeled either Persons or person. This is achieved by performing an exact search
for each lexical form of the label. For compound labels (containing multiple
words) we anchor to concept labels containing the same words, in the same
order, but possibly written according to different naming conventions and having
different lemmas: TeaCups ' Tea Cup ' tea cup. Concretely, for each word in
the label and its lexical variants we query Swoogle for the number of labels that
contain the search string as a substring (fuzzy match). For the word that has
the fewest appearances, we compare all its appearances to the compound label.

4.2 Ontology Selection

The first variant of S1 as well as S2 rely on the implicit ranking mechanism of
Swoogle (based on popularity) to select the ontologies from which the mapping
is derived. Both implementations inspect the first ontology returned by Swoogle
and if no mapping can be derived from it, then the next ontology is considered
until an ontology is found from which a mapping can be derived. The second
variant of S1 simply inspects all ontologies returned by Swoogle and derives a
mapping from each of them when possible. Note that the selected ontologies
are not downloaded, parsed and interpreted locally (unlike envisioned in [1] and
done in [18]). Instead, their inspection is performed through the Swoogle API
by using a range of functionalities such as requesting the direct parent or the
disjuncts of a given concept.
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We adopt a broad notion of an ontology which is not limited to the physical
file in which the content is stored, nor to a given namespace but which also
considers imported knowledge. The side effect of this view is that our search
for a mapping is also conducted in the ontologies imported (reused) by a given
ontology. It is therefore possible that A′ is identified in ontology Oi while B′ is
defined in an ontology Oj which is imported by Oi. For example, a mapping is
derived between Dredger and V ehicle by identifying a subsumption chain that
spans three ontologies importing each other, (O1

7, O2
8, O3

9):
Dredger1 v Ship2 v DisplacementHullWatercraft2 vWatercraft2 v V ehicle3

Even if in such cases a mapping is derived by combining information from
several ontologies, there is still a fundamental difference with respect to map-
pings derived using S2. Namely, the relations between concepts from different
ontologies used in S1 have been declared by the ontology creator. On the con-
trary, when using S2, the correspondence between concepts in different ontologies
is established automatically, by using the anchoring mechanism.

Technically, the ontology selection mechanisms provided by Swoogle do not
suffice for implementing our broad view on ontologies (i.e., they cannot filter
ontologies based on the content of the knowledge that they import). As a result,
we used a technical artefact to implement the selection step: we select all ontolo-
gies that contain an anchor for A and then inspect its hierarchy until one of the
concepts equals (or is disjoint with) B. We take advantage of the fact that the
Swoogle function for inspecting the hierarchical context of a concept takes into
account imported content. Compared to a previous implementation where we
inspected ontologies containing anchors for both A and B, this implementation
discovered more mappings without being noticeably slower than its predecessor.

4.3 Derivation Rules

We use the rules described in Section 3. In both strategies we have relied on
the transitivity of the subsumption relations to take advantage of indirect rela-
tions between concepts. While Swoogle’s API allows for retrieving direct sub-
sumptions, indirect relations are explored by asking several queries about direct
relations (i.e., asking for the parent of the parent). To reduce the time of our
experiments, we implemented S2 in such a way that only the first direct parent
of the discovered A′ concept is considered (instead of exploring all parents).

4.4 Detecting Contradictions

As explained in Section 3.6, because it combines heterogeneous knowledge sources,
our technique may result in contradictory mappings, leading to incoherences
within the generated alignment. Simple contradictions, involving only two map-
pings between the same two terms, are easy to detect. However, as shown in
7 http://reliant.teknowledge.com/DAML/Transportation.daml
8 http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml
9 http://reliant.teknowledge.com/DAML/SUMO.daml
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Figure 3, contradictions and incoherences may appear because of the intricate
combination of more than two mappings, and therefore, the use of reasoning
mechanisms for detecting such situations is required.

Reasoning on mappings has received considerable attention lately with sev-
eral papers reporting on the use of inferences on mappings in order to improve
the quality of alignments [33, 34, 47, 49]. Among the diagnosis tasks defined in
the literature, the detection of contradictions (called debugging in [34] and con-
sistency checking in [47]) is recognized as being of particular importance. These
studies rely on a rigorous formal framework, based on distributed description
logics (DDLs). DDL is a formalism considering multiple ontologies, each of them
with its own interpretation, interrelated through mappings (roughly sub-concept
relations and equivalences), allowing distributed interpretations upon the ontolo-
gies globally, and upon the mappings [49]. However, relying on the DDL seman-
tics introduces important constraints. In particular, the current implementation
of DDL does not allow the use of disjoint relations in mappings. Moreover,
mappings in DDLs are not transitive and are directional (e.g., A

v−→ B is not

equivalent to B
w−→ A in DDLs), making this formalism inappropriate in our

approach. Therefore, inspired by the previously mentioned work, we devised a
simpler mechanism (not relying on DDLs) for detecting contradictions, using an
ad-hoc reasoner (based on simple inference rules) for mappings, coupled with a
classical DL reasoner (Pellet10) for reasoning upon the source ontologies.

We consider that the alignment contains a contradiction (incoherence) when
it can be inferred, from the content of the alignment and from the source on-
tologies, that a concept is at the same time a sub-concept of and disjoint with
another concept (e.g., A

⊥−→ B and A
v−→ B, or A

⊥−→ B and A v B). Accord-
ing to this definition, the procedure for detecting incoherences is straightforward.
For all the disjoint mappings that can be inferred from the alignment, we verify
whether the involved concepts are sub-concepts of each other. Simple heuris-
tics are used to avoid the detection of redundant contradictions. For example,
if A

⊥−→ B, A
v−→ B, and C

v−→ A, we only count one contradiction, even if it
can be inferred that C

v−→ B and that C
⊥−→ B. This second contradiction is

considered to be derived from the first one.
Note that our goal is not to provide a novel mechanism for incoherence de-

tection in mappings. Indeed, the employed ad-hoc reasoner is only sufficient
for detecting incoherences in an alignment. Handling these contradictions will
require more advanced (and more complete) reasoning procedures (Section 6.3).

5 Experimental Setup

In this section we describe the experimental data sets and the real life scenario
from where they originate, we provide an overview about how the experiments
reported in the rest of the paper relate to the research questions identified in
Section 3 and detail the methodology used for evaluating the alignments.
10 http://www.mindswap.org/2003/pellet/
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5.1 Experimental Scenario and Data

Our experimental data11 is derived from a real life scenario, where two orga-
nizations wish to align their ontologies. These organizations are the UN’s Food
and Agriculture Organization (FAO) and the US’s National Agricultural Library
(NAL). Both organizations maintain large agricultural thesauri which they use
for indexing their data. FAO’s AGROVOC thesaurus, version May 2006, con-
sists of 28.174 descriptor terms (i.e., preferred terms) and 10.028 non-descriptor
terms (i.e., alternative terms). NAL’s Agricultural Thesaurus NALT, version
2006, consists of 41.577 descriptor terms and 24.525 non-descriptor terms. Given
their use to index data containing a vast amount of knowledge, these thesauri
describe a broad range of domains, from animal species to chemical substances
and information technology. Also, they use several technical terms (e.g., from
chemistry) and a considerable amount of Latin terms (e.g., to describe animal
species). There are several reasons for performing an alignment between these
thesauri. First, such an alignment would facilitate data exchange between the
two organizations. Second, the alignment process could identify concepts that are
missing from one thesaurus but are covered by the other. Finally, an immediate
benefit would be the enrichment of NALT, which currently contains only English
and Spanish terms, with multilingual information contained in AGROVOC.

In our experiments we relied on both descriptor and non-descriptor terms,
since the latter often describe synonyms of the preferred terms. There are several
reasons behind choosing this data set as a basis for our experiments:

Large-Scale. Our hypothesis is that this large-scale, real life data set will allow
us to evaluate the scalability of the proposed technique. Further, the large
amount of data should provide a good test bed for all the research questions
stated in Section 3.

Multi Domain. Because these thesauri contain information from a wide range
of domains (and also because they are so large), it is virtually impossible to
find a single ontology that could be used as a source of background knowledge
to derive mappings (i.e., as current techniques do [2, 15]). Therefore this is
an illustrative case where it is necessary to combine knowledge from multiple
background ontologies, possibly selected automatically.

Useful benchmark. A further advantage is that five state of the art ontology
matching tools have been already used to derive mappings between these
ontologies. These results are important for understanding how the proposed
technique can complement existing technology.

5.2 Overview of the Experiments

Table 1 summarizes the experiments reported in the rest of the paper and the
corresponding research questions. To investigate the feasibility of the proposed
paradigm i) we evaluate a baseline performance for the first variant of strategy
S1 (Section 6) and for strategy S2 (Section 7) using the methodology described in
11 This data was also used in the OAEI 2006 food Thesaurus Mapping Task.
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Section 5.3 and ii) we assess the assumption that multiple online sources can be
used to derive mappings by providing statistics about the number of ontologies
used during the alignment process (Section 8).

Research Question Experiment

Does it work? Evaluate strategies S1 and S2 (Sect. 6.1 & 7.1)
Number of explored ontologies (Sect. 8)

What are the limitations?

Anchoring (RQ1) Analyze results of S1 and S2 (Sect. 6.2 & 7.2)

Selection (RQ2) Analyze results of S1 and S2 (Sect. 6.2 & 7.2)

Contradictions (RQ3) Derive mappings from all ontologies (Sect. 6.3)
Use incoherence detection mechanisms (Sect. 6.3)

How does it compare to Comparison with internal and external techniques
other techniques? (Sect. 9)

Table 1. Overview of the relation between research questions and experiments.

Another goal of this work is to understand in what ways the baseline perfor-
mance can be improved. In Section 3 we stated a set of research questions about
issues that might hamper performance. Some of these questions can be answered
by analyzing the results of the performance evaluation (Sections 6.2 and 7.2).
Indeed, by inspecting the causes of false mappings, we can get an insight into the
influence of the anchoring (RQ1) and ontology selection methods (RQ2). In Sec-
tion 6.3 we assess how often contradictory mappings appear: we use the second
variant of S1 to identify simple contradictions and apply incoherence detection
mechanisms to detect alignment level (i.e., complex) contradictions (RQ3).

In Section 9 we compare our paradigm, based on the obtained results, to
both techniques relying on information internal to ontologies (by analyzing the
outcome of the OAEI’06 contest) as well as to other background knowledge based
approaches (by exploring results reported in the literature). Besides the simple
performance based comparison, we also discuss the potential contribution of our
approach when integrated with existing techniques.

5.3 Methodology for Evaluating Alignments

One of the expected benefits of working with the AGROVOC-NALT dataset
was the reuse of the Gold Standards employed to evaluate the OAEI’06 contest
results. However, because the participant tools only returned equivalences, the
Gold Standards have been geared towards evaluating those and thus were unus-
able for our results, containing subclass, superclass and disjoint relations. Given
the high number of the discovered mappings, as well as the lack of Gold Stan-
dards, we performed a manual assessment of a significant subset of the results
(1000 mappings in the case of both strategies).

As evaluators, we relied on nine members of our lab working in the area of
the Semantic Web, and thus familiar with ontologies and ontology modeling. We
performed two parallel evaluations of the sample mappings (i.e., each mapping



18 M. Sabou et al.

has been evaluated by two different evaluators). The participants were asked to
evaluate each mapping as Correct, False or “I don’t know” for cases where they
could not judge the correctness of the statement. They were allowed to use any
kind of material (e.g., (web-)dictionaries, Google) in cases where they were not
familiar with the domain and needed some more information for evaluating a
given mapping (e.g., when judging that Leukemia v Neoplasm). A specialized
graphical interface has been developed to facilitate the task of the evaluators by
displaying the mappings together with the context in which the mapped concepts
appeared in the source ontologies (i.e., their neighborhood). We compute the
precision of the alignment as the ratio of Correct mappings over all the evaluated
mappings (i.e., those evaluated either as Correct or False). Formally:

Precision =
Correct

Correct + False

6 Deriving Mappings from One Ontology (Strategy S1)

The matching process performed by using the first variant of S1 resulted in a to-
tal of 6687 mappings containing 2330 subclass, 3710 superclass and 647 disjoint
relations. These mappings were derived during about two days by using an av-
erage laptop. Table 2 provides some examples of the derived mappings. For each
mapping we present the source (AGROVOC) and target (NALT) concepts and
their labels. Under each mapping we provide the URL(s) of the ontology(ies)
from which the mapping was extracted, as well as the relations on which the
mapping is based in these ontologies (i.e., it’s explanation). For example, the
first mapping was established between the AGROVOC concept c 6617 labeled
with “Rivers, Streams, Brooks, Tributaries” and the NALT concept identified
as waterways and labeled “waterways”. The mapping was derived from ontol-
ogy O1

12 which declares that river v waterway. O1 has been used because the
anchoring identified a correspondence between the “Rivers” label of c 6617 and
O1’s river concept, as well as between waterways in NALT and waterway in O1.
This example illustrates how the anchoring mechanism is flexible with respect
to different naming conventions (here, it matches capitalized vs. non-capitalized
words) and lexical forms (here, a match is established between the plural and
the base form, or lemma, of both anchored labels).

It is interesting to observe that the second mapping spans two ontologies,
the first one (Economy.owl) importing the second (Mid-level-ontology.owl). As
explained in Section 4.2, our implementation is capable of identifying such de-
clared, cross-ontology relations and derive the corresponding mapping.

Another observation to be made is that, using an additional equivalence map-
ping, the mapping between c 10463 and tap water could have been inferred,
thanks to the structure of the matched ontologies. Indeed, in NALT it is de-
clared that tap watervdrinking water. Therefore, by establishing an equivalence
relation between c 10463 (having the label “Drinking water”) and the NALT

12 http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/data/russia1a.rdf
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Mappings Nr. Examples
AGROVOC Labels NALT Labels

Concept Concept

c 6617 Rivers, waterways waterways
Streams,
Brooks,

Tributaries
O1:river v O1:waterway

Subclass 2330 O1 = http://www.aifb.uni-karlsruhe.de/WBS/meh/

(
v−→) mapping/data/russia1a.rdf

c 25469 Cocaine narcotics narcotics,
opioids

O1:Cocaine v O2:Narcotic
O1 = http://reliant.teknowledge.com/DAML/Economy.owl

O2 = http://reliant.teknowledge.com/DAML/

Mid-level-ontology.owl

c 10463 Drinking water, tap water tap water,
Potable water tap water

O1:DrinkingWater w O1:FlatDrinkingWater w O1:TapWater
O1 = http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

c 1142 Buildings, supermarkets supermarkets
SuperClass 3710 Houses,

(
w−→) Building

structures
O1:Building w O1:Public Building w O1:Shop w O1:Supermarket

O1 = http://frot.org/space/0.1/index.rdf

c 2761 Exports imports imports

O1 = http://edge.mcs.drexel.edu/assemblies/

Disjoint 647 ontologies/woolly/2003/02/functions.daml

(
⊥−→) c 8309 Water solids solids

O1:Water v O1:Fluid ⊥ O1:Solid
O1 = http://www.lri.jur.uva.nl/~rinke/aargh.owl

Total 6687

Table 2. Example mappings discovered between AGROVOC and NALT using S1.
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drinking water concept, the mapping c 10463 w−→ tap water could be inferred.
The fact that we have obtained the same result without relying on the struc-
tural information of the matched ontologies demonstrates the potential of our
technique to derive rich mappings even in cases when a rich structure would
not be provided by the source ontologies. Indeed, this shows that internal infor-
mation can be replaced by external information drawn from online ontologies.
Having said that, structural information should not be purposefully ignored for
the sake of using online ontologies (we have only done so to get an insight in the
functioning of our technique when employed stand-alone).

6.1 Evaluation Results

In order to evaluate the precision of the alignment obtained with the first vari-
ant of S1, we randomly selected 1000 mappings (i.e., 15% of the alignment)
containing an appropriate proportion of different mapping relations, namely:
100 disjuncts, 350 subclass, 550 superclass relations. These mappings were then
evaluated by two groups of evaluators as described in Section 5.3. Table 3 sum-
marizes the number of Correct, False and unevaluated (Don’t know) mappings
for each group, as well as the number of these mappings agreed by both groups.
The two groups agree on 742 mappings (we exclude the “Don’t know” answers
because there are no real agreements on those), and therefore have an agree-
ment coefficient of 74%. Note that a similar agreement (72%) was observed
between the two groups that evaluated equivalence mappings on this dataset
during OAEI’06 [14].

Group 1 Group 2 Agreed by All

Correct 586 666 525

False 346 299 217

Don’t know 68 35 10

Precision 63% 69% 70%

Table 3. Evaluation of strategy S1 by both groups.

We obtained precision values of 63% and 69% for the two groups. The gap
between these values is due to the variation in the way evaluators performed their
task: some investigated each mapping thoroughly, while others simply provided
no evaluation for the mappings they were not sure about. To level out these
differences, we also computed the precision of the part of the alignment on which
both groups agreed, as we think this better reflects the typical performance that
can be achieved with our paradigm. In this case, the precision was equal to
70%. We consider this value as indicative for the baseline performance that
can be obtained by harvesting online information. We compare it to typical
performances of other matching approaches in Section 9.
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6.2 Error Analysis

Besides getting an indication of the baseline precision that can be obtained
with the proposed paradigm, we also wish to understand in which ways the
performance can be improved, i.e., what are the major causes for errors and how
could they be eliminated. To answer this question, we manually inspected the
217 false mappings on which both groups agreed. We observed two major causes
for errors. On the one hand, 114 errors (i.e., 53%) are caused by the inherent
limitations of the simplistic anchoring. On the other hand, 91 false mappings
(i.e., 42%) are due to qualitatively inappropriate online ontologies. The rest of
12 (5%) false mappings are due to various smaller causes that are not significant
in this analysis. Table 4 provides an overview of the type and number of identified
errors as well as some illustrative examples.

Anchoring errors are a side-effect of the basic, string matching based anchor-
ing and appear when a concept is related to an incorrect sense in online
ontologies. For example, in the first entry in Table 4, concept c 3179 de-
scribing “Game” in the sense of a hunted animal is incorrectly anchored to
the Game concept in SUMO which represents a physical activity. In the sec-
ond example, both concepts are anchored incorrectly. First, c 6443 labeled
with “Rams” and referring to an “uncastrated adult male sheep”13 is put in
correspondence with a similarly labeled concept (“ram”), but which refers to
Random Access Memory in the context of the online ontology. In the same
way, the memory concept of NALT refers to the term used as in psychology
and thus has been incorrectly anchored to the identically labeled concept
which refers to computer memory.

Because concept labels are ambiguous, anchoring errors are frequent and
account for more than half of the false mappings (53%). Therefore, the current
anchoring needs to be modified to take into account the context of the anchored
concepts. Indeed, an anchoring mechanism that could prevent deriving these
false mappings (thus reducing their number to 103) could potentially lead to an
increase in precision from 70% to 87%.

We identified the following types of errors introduced by exploring low quality
online ontologies:

Subsumption used to model generic relations. One of the most common
errors in online ontologies was the use of subsumption as a way to model
the fact that there exists some type of relation between two concepts, e.g.,
Survey v Marketing, Irrigation v Agriculture, Biographies v People.
This case leads to 40 false mappings (i.e., 18%).

Subsumption used to model part-whole relations. Subsumption is used
in several ontologies to model part-whole relations. This resulted in incorrect
mappings such as Branch v Tree, Leaf v Plant.

13 Definition from WordNet2.1.
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Error Nr./ Examples
Type % AGROVOC Labels Rel. NALT Labels

Concept Concept

c 3179 Game, sports sports,

Hunted
w−→ ball games,

Animals athletics
O1:Game w O1:Sport

Anchor 114, O1 = http://lists.w3.org/Archives/Public/

53% www-rdf-logic/2003Apr/att-0009/SUMO.daml

c 6443 Rams,
v−→ memory memory

Tups
O1:ram v O1:memory

O1 = http://www.arches.uga.edu/~gonen/qos_bilal.owl

Subsumption c 3954 Irrigation
v−→ agriculture agriculture,

as 40, agriculture
generic 18% (general)
relation O1:Irrigation v O1:SoilCultivation v O1:Agriculture

O1 = http://sweet.jpl.nasa.gov/ontology/human_activities.owl

Subsumption 16, c 23995 Branches
v−→ trees trees

as 7% O1:Branch v O1:Tree
part-whole O1 = http://www.site.uottawa.ca/~mkhedr/NewFuzzy.owl

c 6211 Products,
w−→ wool wool

Produce
Subsumption O2:Product w O1:ManufacturedProduct w O1:TextileProduct w

as 11, O2:Fabric w O3:Wool
role 5% O1 = http://reliant.teknowledge.com/DAML/Economy.owl

O2 = http://reliant.teknowledge.com/DAML/SUMO.owl

O3 = http://reliant.teknowledge.com/DAML/

Mid-level-ontology.owl

c 1693 Coal
v−→ industry industry

O1:coal v O1:industry
12, O1 = http://www.aifb.uni-karlsruhe.de/WBS/meh/

Inaccurate 5% mapping/data/russia1a.rdf

labeling c 24833 Databases,
w−→ enzymes enzymes

Data bases,
Databanks

O1:Database w O1:Enzyme
O1 = http://mensa.sl.iupui.edu/ontology/Database.owl

Different 12, c 2943 Fishes
w−→ lobsters lobsters

View 5% O1:Fish w O1:MarineInvertebrate w O1:Crustacean w O1:Lobster
O1 = http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

Table 4. Examples of several types of false mappings.
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Subsumption used to model roles. Roles are often modeled as subclass re-
lations, for example, that Aubergine, Leek v Ingredient (Leek is a V egetable
but in some contexts it plays the role of an ingredient).

Inaccurate labeling. We also found cases of correct subclass relations which
introduced errors due to the inaccurate labeling of their concepts. For ex-
ample, O1

14 states that coal v industry, where coal refers to coal industry
rather than the concept of Coal itself. Similarly, for Database w Enzime in
O1

15, Enzyme refers to an enzyme database rather than describing the class
of all enzymes. Note that this type of errors could be avoided by a semantic,
context aware anchoring mechanism.

Different Views. Finally, some of the explored ontologies adopted views that
were not in concordance with the context of the mapping and/or the perspec-
tive of the evaluators. For example, TAP considers lobsters kinds of Fishes,
a perspective with which none of the evaluators agreed.

Because a high number of errors (42%) were caused by incorrectly designed
ontologies, our implementation would benefit from a selection mechanism based
on the quality rather than the popularity of ontologies. While some approaches
exist to automatically assess the quality of the ontology modeling [51], this task
remains an important and difficult research question to consider as future work.

6.3 Contradictory Mappings

Research question RQ3 refers to whether contradictory mappings can be de-
rived from different ontologies. To assess if different ontologies can contradict
each other concerning the relation between a single pair of concepts (simple con-
tradiction), we ran the second variant of S1: for every pair of concepts we derive
mappings from all the online ontologies that mention them. As it can be ex-
pected considering the relative simplicity of the detection method, the number
of such contradictions is very low and accounts to only eight pairs of concept
labels (Table 5). Three of the eight pairs also appear inverted because their la-
bels exist both in AGROVOC and NALT. For the purposes of this analysis, we
can regard them as redundant thus further reducing the number of problematic
pairs to five.

This first experiment shows that direct contradictions on the relation derived
between a single pair of concepts are rare. However, as shown in Section 3.6, de-
tecting these simple cases is insufficient, since contradictions can appear because
of the combination of several mappings, derived from more than two ontologies.
We used the implementation of the incoherence detection process described in
Section 4 on the 6687 mappings generated between AGROVOC and NALT with
the first variant of S1 and obtained 306 base incoherences. This result shows
that contradictions actually appear in an alignment derived from online ontolo-
gies and that it is important to define strategies to deal with them.

14 http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/data/russia1a.rdf
15 http://mensa.sl.iupui.edu/ontology/Database.owl
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AGROVOC NALT Nr. Subclass Nr. Superclass Nr. Disjunct

label label relations (
v−→) relations (

w−→) relations(
⊥−→)

fruit tomato 0 3 1

sea river 0 1 2

energy light 0 1 1

meat seafood 0 2 12

seafood meat 2 0 12

mushroom pizza 1 0 1

tomato fruit 3 0 1

light energy 1 0 1

Table 5. All the label level contradictions.

Analyzing these incoherences can help us to better understand some limita-
tions of our matching technique, and can hint ways of improving it. For example,
Table 6 lists the top ten mappings that are most frequently involved in incoher-
ences as well as the number of incoherences that they cause. This data suggests
that incoherences are caused by a restricted sub-set of the alignment, and that
a small sub-set of these mappings are actually involved in a large proportion of
the incoherences. In other terms, incoherences are localized in the mappings, and
detecting them helps in pointing out particular “areas” of the alignment that
have to be considered as problematic.

Mapping Nr. of incoherences

People
v−→ Agents 115

Products
⊥−→ Environment 82

Products
⊥−→ People 80

Environment
v−→ Agents 69

Foods
v−→ Products 66

Organizations
v−→ Agents 58

Organisms
v−→ Individual 50

Industry
v−→ Heaters 50

Heaters
v−→ Organizations 49

Technology
v−→ Science 38

Table 6. The 10 mappings that are most involved in incoherences.

Most concepts in Table 6 correspond to rather generic concepts (e.g., Agents,
Products) likely to have lots of subclasses, which would become incoherent
through inheritance. Indeed, almost 50 000 incoherences can be derived from
the set of 306 base incoherences that are detected through our mechanism. This
shows that this small number of incoherences (306) and the small number of
mappings associated to them (454) corrupt almost the entire alignment.
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In conclusion, it appears that online ontologies actually contradict each other
and that this has an important influence on the formal quality of the alignments
generated using our technique. Ultimately, contradictory mappings should be
removed. However, automatically identifying the mappings to be remove is not
trivial. Indeed, as shown in Table 6 (and already observed in [35]), the mappings
that are often involved in incoherences are not necessarily wrong. On a more
positive tone, several studies have been targeted towards the management or
the removal of incoherences in ontologies [20, 42, 43]. These techniques provide
solutions to facilitate the detection of the problematic sub-part of the alignment
and to resolve contradictions, thus improving the quality of the entire alignment.

7 Deriving Mappings Across Ontologies (Strategy S2)

The more complex S2 strategy lead to 6772 new mappings with respect to those
derived with S1 (1966 subclass, 1568 superclass and 3238 disjoint relations)
each obtained by combining information across ontologies. Interestingly, despite
the fact that this strategy is more complex then S1 as it combines information
from more ontologies, the time for deriving an alignment was roughly the same
as for S1, i.e., around two days. In the case of the first mapping in Table 7, no
ontology contains a relation between BorealForest and Habitat. However, because
BorealForest v Forest in O1

16 and Forest v Habitat in O3,17 the matcher derived
that BorealForest v−→ Habitat.

One interesting observation to make is that almost half of the derived map-
pings are disjoint relations. These are obtained by combining relations between a
concept and its generic type (e.g., Cabbage v Vegetable) with a relation between
the generic concept and one of its disjoints (e.g., Vegetable ⊥ Meat). This results
in an explosion of new mappings since all the sub-concepts of the generic con-
cept (here, Vegetable) are considered disjoint with all its disjoints (here, all the
subclasses of Vegetable, like Cabbage, are disjoint with Meat). While these addi-
tional mappings are correct, their usefulness is questionable since they establish
a relation between concepts at different level of abstraction and are redundant
with respect to the original “top-level” disjoint relations.

7.1 Evaluation Results

For evaluating the precision of the alignment obtained with S2, we followed the
methodology described in Section 5.3. Our evaluation sample of 1000 mappings
(i.e., around 15% of the alignment) contained 478 disjunct, 290 subclass, 232
superclass relations and it was assessed by two groups of evaluators. Table 8
summarizes the results of the evaluation. The agreement coefficient between
groups reached 79% (they agreed on 798 evaluations), a value which is close the
one obtained for strategy S1 (i.e., 74%). The precision values obtained were 66%

16 http://reliant.teknowledge.com/DAML/Geography.daml
17 http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
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Mappings Nr. Examples
AGROVOC Labels NALT Labels

Concept Concept

c 1014 Boreal forests, habitats habitats
Taiga

O1:BorealForest v O2:Forest ∼= O3:Forest v O3:Habitat
O1=http://reliant.teknowledge.com/DAML/Geography.daml

O2=http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml

O3=http://protege.stanford.edu/plugins/owl/owl-library/koala.owl

Subclass 1966 c 1584 Cholesterol organic compounds organic compounds,

(
v−→) organic compounds,

organic chemicals
O1:Cholesterol v O2:Steroid ∼= O3:Steroid v O3:Lipid v O3:Organic Chemical

O1=http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml

O2=http://reliant.teknowledge.com/DAML/SUMO.daml

O3=http://onto.cs.yale.edu:8080/umls/UMLSinDAML/NET/SRSTR.daml

c 28628 Age groups elderly elderly, aged (people),
old age (humans),
geriatric people,
senior citizens,
older people

O1:AgeGroup w O1:Adult ∼= O2:adult w O2:elderly
O1=http://sweet.jpl.nasa.gov/ontology/human_activities.owl

O2=http://owl.man.ac.uk/2003/why/latest/ontology.rdf

SuperClass 1568 c 6170 Prepared foods, iced tea iced tea,

(
w−→) Convenience foods, iced tea,

Ready meals, tea,
Ready to cook foods iced

O1:PreparedFood w O1:Tea ∼= O2:Tea w O3:IcedTea
O1=http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml

O2=http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml

O3=http://www.wam.umd.edu/~katyn/CMSC828y/hw1/hw1.daml

c 1173 Cabbages meat meat
O1:Cabbage v O1:Vegetable ∼= O2:Vegetable ⊥ O2:Meat

O1=http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

Disjoint 3238 O2=http://www.co-ode.org/resources/ontologies/Pizza_demo_step_1.owl

(
⊥−→) c 935 Birds, Aves plants plants

O1:Bird v O1:Animal ∼= O2:Animal ⊥ O2:Plant
O1=http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

O2=http://dannyayers.com/2003/08/udef.rdfs

Total 6772

Table 7. Some of the mappings discovered with strategy S2.
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for the first group, 63% for the second, and 70% when taking into account only
the evaluations on which both groups agreed. Note that despite the increased
complexity of this strategy, these values are similar to those obtained for S1:
63% and 69% per group, and 70% for the agreed mappings.

Group 1 Group 2 Agreed by All

Correct 606 645 552

False 305 330 246

Don’t know 89 25 7

Precision 66% 63% 70%

Table 8. Evaluation of strategy S2 by both groups.

7.2 Error Analysis

To understand the major causes for false mappings, we manually investigated all
the 246 mappings that were rated as False by both groups of evaluators. While
the same types of errors as in S1 were identified in S2 as well, false mappings
obtained by S2 are sometimes caused by more than one error. Indeed, we found
285 causes for the 246 false mappings. This phenomenon is a direct consequence
of the fact that S2 exploits more ontologies than S1 and relies on one extra
anchoring step. Table 9 displays some examples of typical errors encountered
when deriving mappings across ontologies.

Anchoring Errors. We identified 167 anchoring errors. In the case of S1 an-
choring errors appear when the source concepts are anchored to semantically
different concepts in online ontologies. In the case of S2, an additional an-
choring process takes place for the intermediary concept that links the two
concepts to be matched. This anchoring process is also prone to errors. For
example, in the first mapping from Table 9, the intermediary concept is
Agent. However, the senses of the concepts with this label in ontologies O1

18

and O2
19 are different: a participant in a chemical reaction in O1 and a role

played by a person in O2.
Ontology Errors. S2 was also influenced by 118 errors specific to low quality

online ontologies where subsumption is used incorrectly to model general re-
lations (73 cases, e.g., between Student and University), part-whole relations
(5 cases, e.g., between Ohio and USA) or roles (6 cases, e.g., between Veg-
etable and Ingredient). Some mappings were also derived due to inaccurate
labeling (27 cases) or to incorrect views of the world modeled in the used
ontologies (7 cases).

18 http://mensa.sl.iupui.edu/ontology/BiologicalOntology.owl
19 http://www.mindswap.org/2003/owl/swint/terrorism
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Error Examples
Type AGROVOC Labels Rel. NALT Labels
(Nr.) Concept Concept

c 5253 Nucleic acids
v−→ people people, persons,

mankind
O1:NucleicAcid v O1:Agent ∼= O2:Agent v O3:Person

O1=http://mensa.sl.iupui.edu/ontology/BiologicalOntology.owl

O2=http://www.mindswap.org/2003/owl/swint/terrorism

Anchoring O3=http://www.mindswap.org/2003/owl/swint/person

(167) c 802 Bamboos
⊥−→ enterprises enterprises,

businesses
O1:Bamboo v O1:Plant ∼= O2:Plant ⊥ O2:Enterprise

O1=http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

O2=http://www.dannyayers.com/2003/08/udef.rdfs

c 139 Adults
v−→ universities universities,

colleges
O1:Adult v O1:Student ∼= O2:Student v O2:Department v

O2:Faculty v O2:University
O1=http://www710.univ-lyon1.fr/~s-suwa02/MSch/sc.owl

O2=http://www.srdc.metu.edu.tr/~yildiray/HW3.OWL

Ontology c 5326 Ohio
v−→ North America North America,

Errors North America,
(118) America, North

O1:Ohio v O1:USA ∼= O2:USA v O2:NorthAmerica
O1=http://www.cwi.nl/~media/ns/IWA/VideoGen.rdfs

O2=http://islab.hanyang.ac.kr/damls/Country.daml

c 13735 Radishes
v−→ ingredients ingredients

O1:Radish v O1:Vegetable ∼= O2:vegetable v O2:ingredient
O1=http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

O2=http://cvs.sourceforge.net/viewcvs.py/instancestore/

instancestore/ontologies/Attic/pizza9.daml?rev=1.2

Table 9. Examples of typical errors in compound mappings obtained with S2.
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8 Harvesting the Semantic Web

A core assumption of our work is that matching can be performed by harvesting
the Semantic Web, i.e., by combining appropriate background knowledge from
multiple, automatically identified online ontologies. In this section we verify this
assumption by investigating the number of ontologies that were employed during
the matching process.

Strategy S1 explored 226 ontologies to derive 6687 mappings.20 Figure 4
(a) shows the contribution of each ontology to the alignment in terms of the
number of mappings to which it contributed and the percentage that this number
represents. An analysis of this chart reveals that there is a high variation in the
contribution of different ontologies: a few ontologies provide the majority of the
mappings, while most ontologies lead to a small amount of mappings. Indeed, the
11 ontologies (Table 10) for which the percentages are shown in the chart (and
which account to about 5% of all used ontologies) lead to deriving approximately
76% of the alignment.

Strategy S2 used 306 ontologies to obtain 6772 mappings (Figure 4 (b)).
Given the nature of this technique, i.e., that of combining multiple ontologies,
a higher number of ontologies (about 80 more) than in S1 were used to derive
approximately the same number of mappings. As in S1, there are a few large
ontologies that contribute most mappings, however, their level of contribution
is more balanced. Indeed, instead of having a single ontology contributing 17%
of the alignment as in S1, in S2, the top four ontologies provide about an equal
percentage of the alignment (7%). This is a direct consequence of the fact that
mappings are based on multiple rather than on a single ontology.

(a) (b)

Fig. 4. Contribution to the alignment by ontologies used in (a) S1 and (b) S2.

20 Note that these statistics were computed by considering an ontology to be equivalent
to a namespace, independently of the actual, physical location of the concepts in files.



30 M. Sabou et al.

We observe a large overlap between the top contributor ontologies to S1
and S2 (Table 10). The same seven ontologies are used (although with different
levels of contribution), with TAP and SUMO being the main contributors in
both strategies. Such an overlap is not surprising since these large ontologies
have a good coverage of the various topic domains of AGROVOC and NALT.

These statistics strengthen our hypothesis that harvesting the Semantic Web
is feasible. Our findings suggest that the strength of the Semantic Web is not
only in the use of single, isolated ontologies but also in reusing, combining and
making sense of knowledge spread across a variety of different ontologies. Indeed,
in such a scenario where large, multi-domain ontologies are matched, it would
have been difficult and time-consuming (if not impossible) to manually identify
appropriate ontologies in order to derive the same amount of mappings as our
technique has done without requiring any a priori knowledge selection.

Contribution
Ontologies/Ontology Namespaces to (%)

S1 S2

http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf 17% 8%

http://reliant.teknowledge.com/DAML/SUMO.daml 16% 7%

http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml 11% 4%

http://reliant.teknowledge.com/DAML/Economy.daml 9% 3%

http://gate.ac.uk/projects/htechsight/Technologies.daml 8% 5%

http://a.com/ontology 5% 7%

http://gate.ac.uk/projects/htechsight/Employment.daml 3% -

http://reliant.teknowledge.com/DAML/WMD.daml 2% -

http://sweet.jpl.nasa.gov/ontology/biosphere.owl 2% 3%

http://139.91.183.30:9090/RDF/VRP/Examples 2% -

http://reliant.teknowledge.com/DAML/Geography.daml 1% -

http://www.dannyayers.com/2003/08/udef.rdfs - 7%

Table 10. The top contributing ontologies to the alignments obtained with S1 and S2.

9 Comparison With Other Techniques

In this section we investigate how the proposed paradigm compares against and
complements existing techniques. We describe our findings both for techniques
relying on internal information (Section 9.1) and for background knowledge
based techniques (Section 9.2).

9.1 Comparison with Techniques Relying on Internal Information

The five matching systems applied on this dataset during the OAEI’06 con-
test primarily exploit information that is internal to the two matched ontolo-
gies [7, 21, 27, 31, 32]. As such, their results could be used to investigate how our
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paradigm relates to techniques from this category. Unfortunately, because all the
tools provided exact matches, their evaluation was focused on such mappings:
precision was assessed manually, while recall was approximated on a rather small
set of 200 mappings containing only 30% of subsumption relations [14]. In addi-
tion, while these five systems are complete, self contained tools, our paradigm is
intended to be used as a complement to other existing techniques. Indeed, the
current implementation does not extract any mappings that lexical and struc-
tural techniques can discover (e.g., using basic string comparison on the labels).
As a consequence, comparing the recall of this implementation to the one of
complete, stand-alone tools would be misleading.

Nr. Alignment Nr. Of Mappings

1 COMA++ [32] 7626
2 FALCON-AO [21] 12900
3 PRIOR [31] 11504
4 HMATCH [7] 19924
5 RiMOM [27] 13966

Union 25224

6 Using the SW 4464

Union 29688

Non-redundant 27083

Non-redundant from 6 1915

Table 11. Identifying non redundant mappings.

We can nevertheless draw a set of conclusions which suggest that the pro-
posed paradigm complements techniques exploring solely information internal
to the matched ontologies. First, since our technique produces other relations
than equivalences, a syntactic comparison with the alignments produced by the
OAEI’06 tools yields that they are complementary (i.e., there is no overlap
between them). Second, in order to semantically compare the matching tech-
niques, we applied a redundancy detection mechanism on the union of their
alignments21. We identified 1915 mappings discovered by our technique which
were not redundant with the equivalence mappings identified by the OAEI’06
tools (Table 11). These mappings were obtained by exploring external sources
and represent a net contribution to the alignments derived by exploring only
information internal to the matched ontologies. Note that even if our technique
performs anchoring using techniques similar to those employed by the OAEI’06
tools (i.e., string based comparison), it can identify additional mappings by
exploring external sources. Similarly, Aleksovski et al. have shown that using
syntactic technique for anchoring and then performing a deduction step using

21 We assume that the relations extracted by the OAEI’06 tools correspond to equiva-
lences and consider only mappings with a confidence value greater than 50%.
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background knowledge leads to better performance than when these syntactic
techniques are applied directly between the two source ontologies [2].

9.2 Comparison with Background Knowledge Based Techniques

The performances of background knowledge based techniques described in the
literature were reported on different data sets, therefore we consider them only as
indicative. Unfortunately, S-Match only reports on recall values [16]. The tech-
nique of Aleksovski et al. was evaluated on a Gold Standard of mappings for 200
concepts and produced a precision of 76% (compared to 30% and 33% achieved
by two traditional techniques on the same dataset) [2]. The matching techniques
proposed by van Hage et al. yield a range of precision values for a manually
constructed Gold Standard: 17% - 30% when relying only on Google, 38% -
50% when taking into account the context given by the Google snippets, 53% -
75% when exploring a domain specific textual resource, and finally 94% when
validating the results of the domain specific extraction with the Google based
techniques [50]. We conclude that the 70% precision of our technique, which
could eventually be improved through better anchoring to reach 87%, correlates
with the performance of the other two techniques (75% - 76%). It is important to
note, that the techniques in [2] and [50] reached a high precision when exploring a
single, high-quality, domain specific resource (i.e., DICE [2], CooksRecipes.coms
Cooking Dictionary [50]) while our technique achieves comparable results when
automatically combining multiple, heterogeneous and generic ontologies. Indeed,
we have shown in Section 8 that a high number of ontologies (200 to 300) are
automatically discovered and combined.

This comparison indicates that the use of online ontologies leads to compara-
ble performance as when exploring carefully selected, domain specific background
knowledge. In addition, our hypothesis is that exploring multiple and dynam-
ically selected ontologies gathers necessary knowlegde that cannot be found in
a single, generic resource, even as broad as WordNet or Cyc. Indeed, Figure 4
in Section 8 supports this intuition by depicting that our alignments have been
obtained by exploring a few large resources (namely, TAP and SUMO), comple-
mented with a large number of smaller and more specific ontologies. In this line
of idea, a set of experiments have been performed to assess the additional knowl-
edge that online ontologies provide with respect to WordNet. We found that only
33% of the alignment obtained with S122 (2233 mappings) could have been ob-
tained with WordNet. These findings illustrate that our method maximizes the
coverage of background knowledge by exploring complementary, online sources
ranging from large, generic resources to small, domain specific ontologies.

10 Conclusions and Future Work

22 This alignment does not contain any WordNet based mappings because we could
not explore this ontology through Swoogle due to parsing errors.
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In this paper we describe and experimentally investigate an ontology match-
ing paradigm based on the idea of harvesting the Semantic Web. Hereby we
summarize our major conclusions and point out future work.

Two of our main findings suggest that the proposed paradigm is feasible (re
the first research question in Section 1). First, a baseline implementation of
the technique applied on a large-scale, real life data set has led to a precision
value of 70% for both strategies (Sections 6.1 and 7.1) which correlates with the
performance of other background knowledge based matchers (Section 9). Each
alignment has been obtained within two days by using average equipment. Given
the large size of the data set we consider this time performance reasonable and
appropriate for the scenario in which the alignment process took place. Second,
our core hypothesis that an alignment can be generated by exploring multiple
ontologies has been verified since our prototype has automatically selected and
reused between 200 and 300 online ontologies (Section 8). In a broader context,
these encouraging results indicate the potential of the Semantic Web for solving
real life problems [41].

We have experimentally assessed the core limitations of the current imple-
mentation (the second research question in Section 1) by investigating the fine-
grained research questions stated in Section 3. A first, major limitation of our
prototype is its simple, string comparison based anchoring (RQ1) which gener-
ated more than half of the false mappings for S1 (53%) and also had a significant
negative influence on the precision of S2 (Sections 6.2 and 7.2 ). Indeed, if these
mappings could be avoided the precision of S1 would increase from 70% to 87%.
Therefore, a high priority task is the design and implementation of an anchoring
mechanism that takes into account ontological context. Ongoing experiments
with an adaptation of the semantic similarity technique employed in [18] have
already lead to promising results [17].

Besides anchoring errors, another major source of false mappings (42% in the
case of S1) is the exploitation of online ontologies that contain modeling errors,
mostly related to an inaccurate use of subsumption relations to model generic
relations, roles and part-whole relations (Sections 6.2 and 7.2). These findings
indicate that the ontology selection mechanism should focus on the quality of
the selected ontologies (RQ2) rather than on their popularity as in the case of
Swoogle. Although already considered in the literature [51], the automatic eval-
uation of such qualitative features remains a challenging area of future work.
When investigating the frequency of contradictory mappings (RQ3) we found a
low number of simple contradictions (affecting only 8 out of 6425 pairs of labels –
Section 6.3). This suggests that the implementation of a mechanism for combin-
ing mappings from different ontologies would not significantly improve results. At
the same time, complex (alignment level) contradictions are more frequent than
expected, with our automatic incoherence detection mechanism identifying 306
base incoherences that corrupted the entire alignment (since incoherences were
inherited by several subclasses of generic concepts). Fortunately, these mappings
can be isolated and disposed of automatically, thus leading to the improvement of
the alignment (Section 6.3). We plan to integrate an incoherence detection step
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into the matcher so that problematic mappings can be identified and excluded
already during matching.

The third main research question stated in Section 1 refers to the relation of
the proposed paradigm with other ontology matching approaches. Already when
used as a stand alone matcher our prototype obtained precision values of 70%
(and potentially even 87% given a more sophisticated implementation) compara-
ble with the performance of state of the art matching tools (Section 9). Besides
a remarkable performance, the matcher is also complementary to existing tech-
niques and could be more beneficial when used in a hybrid matcher. Indeed, the
obtained alignment is complementary with the results of existing tools (those
used during the OAEI’06) i) by providing other relations than equivalences and
ii) by identifying a set of mappings that are semantically non redundant with the
union of all equivalence mappings obtained by the other tools. A hybrid matcher
combining these two types of techniques would derive as many mappings as pos-
sible with traditional techniques and then it would explore external background
knowledge for those entities about which not enough information exists to derive
a mapping. Such a hybrid method has the potential to considerably advance the
state of the art in ontology matching by exploring the Semantic Web.
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