Evaluating the Semantic Web:
A Task-based Approach

Marta Sabou', Jorge Gracia?, Sofia Angeletou’,
Mathieu d’Aquin!, and Enrico Mottal

! Knowledge Media Institute (KMi), The Open University, United Kingdom
{r.m.sabou, s.angeletou, m.daquin, e.motta}@open.ac.uk
2 IS Department,University of Zaragoza, Spain, jogracia@unizar.es

Abstract. The increased availability of online knowledge has led to the
design of several algorithms that solve a variety of tasks by harvesting
the Semantic Web, i.e., by dynamically selecting and exploring a mul-
titude of online ontologies. Our hypothesis is that the performance of
such novel algorithms implicitly provides an insight into the quality of
the used ontologies and thus opens the way to a task-based evaluation
of the Semantic Web. We have investigated this hypothesis by studying
the lessons learnt about online ontologies when used to solve three tasks:
ontology matching, folksonomy enrichment, and word sense disambigua-
tion. Our analysis leads to a suit of conclusions about the status of the
Semantic Web, which highlight a number of strengths and weaknesses of
the semantic information available online and complement the findings
of other analysis of the Semantic Web landscape.

1 Introduction

The recent growth of the Semantic Web [19] and the appearance of semantic
search engines such as Swoogle [11] and WATSON [9] that allow quick access
to online knowledge has had a considerable impact on the design of Semantic
Web applications. Indeed, there is a trend to move away from applications re-
lying on a small amount of manually selected semantic sources towards a new
generation of Semantic Web tools which dynamically select, reuse and combine
a multitude of heterogeneous, online available ontologies [20, 21]. This paradigm
of harvesting the Semantic Web has also inspired novel ways of performing a
variety of tasks. For example, Alani [1] proposes a method for ontology learning
that relies on cutting and pasting modules from online ontologies relevant to a
set of keywords. In [14] the authors rely on online ontologies to disambiguate the
senses of keywords used in a search engine query. Dynamically selected online
otologies play the role of background knowledge in ontology matching [26,27)
or can be used to semantically enrich folksonomy tag spaces [4,31]. The experi-
mental evaluations of these algorithms [4, 14, 27] are still at an early stage, but,
nevertheless, they provide strong evidence that the Semantic Web has reached a
critical point where it can be used as a valuable source of knowledge to perform
a variety of tasks.
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Our hypothesis is that an important benefit of such novel algorithms lies
in their potential use for evaluating the Semantic Web. Indeed, because they
reuse a multitude of online ontologies, they can provide valuable insights into
the qualitative aspects of these ontologies such as their suitability for a task, the
properties of their vocabularies or the quality of their conceptual structure.

Such a task-based evaluation of the Semantic Web complements current ef-
forts for evaluating (online) ontologies. Ontology evaluation has been a core
research topic from the early stages of the Semantic Web leading to a set of
approaches [6,16] distributed in two major categories. On the one side, a few
approaches exist, which are based on the manual assessment of a set of ontology
design criteria (e.g., OntoClean [15]). On the other side, there are many auto-
matic approaches, which evaluate different aspects of an ontology (e.g., vocab-
ulary, conceptual structure) by relying on different views of what constitutes a
good “quality” ontology [28]. For example, the quality of an automatically learnt
ontology can be judged in terms of its similarity to a manually constructed ontol-
ogy or to the corpus from which it was extracted. Or, adopting a task-based view,
the quality of an ontology can also be judged with respect to the performance
of a task that uses it [25].

With the growth of the Semantic Web, the focus of ontology evaluation efforts
has shifted towards online ontologies. Ontology selection methods [28] rely on
evaluating ontology aspects such as popularity [7, 11, 23], similarity to a domain
or set of keywords [2,7,11,23] and the richness of the internal structure [2,7].
Furthermore, several overviews of the Semantic Web as a whole focus on the
totality of online ontologies. Existing studies assess the size and growth rate of
online knowledge [10,19], as well as emerging trends in the adoption and use of
representation languages and their primitives [5, 8, 34]. While these findings are
important, they do not give an insight into the suitability of online ontologies to
be used for certain tasks. Hence, inspired by the paradigm introduced in [25], we
propose to perform a task-based evaluation of the Semantic Web by analyzing
the performance of novel algorithms that harvest it.

We test the feasibility and usefulness of such a task based evaluation approach
by detailing the lessons we have learnt about the quality of online ontologies
when they were employed to solve three different tasks: ontology matching (Sec-
tion 2), folksonomy tagspace enrichment (Section 3) and query disambiguation
(Section 4). We conclude in Section 5 with a number of observations about the
status of the Semantic Web that support our hypothesis and are complementary
to findings provided by similar studies of online ontologies [5, 8,10, 19, 34].

2 Case Study 1 - Ontology Matching

Ontology matching is the task of determining the relations that hold between
the entities of two ontologies [30]. In [26] we proposed a new paradigm to ontol-
ogy matching which relies on harvesting the Semantic Web: it derives semantic
mappings by dynamically selecting, exploiting, and combining multiple and het-
erogeneous online ontologies. For example, when matching two concepts labeled
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Researcher and AcademicStaff, the matcher would 1) identify (at run-time, dur-
ing matching) online ontologies that can provide information about how these
two concepts inter-relate and then 2) combine this information to infer the map-
ping. We distinguish two different strategies for deriving mappings [26]. In strat-
egy S1 the mapping can be provided by a single ontology (e.g., stating that
Researcher T AcademicStaff). In strategy S2 a mapping can be derived by rea-
soning with information spread over several ontologies (e.g., that Researcher C
ResearchStaff in one ontology and that ResearchStaff T AcademicStaff in an-
other). We performed a large scale investigation and evaluation of this matching
paradigm in [27] which provided a variety of insights into the quality of online
ontologies as described next.

2.1 Experimental Data and Results

For experimental purposes we used two large, real life thesauri®. The United
Nations Food and Agriculture Organization (FAO)’s AGROVOC thesaurus,
version May 2006, consists of 28.174 descriptor terms (i.e., preferred terms) and
10.028 non-descriptor terms (i.e., alternative terms). The United States National
Agricultural Library (NAL) Agricultural thesaurus NALT, version 2006, con-
sists of 41.577 descriptor terms and 24.525 non-descriptor terms. We used both
alternative and preferred terms in our experiments.

The matching process performed
by using strategy S1 (see imple-
mentation details in [26]) resulted
in a total of 6687 mappings (2330
subclass, 3710 superclass and 647

1407, 17%

disjoint relations) obtained by dy- 1353, 16%
namically selecting, exploring and | 13% 12'2.’;‘{)

combining 226 online ontologies. 113846 220‘%

Fig. 1 shows the contribution of 219, 3%

each of these ontologies to the 417,5% 902, 11%
alignment in terms of the number 697, 8%

of mappings to which each ontol-
ogy contributed and the percent- Fig.1: Contribution of the online ontologies
used by S1 to the alignment.

726,9%

age that this number represents.

Conclusion C1: Online ontologies are useful for the matching task.
Based on these results, we can already conclude that online ontologies are useful
to solve real life matching tasks. Indeed, if combined appropriately, they can
provide a large amount of mappings between the matched ontologies. Moreover,
in the next section we will show that the quality of the knowledge provided by
the Semantic Web allows us to produce a performance comparable with the best
performers among alternative approaches to ontology matching.

3 This data set was used in the “OAEI’06 food Thesaurus Mapping Task”,
http://www.few.vu.nl/~wrvhage/oaei2006/
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2.2 Quality of Online Ontologies

According to [25], the essence of a task based evaluation is that the quality of
an ontology correlates with the performance of the task in which it is employed.
In the case of matching this means that the precision of the alignment is an
indication of the quality of online ontologies explored to derive it.

To assess the quality of the knowledge provided by online ontologies we per-
formed a manual assessment of 1000 mappings (i.e., 15% of the alignment). We
relied on six members of our lab working in the area of the Semantic Web, and
thus familiar with ontologies and ontology modeling. We performed two paral-
lel evaluations of the sample mappings (i.e., each mapping has been evaluated
by two different evaluators). The participants evaluated each mapping as Cor-
rect, False or “Don’t know” when they could not judge the correctness of the
statement. We computed the precision of the obtained alignment as the ratio of
Correct mappings over all the evaluated mappings (i.e., those evaluated either
as Correct or False) and obtained precision values of 63% and 69% for the two
groups (see Table 1). To level out any differences, we also computed the precision
of the fraction of the alignment on which both groups agreed (i.e., 742 mappings,
74%). We consider the so obtained precision value of 70% as a typical baseline
performance that can be achieved by harvesting online knowledge.

Group 1|Group 2|Agreed by All
Correct 586 666 525
False 346 299 217
Don’t know 68 35 10
Precision 63% 69% 70%

Table 1. Evaluation results.

A manual inspection of the 217 false mappings on which both groups agreed
revealed that 114 (i.e., 53%) are due to our simplistic anchoring mechanism
(i.e., finding concepts in online ontologies that correspond to the matched con-
cepts). For example, in Table 2, ¢_6/43 labeled with Rams and referring to an
uncastrated adult male sheep* is put in correspondence with a similarly labeled
concept (ram), but which means Random Access Memory in the context of the
online ontology. An anchoring mechanism that could prevent us from deriving
these false mappings (thus reducing their number to 103) will imply an increase
in precision from 70% to 87%.

To fully understand the significance of these values, it is important to com-
pare them to the performance of other background knowledge based techniques.
However, the precision values we found in the literature were reported on differ-
ent data sets, therefore we can consider them only as indicative, and in addition
only S-Match reports on recall values [13]. The technique of Aleksovski et al.
was evaluated on a Gold Standard of mappings for 200 concepts and produced
a precision of 76% [3]. The matching techniques proposed by van Hage et al.

4 Definition from WordNet2.1.
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reach precision values of 53% - 75% when exploring a domain specific textual
resource [32]. Therefore, the 70% precision value (which could be potentially
increased to 87%) obtained by dynamically selecting and combining multiple,
heterogeneous and generic ontologies correlates with the precision of the other
two techniques (75% - 76%) when exploring a single, high-quality, domain spe-
cific resource (i.e., DICE [3], CooksRecipes.coms Cooking Dictionary [32]).

Conclusion C2: Online ontologies have a good quality and lead
to high precision alignments. We conclude that online ontologies have a
good enough quality to lead to alignments with a high precision value which
can rival alignments obtained with manually selected, domain specific resources
(e.g., ontologies, texts). Even more, our findings show that online ontologies
don’t only have a high quality when taken stand alone, but most importantly
their combined use also results in high quality alignments.

Error Nr./ Examples
Type % |AGROVOC| Labels |Rel.] NALT Labels
Concept Concept
Anchor 114, c_6443 Rams, Tups| C | memory memory
53% O;:ram C O;:memory
O1 = http://www.arches.uga.edu/~gonen/qos_bilal.owl
Subsumption| 40, c_395) [ Irrigation [ C [agriculture[ agriculture
as generic | 18% Oq:Irrigation C O;:SoilCultivation C Oq:Agriculture
relation O1 = http://sweet.jpl.nasa.gov/ontology/human activities.owl
Subsumption| 16, c_23995 [ Branches [ C [ trees [ trees
as 7% O1:Branch C O;:Tree
part-whole O; = http://site.uottawa.ca/~mkhedr/FuzzyOnto
c-11091 ‘ Garlic ‘ C ‘mgredients‘ ingredients
Subsumption| 11, Oq:garlic C O;:vegetable C O;:ingredient
as role 5% | O1 = http://cvs.sourceforge.net/viewcvs.py/instancestore/
instancestore/ontologies/Attic/pizza9.daml?rev=1.2
c_1693 [ Coal [ C [ mdustry [ industry
Inaccurate | 12, Os:coal C O;:industry
labeling 5% O1 = http://www.aifb.uni-karlsruhe.de/WBS/meh/
mapping/data/russiala.rdf
Different | 12, c2948 | Fishes [ J [ lobsters | lobsters
View 5% O1:Fish J O;:Marinelnvertebrate - O1:Crustacean _1 O1:Lobster
O; = http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf

Table 2. Examples of several types of false mappings. For each mapping we show the
names and labels of the matched concepts, the reasoning which lead to deriving the
mapping and the online ontology from which the mapping was derived.

2.3 Frequent Errors in Online Ontologies

While the use of online ontologies generally leads to correct mappings there
are also cases when false mappings are derived. Understanding the causes of
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false mappings can provide another interesting insight into the quality of online
ontologies, namely, the typical errors that lead to false mappings. Our inspection
of the false mappings revealed that 91 (i.e., 42%) are a direct consequence of the
following types of errors in online ontologies (see Table 2).

Subsumption used to model generic relations. One of the most common
errors was the use of subsumption as a way to model the fact that there exists
some type of relation between two concepts, e.g., Survey = Marketing,
Irrigation & Agriculture, Biographies T People. This case leads to 40
false mappings (i.e., 18%).

Subsumption used to model part-whole relations. Subsumption is also used
in several ontologies to model part-whole relations. These ontologies resulted
in 16 (7%) incorrect mappings, e.g., Branch C Tree, Leaf C Plant.

Subsumption used to model roles. We found 11 false mappings (5%) de-
rived because roles were incorrectly modeled as subclass relations, for ex-
ample, that Garlic, Leek C Ingredient (in fact, Leek is a Vegetable but in
some contexts it plays the the role of an ingredient).

Inaccurate labeling. We also found 12 cases (5%) when a correct subclass
relation introduced errors due to the inaccurate labeling of its concepts. For
example, O,° states that coal C industry, where coal refers to coal industry
rather than the concept of Coal itself. Similarly, for Database 3 Enzime in
0,9, Enzyme refers to an enzyme database rather than describing the class
of all enzymes.

Different Views. Finally, some of the explored ontologies adopted a certain
view on the relation of two concepts that was not in concordance with the
context of the mapping and/or the perspective of the evaluators. For exam-
ple, TAP considers lobsters kinds of Fishes, a perspective with which none
of the evaluators agreed.

Conclusion C3: Online ontologies contain modeling errors which
hamper the quality of the alignment. Most errors are due to the incorrect
use of subsumption to model generic relations, roles and meronymy.

2.4 Contradictory Statements in Online Ontologies

The novelty of techniques that harvest the Semantic Web lies in their ability
to combine information from multiple, different ontologies. As such, they need
to deal with potentially contradictory information supplied by different sources.
For example, in the case of ontology matching, contradictory mapping relations
could be derived between two concepts by relying on different ontologies. The
question is how frequent this phenomenon is, i.e., do different online ontologies
lead to contradictory mappings between two given terms?

To answer this question, we ran a modified variant of S1: for every pair of
concept labels we derive mappings from all the online ontologies that mention

® http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/data/russiala.rdf
S http://mensa.sl.iupui.edu/ontology/Database.owl
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AGROVOC|NALT | Nr. Subclass |Nr. Superclass| Nr. Disjunct
label label |relations (£>) relations (i) relations(é)
fruit tomato 0 3 1
sea river 0 1 2
energy light 0 1 1
meat seafood 0 2 12

mushroom | pizza 1 0 1
sea ocean 1 1 0

Table 3. Contradictory statements in online ontologies.

them. While we have discovered mappings between a high number of label pairs
(6425), the number of cases when contradictory mappings are derived is surpris-
ingly low and accounts to only six pairs (see Table 3).

Conclusion C4: Only few online ontologies contain contradictory
relations between two given concepts. Our preliminary observations indi-
cate that the correct mapping can normally be filtered out with simple statistical
means: the most frequently derived relation is likely to be correct.

2.5 Inconsistencies in Multiple Mappings Drawn from Different
Ontologies

In the previous section we have only looked n
at a rather basic form of contradiction, where Vegetable;
contradictory relations have been explicitly
stated between two items. As pointed out,
these cases appear to be very infrequent. How-
ever, if we go beyond relations between two
items and look at a number of mappings as
a whole, then inconsistencies arise more fre-
quently. Fig. 2 provides such an example, where Fig.2: Example of incoherence
Vegetable; is discovered to be disjoint with in mappings.

Fruit_(Food);, Tomatoes; is a subclass of both concepts and thus unsatisfi-
able: there cannot be any instance of T'omatoes;, since it would have to belong
to two disjoint classes at the same time.

Fruit_(Food);

c

Tomatoes;

As already said, this phenomenon of generating sets of inconsistent mappings
was more pronounced than expected. Indeed, our automatic incoherence detec-
tion mechanism has identified 306 base incoherences that corrupted the entire
alignment. A few mappings between very generic concepts with many subclasses
(e.g., Foods T Products, People C Agents) caused the majority of the inco-
herences. Fortunately, these can be isolated and disposed of automatically using
reasoning mechanisms, thus leading to the improvement of the entire alignment.

Conclusion C5: Because different ontologies rely on different views
or different contexts, they may contain contradictory information,
leading to inconsistent sets of mappings.
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3 Case Study 2 - Folksonomy Tagspace Enrichment

Social tagging systems’ are highly successful due to the ease of the tagging
process: users need neither to have prior knowledge or specific skills to use them
[18,35], nor to rely on a priori agreed structure or shared vocabulary. While folk-
sonomies (i.e., lightweight structures that emerge from the tag space) are easy
to create, they only weakly support content retrieval since they are agnostic to
the relations between their tags: a search for mammal ignores all resources that
are not tagged with this specific word, even if they are tagged with semantically
related terms such as lion, cow, cat. Most approaches which address this
problem [12, 29, 35] identify clusters of implicitly related tags (e.g., that mammal
and lion are related). Specia and Motta [31] go one step further by propos-
ing to make the semantic relations between tags explicit (e.g., that mammal is
more generic than 1ion). They envision a semantic enrichment algorithm which
complies with the paradigm of harvesting the Semantic Web by dynamically
exploring and combining multiple online ontologies to derive explicit relations
among implicitly interrelated tags.

A simplified version of the
enrichment algorithm has beer
experimentally investigated in

Dessert ——————————— Frut -—————————————— Vegetable
[4] by relying on the same -
implementation of relation dis{ Banana
d f 1 Kiwi  Lime
covery as used for ontology o Aople

matching in [26] (i.e., strat-
egy S1). Given a set of im-

Lemon
Grape

Berry

Strawberry Fomegranate

Orange \

Watermelon

Tomato

plicitly related tags, the pro-
totype identifies subsumption
and disjointness relations be-
tween them and constructs a semantic structure based on these relations. The
first experiments on tag sets identified in [31] led to suboptimal results due
to (1) the small size of the clusters (3-5 tags), (2) the low coverage of certain
tag types in online ontologies and (3) the limitation of the software (it only
identifies subsumption relations while most tags were related through generic

relations). Therefore, we ran a second set of experiments on larger tag clusters
identified with the Flickr API® around a handful of terms from domains that
are well-covered by online ontologies. In these cases the process resulted in rich

knowledge structures, such as for the tag cluster of Fruit in Fig. 3 (dotted lines
denote disjointness). The general conclusion of the study is that while online
ontologies can indeed be used to semantically enrich folksonomies, some of their
characteristics hamper the process, as described next.

Fig.3: Semantically enriched tag cluster for Fruit.

Conclusion C6: Online ontologies only weakly cover certain tag
categories, as follows:

" E.g., Flickr (http://flickr.com/), delicio.us (http://del.icio.us/).
8 http://www.flickr.com/services/api/flickr.tags.getRelated.html
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Novel terminology. Folksonomies are social artifacts built by large masses of
people. They dynamically change to reflect the latest terminology in sev-
eral domains and therefore greatly differ from ontologies which are usually
developed by small groups of people and evolve much slower. As such, it
is not surprising that many of the tags used in folksonomies, e.g., {ajax,
css}, have not yet been integrated into ontologies®. Identifying such novel
terminology has a great potential for the Semantic Web as it could represent
a first step towards updating existing ontologies.

Scientific terminology (e.g., plant taxonomy) can only rarely be found in
online ontologies. This could change however if large ontologies containing
such information (e.g., AGROVOC) would be made available online.

Multilingual tags. Both Flickr and Del.icio.us (but especially Flickr) contain
tags from a variety of languages and not only English. These tags are usu-
ally hard to find on the Semantic Web because the language coverage of the
existing ontologies is rather low. Indeed, statistics'® performed on a large
collection of online ontologies (1177) in the context of the OntoSelect li-
brary [7] indicate that 63% of these ontolgies contain English labels, while a
much smaller percentage contains labels in other languages (German 13.25%,
French 6.02%, Portuguese 3.61%, Spanish 3.01%).

Photographic jargon. Because Flickr is a photo annotation and sharing site,
many tags reflect terms used in photography, such as {nikon, canon, closeup}.
Unfortunately, this domain is weakly covered in the Semantic Web.

Our study also found that, like in the case of ontology matching (C5), online
ontologies can reflect different views and when used in combination can lead to
inconsistencies in the derived structures. For example, the structure in Fig. 3
states that Fruit is disjoint with Dessert. The validity of this statement depends
on the point of view we adopt since some would argue that fruits are desserts.
Such different views can have more serious consequences. For example, Tomato
is considered to be both a Fruit and a Vegetable. The first statement is valid
in a biological context, since a tomato is the fruit of a tomato plant, however,
normally one would classify tomatoes as types of vegetables. While such different
views can co-exist, the fact that Fruit and Vegetable are disjoint makes the
derived semantic structure inconsistent.

4 Case Study 3 - Word Sense Disambiguation

The goal of the Word Sense Disambiguation (WSD) task is to identify the appro-
priate sense of a word in a given context. Usually this task involves identifying
a set of possible senses and then filtering out the right one based on some simi-
larity algorithms. Existing approaches [17, 22, 24] exploit a given lexical resource
(mainly WordNet) or ontology (small set of ontologies) as sources of word senses

9 At the time of our experiments, March 2007.
10 http://olp.dfki.de/OntoSelect/w/index.php?mode=stats
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and then rely on one or more particular ontologies or corpora to compute se-
mantic measures. Because they require the selection of appropriate knowledge
sources a priori, these approaches are not suitable in cases when the domain
of the words to be disambiguated is determined at run time. This limitation is
addressed by a novel, unsupervised, multi-ontology WSD method [14] which 1)
relies on dynamically identified online ontologies as sources for candidate word
senses and 2) employs algorithms that combine information available both on
the Semantic Web and the Web in order to compute semantic measures.

For example, suppose that we want to disambiguate Java in the context
of “Indonesia Java”. In a first step, the algorithm identifies a set of possible
senses!! for each keyword by exploring online ontologies 12 and combines highly
similar senses to avoid redundancies. Table 4 shows the candidate senses for
Java and their characterization by their synonyms (i.e., Level 0) and superterms
(Level 1, in this case direct hypernyms). A second, disambiguation step consists
in computing a Google based semantic relatedness between Indonesia and each
involved term (e.g., Indonesia < Java, Indonesia < Island) and combining
the obtained values into a final [0,1] range score. The highest score indicates the
most appropriate sense, i.e., Java C Island in our case. While the large scale
evaluation of this method is still in progress, we can already summarize some
qualitative conclusions about the characteristics of online ontologies.

#Sense| Type | Level 0 Level 1 Score
1 concept| Java island 0.387
2 concept|java, coffee drink 0.251
3 concept java programming language| 0.116

Table 4. Disambiguation of Java in the context of “Indonesia Java”

Conclusion C7: Online ontologies provide a good source for word
sense definitions. A major benefit of relying on multiple, online ontologies is
that a much larger set of keyword senses can be discovered than in cases when
few, predefined resources are used. For example, many traditional methods fail to
disambiguate developer in “UML handbook for developers” because WordNet2.1
does not contain the word UML (acronym of Unified Modeling Language), nei-
ther the intended meaning of developer as someone who develops software. This
information is however available in online ontologies: UML is a concept in the
Book!? ontology (subsumed by SoftwareDesigns), and developer is a property
described as “Developer of software” in the DOAP'* ontology. As evident from
Table 5'° this extra information discovered at runtime in DOAP is crucial for
identifying the appropriate sense for developer.

11 Defined by the ontological context of the term: synonyms, hypernyms etc.

12 Tn addition to WordNet or any other local resource.

13 http://islab.hanyang.ac.kr/damls/Book.daml

' http://usefulinc. com/ns/doap

15 Level 1 here contains direct hypernyms for concepts and domains for properties.
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#Sense| Type | Source Description Level 0| Level 1 |Score
1 property| DOAP | “Developer of software |developer| project [0.293
for the project”

2 concept |[WordNet “photographic developer|photographic| 0.239
equipment ...” equipment
3 concept |[WordNet | “someone who develops|developer| creator 0.230

real estate”

Table 5. Disambiguation of developer in the context “UML handbook developer”.

Conclusion C8: Disambiguation results are influenced by model-
ing errors in online ontologies. However, due to its nature, the algorithm,
is only partially affected by the typical ontology errors described in Section 2.3
(see Table 6). Indeed, the disambiguation algorithm uses part of the ontologi-
cal context that characterizes a sense (e.g., subsumption, generic relations) in
order to restrict the semantic field of the sense and to distinguish it from other
senses of the same word. Such ontological information is used as a basis for relat-
edness computation and not exploited through formal reasoning as in the case
of ontology matching. Therefore, the algorithm is not affected by the quality
of formal modeling. For example, to characterize branch in its biological sense,
an incorrectly modeled part-whole relation (Branch C Tree) could lead to the
same disambiguation result as using a correct subsumption (Branch C Stalk).
Also, agriculture could be an acceptable context to distinguish irrigation as
supplying dry land with water from its medical sense. We conclude that error
types 1 and 2 do not affect intrinsically the algorithm. On the other hand, the
last three types of errors which associate a given term with other terms that do
not reflect its sense have a major influence on the algorithm. For example, in
Enzyme T Database, the inaccurate labeling could give unpredictable results
in the computed semantic measures. Also, the user could have different views
from some online ontologies (error 5) and thus obtain an undesired result.

Error Type Example Effect on algorithm?
1|Subsumption as generic relation|Irrigation & Agriculture No
2| Subsumption as part-whole Branch E Tree No
3 Subsumption as role garlic C ingredient Yes
4 Inaccurate labeling enzyme C database Yes
5 Different view lobster C fish Yes

Table 6. Sensitivity of disambiguation algorithm to frequent ontology errors.

Conclusion C9: Many online ontologies have a weak internal struc-
ture and thus hamper the performance of the method. For example, few online
ontologies contain synonyms or non-taxonomic relations. We even found ontolo-
gies containing no relations at all. As a result, our algorithm can identify richly
(e.g., extracted from WordNet) as well as poorly defined senses for the same
word. Such uneven semantic characterization has a negative effect on the algo-
rithm (which was built to compare similarly rich descriptions of senses) and can
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lead to suboptimal results. This insight in the general quality of online ontolo-
gies lead us to envision two important future changes. First, our tool should only
rely on senses extracted from semantically rich ontologies which could be identi-
fied using a ranking mechanism such as AKTiveRank [2]. Second, the semantic
measures we use should adapt to ontological contexts of variable richness (e.g.,
glosses should be given a high importance in ontologies with a poor taxonomy
but rich in descriptions).

Conclusion C10: Parsing errors and broken links further hamper
the functioning of the method. For example, from the 602 online ontologies
identified for describing 25 terms randomly extracted from a list of frequently
used keywords'®, 252 (42%) could not be correctly parsed into Jena'” models
due to parsing errors or broken links. Without being conclusive, this limited
example illustrates the proportion of the problem.

5 Conclusions and Future Work

The hypothesis put forward in this paper is that novel algorithms which harvest
online knowledge can facilitate a task based evaluation of the Semantic Web.
Accordingly, we report on quality characteristics of online ontologies determined
by analyzing the experimental results of three algorithms which solve divers
tasks: ontology matching, folksonomy enrichment and WSD.

The major conclusion that we derive based on the content of our observations
is that online ontologies have a great potential for being used in combination to
solve a wvariety of real life tasks. Indeed, combining knowledge from multiple
ontologies lead to a broad range of high quality mappings (C1) and to more
word sense definitions during WSD (C7). In the case of ontology matching, we
could also experimentally prove that the obtained alignment had a high preci-
sion, despite relying on more than 200 ontologies (C2). There are, however, some
undesired effects caused by combining knowledge from multiple sources. Even
if only in very few cases, contradicting statements can be obtained about two
given concepts (C4). Then, the first two case studies were affected by the fact
that online ontologies often reflect different views which can lead to incoher-
ent knowledge structures when combined (C5). Overall, however, these findings
deliver an important message: even at this early stage of development, the Se-
mantic Web is a powerful source of background knowledge that can be exploited
to successfully tackle real world tasks.

Besides providing task-centric conclusions, our approach also lead to obser-
vations about other aspects of online ontologies. At a syntactic level, several
ontologies cannot be accessed due to parsing errors and broken links (C10). Sec-
ond, regarding their vocabularies, online ontologies provide a weak coverage of
certain types of folksonomy tags, such as novel terms, multilingual tags or sci-
entific terms (C6). Third, we gained insight into major issues with the quality

16 http://www.google.com/press/zeitgeist monthly.html
7 http://jena.sourceforge.net/
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of the knowledge structures of online ontologies. We found that many have a
weak (or no) structure and thus hampered the WSD method (C9). Even more
worryingly, we identified a set of modeling errors, mostly related to the misuse
of subsumption relations, which affected (to different degrees) both the formal
reasoning based matching algorithm (C3) and the WSD process (C8).

While our conclusions provide a better understanding of the current state of
the Semantic Web (complementary with the conclusions of other similar stud-
ies [5, 8,10, 19, 34]), they could further benefit the research community as follows.
First, we consider them as a proof that a task based evaluation is feasible and
useful, thus supporting the hypothesis of the paper. Therefore, we wish to pro-
vide a more formal model for performing evaluations in this manner. Second,
our findings have highlighted the need for novel evaluation methods that are
capable to automatically identify more subtle characteristics such as the quality
of the modeling [33]. Finally, these findings are valuable knowledge for those who
wish to (re-)design algorithms that harvest the Semantic Web in a way that they
maximally benefit from this rich and growing online knowledge repository.
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