
Schema Matching Using
Interattribute Dependencies

Jaewoo Kang and Jeffrey F. Naughton

Abstract—Schema matching is one of the key challenges in information integration. It is a labor-intensive and time-consuming
process. To alleviate the problem, many automated solutions have been proposed. Most of the existing solutions mainly rely upon
textual similarity of the data to be matched. However, there exist instances of the schema-matching problem for which they do not even
apply. Such problem instances typically arise when the column names in the schemas and the data in the columns are opaque or very
difficult to interpret. In our previous work, we proposed a two-step technique to address this problem. In the first step, we measure the
dependencies between attributes within tables using an information-theoretic measure and construct a dependency graph for each
table capturing the dependencies among attributes. In the second step, we find matching node pairs across the dependency graphs by
running a graph-matching algorithm. In our previous work, we experimentally validated the accuracy of the approach. One remaining
challenge is the computational complexity of the graph-matching problem in the second step. The problem instance we are facing is
the weighted graph-matching problem to which no efficient solution has yet been found. In this paper, we extend the previous work by
improving the second phase of the algorithm incorporating efficient approximation algorithms into the framework.

Index Terms—Schema matching, attribute dependency, graph matching.

Ç

1 INTRODUCTION

THE schema-matching problem at the most basic level
refers to the problem of mapping schema elements (for

example, columns in a relational database schema) in one
information repository to corresponding elements in a
second repository. While schema matching has always
been a problematic and interesting aspect of information
integration, the problem is exacerbated as the number of
information sources to be integrated, and hence, the
number of integration problems that must be solved, grows.
Such schema-matching problems arise both in “classical”
scenarios such as company mergers and in “new” scenarios
such as the integration of diverse sets of queriable
information sources over the web.

Purely manual solutions to the schema-matching problem
are too labor intensive to be scalable; as a result, there has
been a great deal of research into automated techniques
that can speed this process by either automatically discover-
ing good mappings, or by proposing likely matches that are
then verified by some human expert. In this paper, we
present such an automated technique that is designed to be
of assistance in the particularly difficult cases in which the
column names and data values are “opaque,” and/or cases
in which the column names are opaque and the data values
in multiple columns are drawn from the same domain. Our
approach works by computing the “mutual information”
between pairs of columns within each schema, and then

using this statistical characterization of pairs of columns in
one schema to propose matching pairs of columns in the
other schema.

To clarify our aims and provide some context, consider a
classical schema mapping problem where two employee
tables are integrated. How should we determine which
attributes in one table should be mapped to which
attributes in the other table? First, one logical approach is
to compare attribute names across the tables. Some of the
attribute names will be clear candidates for matching, due
to common names or common parts of names. Using the
classification given in [47], such an approach is an example
of schema-based matching [15], [46]. However, for many
columns, schema-based matching will not be effective
because different institutions may use different names for
semantically identical attributes, or use similar names for
unrelated attributes.

When schema-based matching fails, the next logical
approach is to look at the data values stored in the schemas.
Again referring to the classification from [47], this approach
is called instance-based matching [18], [32], [39]. Instance-
based matching also will work in many cases. For example,
if we are deciding whether to match Dept in one schema to
either DeptName or DeptID in the other, by looking at the
column instances, one may easily find the mapping because
DeptName and DeptID are likely to be drawn from
different domains. Unfortunately, however, instance-based
matching is also not always successful.

When instance-based mapping fails, it is often because of
its inability to distinguish different columns over the same
data domain and, similarly, its inability to find matching
columns using values drawn from different domains. For
example, EmployeeID and CustomerID columns in a table
are unlikely to be distinguished if both the columns use
similar IDs. By the same token, if the two tables use
different types of IDs for the same column, the traditional

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008 1393

. J. Kang is with the College of Information and Communication, Korea
University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea.
E-mail: kangj@korea.ac.kr.

. J.F. Naughton is with the Department of Computer Sciences, University of
Wisconsin-Madison, 1210 West Dayton Street, Madison, WI 53706-1685.
E-mail: naughton@cs.wisc.edu.

Manuscript received 12 Oct. 2007; revised 30 Apr. 2008; accepted 12 May
2008; published online 14 May 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-10-0498.
Digital Object Identifier no. 10.1109/TKDE.2008.100.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

instance-based approach will fail to identify the correspon-
dence between the two columns.

The technique we propose in this paper is also an
instance-based technique. However, it applies to the cases
where previously proposed techniques do not apply because
1) it does not rely on any interpretation of data values and
2) it considers correlations among the columns in each table.
We emphasize that our claim is not that our technique
dominates previously proposed techniques (it does not);
rather, since it applies where previous techniques do not
apply, it is a useful addition to a suite of automated schema
mapping tools.

To gain insight into our approach, consider the example
tables in Table 1. Suppose these tables are from two
automobile plants in different companies. Imagine that the
column names of the second table and data instances in
columns B and C are some incomprehensible values to the
schema-matching tools. Conventional instance-based match-
ers may find correspondence between the columns Model
and A due to their syntactic similarity. However, no further
matches are likely to be found because the two columns B
and C cannot be interpreted, and they share exactly same
statistical characteristics; that is, they have the same number
of unique values, similar distributions, and so forth.

To make progress in such a difficult situation, our
technique exploits dependency relationships between the
attributes in each table. For instance, in the first table in
Table 1, there will exist some degree of dependency
between Model and Tire if model partially determines the
kinds of tires a car can use. On the other hand, perhaps
Model and Color are likely to have very little interdepen-
dency. If we can measure the dependency between
columns A and B and columns A and C, and compare
them with the dependency measured from the first table, it
may be possible to find the remaining correspondences.

As we can see, an advantage of using dependency
relations in schema matching is that this approach does not
require data interpretation; that is, even if the data sets in
the schemas to be matched use different encodings, we can
still measure the dependency relations. As a result, our
proposed matching technique can be applied to multiple
unrelated domains without retraining or customization. We
refer to matching techniques that are not dependent of data
interpretation as uninterpreted matching, and make this
precise in the next definition.

Definition 1 (Interpreted versus uninterpreted matching).
Le t M1 ¼ matchðRðr1; r2; . . . ; rnÞ; Sðs1; s2; . . . ; smÞÞ a nd
M2¼ matchðRðr1; r2; . . . ; rnÞ; Sðf1ðs1Þ; f2ðs2Þ; . . . ; fmðsmÞÞ,
where Mi is a match result, match is a schema-matching
algorithm, R is a source schema of size n, S is a target schema
of size m, and finally fi is an arbitrary one-to-one function
applied to the values of column i in the target schema. We call

the given matching algorithm, match, an uninterpreted
matching if and only if the two match results M1 and M2 are
identical regardless of the function fi. Conversely, it is called
an interpreted matching if the two results are different.

In the following, it will also be useful to have the
following definition, which captures the notion of whether
the matching algorithm considers data elements in isolation
or their relationship to other data elements.

Definition 2 (Element versus structure matching). Struc-
ture-matching algorithms utilize the relationship between
columns in a table, while element-matching algorithms only
consider properties of individual columns.

Fig. 1 illustrates classification of schema-matching
techniques based on the use of data interpretation and
structural similarity. While all four classes of techniques are
valuable in different domains, we focus in this paper on
uninterpreted structure matching. We propose a two-step
technique that works in the presence of opaque attribute
names and values. In this paper, we are making the
following contributions:

. We introduce a new criterion, data interpretation, in
classifying schema-matching techniques. Along with
structural similarity, we classify schema-matching
techniques into four categories. Using this classifica-
tion, we identify a new problem class that has not
been addressed by existing techniques.

. We introduce a new two-step schema-matching
technique that takes into account the dependency
relations among the attributes.

. We reduce a schema-matching problem to a tradi-
tional graph-matching problem by capturing hidden
dependencies between attributes and structuring
them as a labeled graph.

. In order to deal with the computational complexity
of the graph-matching step, we propose several
efficient approximation algorithms that work for our
schema-matching framework.

. We validate our approach with an experimental
study, the results of which suggest that such an
approach can be a useful addition to a set of (semi)
automatic schema-matching techniques. Our experi-
ments also show that, by exploiting relationships
between columns, our techniques can do much
better than a technique that only considers statistical
properties of individual columns.

1394 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

TABLE 1
Two Tables from Car Part Databases

Fig. 1. Schema-matching technique classification.

The rest of this paper is organized as follows: Section 2
describes the two-step uninterpreted structure-matching
technique. Section 3 presents efficient approximate algo-
rithms for graph-matching problems arising in our problem
context. Section 4 validates the framework with an experi-
mental study. Section 5 presents related work. Lastly,
Section 6 concludes this paper and identifies future work.

2 UNINTERPRETED MATCHING

In this section, we describe in detail our uninterpreted
structure-matching technique. The algorithm takes two table
instances as input and produces a set of matching node pairs.
Our approach works in two main steps as shown below:

1. G1 Table2DepGraphðS1Þ;
G2 Table2DepGraphðS2Þ and

2. ðG1ðaÞ; G2ðbÞÞ GraphMatchðG1; G2Þ,
w h e r e Si ¼ input table, Gi ¼ dependency graph, ðG1ðaÞ;
G2ðbÞÞ ¼ matching node pair.

The function Table2DepGraphðÞ in the first step
transforms an input table like the one shown in Fig. 2a into
a dependency graph shown in Fig. 2c. The function
GraphMatchðÞ in the second step takes as input the two
dependency graphs generated in the first step and produces
a mapping between corresponding nodes in the two graphs.
The two steps are described in detail later in this section.

2.1 Preliminaries

To construct a dependency graph, we use mutual informa-
tion and entropy, which are defined as follows:

Definition 3 (Mutual information [16]). Let X and Y be two
attributes with alphabets @ and =, respectively. Consider some
joint probability distribution pðx; yÞ and marginal probability
distributions pðxÞ and pðyÞ over two attributes. We define the
mutual information of X and Y as

MIðX;Y Þ ¼
X
x2@

X
y2=

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ :

Definition 4 (Entropy [16]). Let X be an attribute with

alphabet @, and consider some probability distribution pðxÞ of

X. We define the entropy HðXÞ by

HðXÞ ¼ �
X
x2@

pðxÞ log pðxÞ:

Note that both entropy and mutual information are

functions of probability distributions and, thus, are inde-

pendent of the actual values of attributes. This property

allows them to be used in uninterpreted matching. Mutual

information describes the correlation between the two

attributes’ probability distributions using a nonnegative real

number. It measures the amount of information captured in

one attribute about the other. This becomes more intuitive

when we consider the relationship between mutual in-

formation and entropy. To explain this relationship, we need

one more basic definition, that of conditional entropy.

Definition 5 (Conditional entropy [16]). Let X and Y be two

attributes with alphabets @ and =, respectively. We define the

conditional entropy of X and Y as

HðXjY Þ ¼
X
x2@

X
y2=

pðx; yÞ log pðxjyÞ:

Conditional entropy HðXjY Þmeasures the uncertainty of

attribute X given knowledge of attribute Y . It is a

nonnegative real number and becomes zero when X ¼ Y
or when there exists a functional dependency from Y to X.

In these cases, no uncertainty exists for attribute X. On the

other hand, if the two attributes X and Y are independent,

the conditional entropy HðXjY Þ equals HðXÞ. We can now

redefine the mutual information formula using entropy and

conditional entropy:

MIðX;Y Þ ¼
X
x2@

X
y2=

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ ¼MIðY ;XÞ

¼
X
x2@

X
y2=

pðx; yÞ log
pðxjyÞ
pðxÞ

¼
X
x2@

X
y2=

pðx; yÞ log pðxjyÞ

�
X
x2@

X
y2=

pðx; yÞ log pðxÞ

¼
X
x2@

X
y2=

pðx; yÞ log pðxjyÞ

�
X
x2@

pðxÞ log pðxÞ

¼HðXÞ �HðXjY Þ ¼ HðY Þ �HðY jXÞ:

As we can see in the equation, mutual information

measures the reduction in uncertainty of one attribute due

to the knowledge of the other attribute. In other words, it

measures the amount of information that one attribute

contains about the other. It is zero when two attributes are

independent, and increases as the dependency between the

two attributes grows. Note that mutual information of an

attribute with itself (called self-information), MIðX;XÞ, is

equivalent to the entropy of X, i.e., HðXÞ.

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1395

Fig. 2. Two input table examples and their dependency graphs. A
weight on an edge represents mutual information between the two
adjacent attributes and a weight on a node represents entropy of
the attribute (or equivalently, self-information MIðA;AÞ). (a) Example
table S1. (b) Example table S2. (c) Dependency graph G1 of S1.
(d) Dependency graph G2 of S2.

2.2 Modeling Dependency Relation

Consider the example illustrated in Fig. 2. Figs. 2a and 2b
show two four-column input tables, and Figs. 2c and 2d
show the corresponding dependency graphs. The
Table2DepGraphðÞ function produces such dependency
graphs by calculating the pairwise mutual information
over all pairs of attributes in a table and structuring them
in an undirected labeled graph. For instance, each edge in
the dependency graph G1 (Fig. 2c) has a label indicating
mutual information between the two adjacent nodes; for
example, the mutual information between nodes A and B
is 1.5, and so on. The label on a node represents the
entropy of the attribute, which is equivalent to its mutual
information with itself or self-information. Hence, we can
model our dependency graph in a simple symmetric
square matrix of mutual information, which is defined as
follows:

Definition 6 (Dependency graph). Let S be a schema instance
with n attributes and aið1 � i � nÞ be its ith attribute. We
define dependency graph of schema S using square matrixM by

M ¼ ðmijÞ; where mij ¼MIðai; ajÞ; 1 � i; j � n:

The intuition behind using mutual information as a
dependency measure is twofold: 1) it is value independent;
hence, it can be used in uninterpreted matching and 2) it
captures complex correlations between two probability
distributions in single number, which simplifies the match-
ing task in the second stage of our algorithm.

2.3 Matching Strategies

In this section, we focus on the second half of the schema-
matching process: GraphMatchðÞ. Before we delve into
the main discussion, let us first examine the types of
cardinality constraints that we need to consider in schema
matching. Let A and B be two input schemas that we are
trying to match. We consider three types of cardinality
constraints:

. Bijective mapping ([1, 1]-[1, 1], in UML notation):
Each attribute in A has a unique match in B, and vice
versa. This corresponds to a case in which we know
that the tables that we are trying to map have the
same number of attributes, so the problem is just
finding a correspondence between the attributes.

. Injective mapping ([0, 1]-[1, 1]): Each attribute in A
has a unique match in B, while each attribute in B
either has a unique match in A or remains
unmatched. This corresponds to a case in which
we know that table A’s attributes are a subset of
table B’s, and so we have to discover this subset and
then decide how to map attributes within this
subset.

. Partial mapping ([0, 1]-[0, 1]): Each attribute in A
either has a unique match in B or remains
unmatched, and vice versa. This corresponds to the
most general and difficult case in which we do not
know which attributes of A map to B, nor do we
even know how many attributes of A map to B. In
this case, we need to find the best subset of attributes
of A to map to B, and also need to find how this
subset of A should be mapped.

In what follows, we will use distance metrics to evaluate
the quality of matching. A distance is assigned to each
instance of mapping between schema elements, and the
goal is to find a mapping that optimizes the distance, i.e.,
minimize it or maximize it, depending on how the distance
metric is defined. Bijective mappings and injective map-
pings both guarantee that all attributes in schema A will
find matches in schema B, whereas partial mappings do
not. Because of this, some distance metrics that work for
bijective and injective mappings do not work for partial
mappings. Let us formally define the class of such metrics:

Definition 7 (Monotonicity of distance metrics). Let A and
B be two dependency graphs with sizes (# of nodes) n and m,
respectively, where n � m. Let DpðA;BÞ be the distance of
best matching for two p node subgraphs of A and B. The
distance metric DpðA;BÞ is monotonic if and only if
DpðA;BÞ � (or �) Dpþ1ðA;BÞ for all graphs A and B,
and for all p in 1 � p � n� 1.

Monotonic metrics are not suitable for partial mapping
because they reach their best score after either one attribute
has been matched or all attributes have been fully matched
depending on their direction of monotonicity, and hence,
they will never produce a mapping in between (this
problem does not arise with the bijective and injective
mapping problems because the number of matches is
known by definition). To see this, suppose we are matching
two schemas Rðr1; r2; . . . ; rnÞ; Sðs1; s2; . . . ; smÞ. With a metric
whose cost increases monotonically as the size of matching
grows, some pair of columns will be chosen first as being
the best match; suppose this is ri matched to sj, and that the
cost of this match is c. With such metric, we can never
improve upon c, and the matching algorithm will just
return that the “best” match is ri and sj, in effect not even
considering matchings for additional columns.

This is not appropriate for the partial mapping problem.
Therefore, we need to be careful with metric selection in
case of partial mapping. In this paper, we consider two
basic distance metrics, one monotonic, the other not
monotonic. Clearly, these are not the only possible metrics,
and finding better metrics is an interesting area for future
research. Consider the following basic distance metric.

Definition 8 (Euclidean distance metric). Let A and B be two
equal size dependency graphs, and aij and bij be the mutual
information between the node i and j in graphs A and B,
respectively. Let m be an index that maps a node in graph A to
the matching node in graph B (i.e., mðnode in AÞ ¼
matching node in B). We define the euclidean distance
metric for graphs A and B as

DU
MðA;BÞ ¼

ffiX
i;j

ðaij � bmðiÞmðjÞÞ2
s

:

As we can see in the definition, the euclidean distance
metric is monotonic; that is, the distance between two input
graphs increases monotonically as the number of matches
increases. Hence, we cannot use the metric on partial
mapping problems. As we pointed out, we need a non-
monotonic distance metric for partial mapping. Here is one
such metric.

1396 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

Definition 9 (Normal distance metric). Let � be some positive
constant. Similarly, we can define the normal distance metric
for graphs A and B as

DN
M ¼

X
i;j

1� �
jaij � bmðiÞmðjÞj
aij þ bmðiÞmðjÞ

� �
:

In the second term of the subtraction, we normalized
the difference of two pairing mutual information values
by dividing by the sum of the two values. The intuition
behind this normalization is that, for example, mutual
information values 8 and 9 are likely to indicate a better
match than the pairs 1 and 2 because the relative error in
the latter is much greater than it is in the former. We refer
to this normalized term, jaij � bmðiÞmðjÞj=ðaij þ bmðiÞmðjÞÞ, as
normal distance.

The normal distance falls in the range of [0, 1] because
the mutual information is nonnegative real number. If we
assume the mutual information values are uniformly
distributed and we randomly choose two of them, the
expected value of normal distance is 1/3. Now, consider the
control parameter �. In case of � ¼ 3, the expected value of
whole distance metric becomes 0. In such cases, the
mapping of randomly chosen two attributes will not
contribute to the distance metric. Conversely, if the two
attributes map correctly, the mapping will positively
contribute to the distance metric.

By changing the parameter �, we can control the
behavior of the distance metric. As we increase the �
gradually from the original value, say 3, we will see the
random mapping assignments start to contribute negatively
to the distance metric. As a result, the matching returned
from the normal distance metric with large � is likely to be
more conservative than that with small �. In other words,
metric with large � returns smaller but high-confidence
candidate matches, while the metric with small � returns
larger but less confident candidates.

Now, recall that one of our goals was to determine if
mutual information matching is necessary, or whether
entropy-only mapping was sufficient. To address this issue,
we need an entropy-only version of the two distance
metrics.

Definition 10 (Entropy-only euclidean distance metric).

Let A and B be two tables with equal number of attributes, and
ai and bi be the entropies of attribute i in tables A and B,
respectively. Let m be an index that maps an attribute in
table A to the matching attribute in table B. We define the
entropy-only euclidean distance metric for tables A and B as

DU
EðA;BÞ ¼

ffiX
i

ai � bmðiÞ
� �2

s
:

Definition 11 (Entropy-only normal distance metric).

Similarly, we can define the entropy-only normal distance
metric for graphs A and B as

DN
E ðA;BÞ ¼

X
i

1� �
ai � bmðiÞ
�� ��
ai þ bmðiÞ

� �
:

The entropy-only matching works mainly in the same
way as the mutual information-based matching. It matches
the attributes across the two input tables by finding the
mapping that optimizes the entropy-only metric.

Let us now examine the search (or graph matching)

algorithms we will use. Because of the complexity of the

problem, an exact search algorithm may not be a pragmatic

solution. In practice, we can use an approximate search

algorithm that trades off the accuracy of matching and the

computational complexity. A large volume of literature has

been devoted to finding such efficient, yet accurate graph-

matching approximations. The two key questions that we

want to answer are as follows:

. Would the proposed schema-matching technique
work given the assumption that we have a perfect
graph-matching algorithm?

. Is there an efficient algorithm for our matching
problem?

The first question asks if the proposed framework is
technically sound to produce accurate matching. In the
experiments, we showed that using just the dependency
relations among attributes, the proposed framework suc-
cessfully produced high-accuracy matchings across tables.
The second question is if the task of matching two graphs
can be done efficiently. In order to address this problem, we
investigated several approximate graph-matching algo-
rithms that work for our problem context, as presented in
the following section.

3 WEIGHTED GRAPH-MATCHING ALGORITHMS FOR

SCHEMA MATCHING

In this section, we investigate efficient approximation
algorithms for the graph-matching problem in the second
step of our approach. We focus our discussion particularly
on the bijective mapping problem for two reasons. 1) The
solution to this problem can be used as an integral part of
the general solutions for the other two problems because
the other problems can be formulated with multiple
bijective mappings. For example, an injective mapping
between graphs S (m nodes) and T (n nodes, where
m > n) can be solved by finding an n node subgraph of S
that minimizes the bijective mapping distance to T . The
partial mapping problems can be formulated similarly. Of
course, this may not be an ideal solution for them.
Evaluating this approach versus approaches specifically
tailored to the injective and partial mapping problems is
an interesting area for future work. 2) The problem can be
formulated in a clean mathematical optimization frame-
work and because of that a large number of approxima-
tion algorithms have been developed. We will investigate
a spectrum of the solutions covering a wide range of
optimization techniques that can work for our problem
context.

The bijective mapping problem between two depen-
dency graphs S and T is essentially the problem of
finding a permutation matrix P that minimizes the
euclidean distance between the two dependency graphs’

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1397

adjacency matrices AS and AT , respectively, and can be
formulated as

minP2� AS � PTATP
�� ��2

F
;

where minx fðxÞ is a function that finds an x that
minimizes the fðxÞ, k � k2

F is a square of a euclidean norm
(or Frobenius norm, kAk2

F ¼
P

i;j a
2
ij), and � is the set of all

permutation matrices.
The above problem is known as a weighted graph-

matching problem (WGMP). WGMP is a purely combina-
torial problem, and it is generally very difficult to find an
exact 0-1 integral solution. The complexity of the problem is
largely dependent on the choice of metric being optimized.
However, we can show that, at the least, the general WGMP
includes the graph isomorphism problem, for which no
polynomial time algorithm has yet been found [25]. This
leads us to focus on finding an efficient approximate
algorithm that can produce a “nearly optimum” solution,
rather than finding an exact search algorithm.

In what follows, we introduce five weighted graph-
matching algorithms:

1. Umeyama’s eigen-decomposition (ED) approach,
2. linear programming (LP),
3. convex quadratic programming (QP),
4. hill climbing (HC), and, finally,
5. branch and bound.

All but branch and bound are approximate algorithms. The
first three are mathematical optimization approaches. The
next, HC, is a heuristic iterative improvement algorithm
and lastly, branch and bound is an exact search algorithm.
Other competitive algorithms based on simulated annealing
or deterministic annealing [27], [35], [50] were available, but
we rejected them because they require a user to select
tuning parameters manually, and we are seeking an
automatic solution in our application.

3.1 Eigen-Decomposition Approach

Umeyama [54] introduced a polynomial time approximate
algorithm for WGMP in the context of a vision problem. The
proposed algorithm relaxes the original problem of finding
the permutation matrix P to the problem of finding an
orthogonal matrix X that minimizes the metric. The
algorithm then finds an approximate solution for the
original problem by manipulating the solution obtained
from the relaxed problem. The relaxed problem can be
written as

minP2� AS � PTATP
�� ��2

F
� minX2� AS �XTATX

�� ��2

F
;

where � is a set of all permutation matrices, and � is a set of
all orthogonal matrices. Note that a permutation matrix is a
special case of an orthogonal matrix, i.e., � � �.

Now, let a1 > a2 > . . . > an and b1 > b2 > . . . > bn be the
eigenvalues of matrices AS and AT , respectively, and their
EDs be given by

UT
S ASUS ¼�S;

UT
T ATUT ¼�T ;

where �S ¼ diagðaiÞ and �T ¼ diagðbiÞ, and US and UT are
the orthogonal matrices that diagonalize AS and AT ,
respectively. The orthogonal minimizer X is obtained as
follows:

minX2� AS �XTATX
�� ��2

F

¼ minX2� UT
S ASUS � UT

S X
TUTU

T
T ATUTU

T
T XUS

�� ��2

F

¼ minX2� �S � UT
S X

TUT�TU
T
T XUS

�� ��2

F

¼ minX2� �T ��T�T�
�� ��2

F
;

where � ¼ UT
T XUS . Since the eigenvalues in the two

diagonal matrices �S and �T are ordered, to minimize the
above metric, � must be an identity matrix. The orthogonal
minimizer X is therefore, UTU

T
S .

If the two graphs, S and T , were substantially close each
other, the minimizer X ¼ UTUT

S would be approximately a
permutation matrix, and rounding it up to a permutation
matrix P of the original WGMP formulation would be
trivial. Unfortunately, however, in most practical cases of
our application, rounding up from X to P is not so
straightforward. Umeyama [54] proposed, first, to calculate
X0 ¼ jUTkUT

S j and then, to solve a linear assignment
problem over the new matrix X0 by treating X0 as a weight
matrix with entries representing weights associated with
each assignment of nodes from the graph S to T . A standard
assignment algorithm can be used to solve the assignment
problem. We used the Hungarian method [1] in our
experiments.

3.2 Linear Programming Approach

Almohamad and Duffuaa [3] introduced an LP approach
for the WGMP. Whereas Umeyama relaxed the permutation
matrix to an orthogonal matrix, their algorithm relaxes the
original problem of finding a permutation matrix P to the
problem of finding a doubly stochastic matrix X that
minimizes the distance between the graphs. A doubly
stochastic matrix X ¼ ðxijÞ has linear constraints as follows:

xij � 0;
X
i

xij ¼ 1;
X
j

xij ¼ 1; for all i and j:

Obviously, a permutation matrix is a special case of a
doubly stochastic matrix. Another interesting aspect of
this approach is that it optimizes the L1 distance metric
ðkAk1 ¼

P
i;j jaijjÞ and not the L2 (euclidean) distance

metric. This essentially makes it possible to formulate
WGMP as an LP optimization problem. The problem of
finding a permutation matrix P that minimizes the L1

distance between the two graphs S and T is

minP2� AS � PTATP
�� ��

1
:

Since P is a permutation matrix, the above can be
rewritten to

minP2� kPAS �ATPk1:

Now, we relax the problem by replacing P with a doubly
stochastic matrix X as

minP2� kPAS �ATPk1 � minX2� kXAS �ATXk1;

1398 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

where � is the set of all doubly stochastic matrices.
Reducing it to an LP problem, two goal variables U and V

are introduced such that

XAS �ATX þ U � V ¼ 0;

where U � 0 and V � 0. Now, WGMP can be formulated as
an LP problem as follows:

minX;U;V
X
i;j

U þ V

s:t: XAS �ATX þ U � V ¼ 0;X
i

xij ¼ 1;

X
j

xij ¼ 1;

X � 0; U � 0; V � 0:

Solving this linear program, we get a doubly stochastic
matrix X that minimizes the L1 distance between the two
graphs S and T . The resulting doubly stochastic matrix X

can be rounded up to a permutation matrix P by solving a
linear assignment problem over the matrix X, as was done
in the previous section.

3.3 Convex Quadratic Programming Approach

Anstreicher and Brixius [5] introduced a new bound for
the quadratic assignment problem (QAP) [14]. The new
bound is obtained by relaxing QAP to a convex QP
optimization problem. Schellewald et al. [52] showed that
WGMP can be reduced to QAP and solved QAP by
minimizing the new bound introduced in [5]. In much the
same way, we can relax WGMP directly to a convex QP
problem. Unlike the LP relaxation, we do not need to
choose an alternative metric. The relaxation process is
given below.

As was done in the LP formulation, we can rewrite the
original problem

minP2� AS � PTATP
�� ��2

F
;

to an equivalent form

minP2� kPAS �ATPk2
F :

Now, the problem of finding a permutation matrix P

is relaxed to a problem of finding a doubly stochastic
matrix X as

minP2� kPAS �ATPk2
F � minX2� kXAS �ATXk2

F :

Expanding the Frobenius norm square in the relaxed
problem, we get a quadratic formula with variables of xij.
The expanded quadratic formula can be written to

kXAS �ATXk2
F ¼ vecðXÞ

TQvecðXÞ;

where vecðXÞ represents a vector obtained by stacking the
columns of X on top of one another in the natural order,
and Q represents a coefficient matrix each entry of which
is a coefficient of a corresponding term from the
expanded quadratic formula. The matrix Q can be

directly calculated from the two adjacency matrices AS

and AT .
Finally, the QP formulation of WGMP is given below:

minX vecðXÞTQvecðXÞ

s:t:; �ixij ¼ 1;�jxij ¼ 1; X � 0:

Note that the coefficient matrix Q is positive semi-
definite, and therefore, the above formulation is a
convex quadratic program. A convex QP problem can
be solved efficiently using algorithms such as Interior-
Point methods [4], [55].

Solving this quadratic program, we get a doubly stochastic

matrix X that minimizes the euclidean distance between the

two graphs S and T . As was done in the previous two

approaches, we used the Hungarian method [1] in our

experiments to round up the resulting doubly stochastic

matrix X to a permutation matrix P .
Algorithm 1. Overview of branch and bound.

3.4 Hill-Climbing Approach

So far, we have considered three deterministic approxima-

tion algorithms for WGMP. All of them are based on the

relaxation of the original problem to an algebraic optimi-

zation framework. We now introduce a simple nondeter-

ministic, iterative improvement algorithm, HC [51].
The HC algorithm is simply a loop that moves, in each

state transition, to a state where the most improvement can
be achieved. A state represents a permutation that
corresponds to a mapping between the two graphs. We
limit the set of all states reachable from one state in a state
transition, to a set of all permutations obtained by one
swapping of any two nodes in the permutation correspond-
ing to the current state. The algorithm stops when there is

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1399

no next state available that is better than the current state.
As we can see, it is nondeterministic; depending on where it
starts, even for the same problem, the final states may differ.
To avoid being stuck in a local minimum after an
unfortunate run, the usual practice is to perform some
number of random restarts.

3.5 Branch and Bound Approach

Due to the combinatorial nature of the problem, an exact
search algorithm would hardly be practical, but we present
here one based on the branch and bound method [1] for
the purpose of comparison. As we will see in the
experiments, this approach cannot handle problems as
large as those handled by the approximate algorithms. Our
implementation of the branch and bound approach for
WGMP is shown in Algorithm 1.

The branch and bound in Algorithm 1 generates an
initial permutation for the mapping using a fast approx-
imate algorithm. It then constructs a permutation tree
using the initial mapping as the seed. It traverses the tree
in depth first order while improving the distance bound.
If the current prefix produces a distance worse than the
current bound, it branches to the next sibling without
exploring the subtree. When it reaches to the leaf it
computes the distance with the current permutation. If it
is better than the current bound, it updates the bound and
backtracks to the next available permutation.

So far, we have investigated algorithms for WGMP.
These algorithms take as input two dependency graphs
generated in the first step and find the mapping between
them. Among the three mathematical optimization algo-
rithms, the ED approach is the fastest. It runs asymptoti-
cally in the order of n3, where n is the number of nodes in
an input graph. The other two algorithms, LP and convex
QP approaches, run asymptotically in the order of n6 for the
same n. The branch and bound is obviously the slowest as it
performs the exact search. Lastly, the HC algorithm is a
heuristic interactive improvement algorithm, and its run-
ning time largely depends on the number of restarts, seed
selection, and the characteristics of gradient surface it
performs search on. The experimental validation of the
algorithms is given in the following section.

4 EXPERIMENTS

In this section, we present the results of schema-matching
experiments using our proposed approach. The validation is
performed in two steps. In the first step, we attempt to
address the first question (in Section 2) asking if the
proposed schema-matching framework works given the
assumption that we have a perfect graph-matching algo-
rithm. The experimental results for this problem are
presented in Section 4.1. In the second step, we address the
remaining question asking if there is an efficient algorithm
for our matching problem. The results for this problem are
given in Section 4.2.

4.1 Validating the Framework Using Exact Search

In this section, we validate the framework using exact
search in order to prove that the framework works
provided that a perfect graph-matching algorithm exists.

An exact search algorithm may not be an option in
practice but we used it for the experiments in this section
because we wanted to measure the accuracy of unin-
terpreted matching precisely and the use of approximation
might affect the measurement to some degree, due to the
algorithm’s own approximation error. We ran experiments
over two real-world data sets from different domains. For
each type of cardinality constraint, we performed a set of
experiments using different input and sample sizes.

4.1.1 Data Sets

We used real-world data sets from two different data
domains: medical data and census data. The medical data
set we used in our experiments contains patients’ lab exam
results for diagnosing thrombosis.1 Fig. 3a shows the
measured entropies of 30 randomly chosen attributes of the
thrombosis lab exam data, and Fig. 3c shows a fragment of
the first 10 (out of the 30) attributes’ data values. The
original table contains 12 years worth of patient exam
records, which is approximately 50,000 tuples, and each
tuple consists of 44 attributes representing test types. The
column data types are mostly numeric, and a significant
portion of the table is left blank (see attributes 15-30 in
Fig. 3a). Our basic experimental technique with the
medical data set was to range partition the original table
into two subtables based on exam dates (column 1) and to
use these two subtables for experiments. We “pretended”
that these subtables were two different tables that needed
to have their schemas mapped. Obviously, we “knew” the
correct answer for the mapping, but the mapping
algorithm did not.

For our second data set, we used census data. Figs. 3b
and 3d show attribute entropies and a table fragment from
the census data set, respectively. We used two state census
data files, CA and NY, in our experiments.2 Each table
consists of 240 attributes. We ran the experiments over a
randomly chosen set of 30 attributes. Note that in Fig. 3d,
attributes 8 and 9 are duplicated. The original census data
files have some number of duplicate columns and two of
them happened to be in the 30 attributes randomly chosen
for our experiments. Evaluating the match results, we did
not count mappings like NY 9 to CA8 a correct match;
therefore, the accuracy of matching was somewhat reduced
degree by these duplicate columns.

4.1.2 Bijective Mapping

Fig. 4 presents the results of bijective schema matching. We
ran the experiment while increasing the number of
attributes in two input tables to be matched. For each table
width, 2 to 20, we iterated the measurement 50 times with
randomly chosen subsets of attributes and averaged the
results. Entropy-only matching results (labeled ET) are also
presented to show the improvements obtained by taking
into accounts of correlations between the attributes, which
is given in the results of mutual information-based
matching (labeled MI). Furthermore, we tested both

1400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

1. PKDD 2001 Discovery Challenge on Thrombosis Data. http://
lisp.vse.cz/challenge/pkdd2001/.

2. US Census Bureau. ftp://ftp2.census.gov/census_2000/datasets/.

euclidean and normal distance metrics in both entropy-only
and mutual information matching.

Fig. 4a shows the precision of match results using

thrombosis lab exam 10,000 tuple samples. As we see in
Fig. 4a, match results obtained from narrow tables are better

than that from wider tables. As the tables get wider, the
precision of matching deteriorates. Comparing the two

matching techniques, the entropy-only matching combina-
tion shows much faster deterioration than mutual informa-
tion matching. The best performer was the mutual

information matching using the euclidean distance metric,
and the worst was entropy-only matching using the normal

distance metric.
Comparing two metrics, the euclidean distance metric

works better than the normal distance metric in both the
entropy-only and mutual information matching. We used

3.0 for the normal distance metric’s control parameter �.
However, the value of the control parameter has no effect

in the match results in this case. As we mentioned in
Section 2, the control parameter balances the precision

and recall of the match results. Both precision and recall
are, however, always the same in bijective mapping.

Fig. 4b shows the match results using the census data set
10,000 tuple samples. Although the overall precision is
slightly better, the results look quite similar to those
presented in Fig. 4a. Mutual information matching yielded
superior results to entropy-only matching and the euclidean
distance metric performed better than the normal distance
metric. Mutual information matching with the euclidean
metric produced a matching of approximately 93 percent
accuracy when two 20 column tables were matched, in
which on average, more than 18 attributes were correctly
matched while only two mismatched. On the other hand,
85 percent accuracy was achieved by entropy-only match-
ing using the same metric. In Fig. 4a with the lab exam data
set, we had 86 percent and 74 percent accuracy for mutual
information and entropy-only matching, respectively,
which can be interpreted as 3 and 5 misses out of 20 true
matches.

The results from census data were slightly better than
those of the lab exam data. One explanation for this can be
found in the entropy signature of the two data sets shown in
Fig. 3. In Fig. 3a, we can see that the last six attributes, from
25 to 30, have very low entropy values. These are the

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1401

Fig. 3. Attribute entropies of two data sets. (a) Thrombosis lab exam 10,000 (# of tuples) samples. (b) Census data 10,000 samples. (c) First
10 columns of Lab Exam 1 fragment. (d) First 10 columns of Census CA fragment.

Fig. 4. Bijective mapping results. (a) Thrombosis lab exam 10,000 samples. (b) Census data 10,000 samples.

columns in the original data that have mostly null values.
Because of the lack of information in them, these columns
do not contribute much to the match results. By contrast, in
the census data, only one such attribute exists, which is
attribute 14 in Fig. 3b.

4.1.3 Injective Mapping

Fig. 5 illustrates the results of schema matching with the
injective cardinality constraint. Fig. 5a shows the results
from thrombosis lab exam data, and Fig. 5b shows census
data. In this experiment, we kept the target schema size
constant at 22 attributes while increasing the source schema
size from 2 to 20 attributes. As was the case in the bijective
mapping experiments, the census data match result is
slightly better than that of the lab exam data. For example,
when the schema size reached 20, census data yielded
91 percent precision while lab exam data turned out only
80 percent.

In both data sets, mutual information matching out-
performed entropy-only matching. The precision of lab exam
data matching was improved approximately 31 percent
(from 61 percent in entropy only to 80 percent with mutual
information), while precision in census data improved
12 percent (from 81 percent in entropy only to 91 percent
for mutual information). We see that mutual information was
more helpful for the lab exam data than it was for the census
data. This is because in the lab exam data, more attributes
had similar entropy, so that entropy-only mapping was more
likely to get “confused.” Turning now to compare our two
metrics, euclidean and normal, the euclidean distance metric
yielded better results overall in both data sets.

To summarize the situation up to this point, we have
considered the performance of two matching methods and
two distance metrics, and the results have been consistent
with those in the bijective mapping case. However, there is a
notable difference: the precision of matching in the injective
case improves as the size of source schema increases, which
is the opposite of what we saw in the bijective mapping. We
turn now to explain this phenomenon.

Let us consider the matching as two-step process:
selecting a subset of attributes from the target schema and
searching for the correct permutation of this selected subset.
The reason that the injective experiments had better
performance with a larger source schema is that the first
step is harder than the second. If the first step was easy, the

results of the injective mapping experiments should have
looked similar to that of the bijective experiments.

Suppose that the second step always returned the correct
permutation. Then, the injective-matching problem reduces
to choosing the correct attribute subset from the target
schema. In fact, this assumption is not too far from the real
situation because, as shown in the bijective mapping results,
the second step indeed produces almost perfect results,
especially when the number of attributes is small. For
example, consider the case of finding 2 attributes out of
22 attributes. The total number of possible selections is 231,
and one of them is the correct selection and 40 others have
only one correct attribute (50 percent precision). The
remaining 190 selections yield no match (therefore, 0 percent
precision). Whereas, in case of finding 20 attributes out of
22, the maximum mismatch number is two; therefore, it will
achieve 90 percent precision in the worst case. Considering
this, it is easy to see why the precision improves in spite of
the fast growing search space.

4.1.4 Partial Mapping

Fig. 6 illustrates the results of schema matching with the
partial mapping cardinality constraint. Figs. 6a and 6c
show the precision and recall of the thrombosis lab exam
data results, and Figs. 6b and 6d shows the precision and
recall of the census data results, respectively. In this
experiment, we keep the size of both source and target
schema constant at 12 attributes while varying the
number of correct matches from 2 to 10 attributes. Unlike
previous two cases, partial mapping requires a nonmo-
notonic distance metric because in this case, the size of
source schema and the number of correct matches are not
necessarily same. For the same reason, both precision and
recall should be examined.

In this experiment, we used the normal distance metric
with three different control parameter values: one, four, and
seven. In Fig. 6a, MINormalð1:0Þ represents mutual
information matching using normal distance metric with
� ¼ 1, and so on. Unlike the previous two cases, it is not
easy to tell which approach dominates from the experi-
ments. In fact, the choice of � is dependent on the
application semantics. If an application prefers a small
number of candidates with high confidence, then a larger �
would be more suitable. In contrast, if the application is
willing to accept relatively low confidence in match

1402 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

Fig. 5. Injective mapping results. Target schema size is kept constant at 22 attributes while source schema size varying. (a) Thrombosis lab exam

10,000 samples. (b) Census data 10,000 samples.

candidates but wants as many probable matches retrieved
as possible, then smaller � should work better.

For instance, in Fig. 6a, MINormalð7:0Þ achieved
75 percent precision where the two input schemas contain
10 true matches, while the same metric turned out only
45 percent recall at the same point in Fig. 6c. In other
words, it produced candidate matches, 75 percent of
which were correct, and the number of correct matches in
the candidates was 45 percent of the number of total true
matches. On the other hand, MINormalð1:0Þ achieved
approximately 67 percent precision, while it turned out
75 percent recall at the same point in the graph. It is
intuitively clear that the normal distance metric with
� ¼ 1:0 returned a larger number of candidates than the
metric with � ¼ 7:0. The normal distance metric with
� ¼ 7:0 (where # of matching attributes ¼ 10) returned on
average 6 candidates, while the metric with � ¼ 1:0
returned more than 11 candidates.

As was the case in the previous two scenarios, the
performance on the census data set is slightly better than
that of lab exam data. In Figs. 6b and 6d, MINormalð4:0Þ
achieved approximately 75 percent precision and 79 percent
recall, where the number of matching attributes is 10.
Comparing two matching methods, in the lab exam data set,
mutual information matching improved entropy-only
matching results by approximately 24 percent in both
precision and recall, where the number of matching
attributes was 10 and � was 1.0. In case of census data
set, the improvement was 19 percent and 16 percent for
precision and recall, respectively, at the same data point in
Figs. 6b and 6d (i.e., # of matching attributes ¼ 10) using
� ¼ 4:0.

Unlike previous two scenarios, the search space for
partial mapping remains same throughout the experiments
with varying numbers of matching attributes. Although the
search space did not change, the accuracy of results
improved as the number of matching attributes increased.
The explanation given for the injective mapping scenario
applies here as well.

4.2 Evaluation of Approximate Matching Algorithms
for Schema Matching

In this section, we try to address the second question asking
if there is an efficient algorithm for matching that works for
our problem context. We present the experimental results
for evaluating the algorithms introduced in Section 3. We
examined the five algorithms:

1. Umeyama’s ED approach,
2. the LP approach,
3. the convex QP approach,
4. the HC approach, and finally,
5. the branch and bound algorithm.

For HC, we used five iterations, each from a randomly
chosen starting point, and chose the best result from the
five trials.

We implemented the algorithms using Matlab 6.5. A
commercial optimization package, Mosek Matlab Toolbox
V2.0 Build 20,3 was used for the LP and QP approaches.
We first formulated the WGMP as a linear or a quadratic
programming problem, and then solved them using the
optimization package. Experiments were performed on an

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1403

Fig. 6. Partial mapping results. The size of both source schema and target schema is set to 12 attributes, while the number of correct matches varies.

(a) Precision of lab exam mapping results (10,000 samples). (b) Precision of census data mapping results (10,000 samples). (c) Recall of lab exam

mapping results. (d) Recall of census data mapping results.

3. Mosek ApS. http://www.mosek.com/.

AMD Athlon XP 1.533 GHz machine with 1 Gbyte of
memory, running Windows XP Professional. We iterated
each experiment 50 times, and then averaged the results.

Fig. 7 presents the experimental results where we
compared the euclidean distances obtained from each
algorithm. Figs. 7a and 7b show the result obtained using
the census data set and the lab data set, respectively. Each
algorithm tries to find a mapping whose euclidean distance
is closest to the optimum. The branch and bound algorithm
is a special case. It is an exact search algorithm, and hence, it
finds always the optimum mapping whose distance is the
minimum among all possible mappings between the graphs.

The other four algorithms are approximate algorithms
and find suboptimal solutions. We can evaluate the
performance of an approximate algorithm by comparing
the distance of a mapping it produces, to the distance of the
optimum mapping produced by branch and bound.
Algorithms yielding a distance closer to the optimum are
the better performers. For experiments, we normalized the
input graphs by dividing the adjacency matrices by the
biggest entry in the two matrices.

In Fig. 7a, HC performed slightly better than the others
and ED was the worst performer. Similarly, in Fig. 7b, HC
outperformed the others and ED was the worst. The
differences between the algorithms are illustrated more
clearly in Fig. 8. Fig. 8 presents each algorithm’s relative
error measured against the optimum distance. The relative
error is the difference between the distance obtained from

an algorithm and the optimum distance, divided by the
optimum distance.

It is clear in Fig. 8a that for the census data the best
performer was HC and the next best performer was QP and
then, LP and finally, ED. The algorithms also performed
similarly for the lab data as shown in Fig. 8b. The only
difference between the results on the two data sets was that
the relative performance between QP and LP was not as
clear as it was in Fig. 8a.

The computational complexity of an algorithm is another
important factor to consider when we choose an algorithm.
An exact search algorithm such as branch and bound would
obviously be the best in terms of the accuracy but it could be
too slow for some of the large problems. Fig. 9 illustrates the
average running time of each algorithm. ED was the fastest
among all. LP and QP finished a 20-node graph matching in
slightly more than 1 second and a 25-node graph matching
in about 3 seconds to 4 seconds. HC with five random
restarts performed slightly better than both LP and QP.

Apparently, branch and bound was the slowest. In the
census data test, it finished the 20-node graph matching in
3.5 seconds and the 25-node graph matching in about
72 seconds, while in the lab data test, the same problems
took about 63 seconds and 601 seconds, respectively. The
execution time of branch and bound is largely dependent
on the input graphs. It runs faster with graphs that are
closer each other (note that two census graphs are closer
than lab graphs, see Fig. 7). It is because the distance

1404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

Fig. 7. Graph-matching algorithm performance comparison. Branch and bound represents the optimum distance matching. Others that are closer to

branch and bound are the better performers. (a) Census data result. (b) Lab data result.

Fig. 8. Relative error against optimum distance. (a) Census data result. (b) Lab data result.

between the graphs works as a bound for pruning the
permutation tree branch and bound traverses, and the
smaller bound is likely to prune more, earlier.

5 RELATED WORK

Most previous work on schema matching have focused on
developing interpreted matching techniques (see [48] and
[53] for survey). Such techniques are largely dependent on
identifying similarity in schema element names, common
representation formats, or common data domains. Because
our technique is based on uninterpreted matching, it can
complement existing techniques and can be combined with
traditional schema-matching systems.

Some proposed techniques employ machine learning.
Li and Clifton proposed a neural network-based schema-
matching prototype called SemInt [38], [39]. Berlin and
Motro proposed Automatch, a technique based on machine
learning with feature selection [9]. LSD and iMAP were
proposed by Doan et al. [17], [18], [19]. They employ
multistrategy learning to find mappings. He and Chang [29],
[30] introduced a holistic schema-matching technique for
discovering complex matches. Domshlak et al. [20] intro-
duced a method to aggregate the matching results from
ensemble of schema-matching algorithms. Although these
systems are flexible, they rely on data interpretation, and
therefore, they are not applicable to our problem domain.

Other work has considered rule-based schema matching.
These include TranScm [46] and ARTEMIS [15]. Both
TranScm and ARTEMIS are schema-based matching tech-
niques and our uninterpreted instance-based technique can
be combined with them to improve the accuracy of
matching. Some other techniques represent a schema in a
graph format and perform matching based on the structural
similarity of the two graph representations. Cupid [40] and
Similarity Flooding [41] fall into this category. Unlike our
scheme, both Cupid and Similarity Flooding rely on
schema-based structural similarity and, therefore, are not
applicable to our problem domain.

Meanwhile, though they are not targeted to schema
matching, many generic graph-matching algorithms have
been developed in the theoretical computer science litera-
ture [3], [27], [52], [54]. These algorithms can be tuned to
match our dependency graphs. We investigated some of
these graph-matching algorithms in Section 3.

There has been a big thrust in research on schema
mapping systems. Miller et al. introduced Clio [21], [23],

[28], [32], [43], [56] that creates a mapping between two
input schemas in an interactive fashion using user feedback.
It produces as a mapping a view definition (mapping
query) over the target schema. A metaquery engine then
executes the mapping query and translates the data from
the original schema onto the target schema. Our unin-
terpreted matching can complement Clio because Clio
focuses on finding correspondences between data instances
while uninterpreted matching focuses on finding mappings
between schema elements.

A good deal of research has been conducted on building
theoretical foundations of schema integration. Central to
these efforts has been work on the notion of “equivalence”
between two schemas [2], [6], [8], [34], [49]. Hull [34]
introduced a formal definition of “equivalence” and
“dominance” between two schemas, using relative informa-
tion capacity. Using the result in [34], Miller et al. [44], [45]
investigated a number of schema transformation and
integration scenarios, and for each scenario, proposed a
new definition of “correctness” that can be used in judging
transformed schemas’ correctness. Transformation from an
original schema to an equivalent form is correct if the two
schemas have identical information capacity (or expressive
power).

In our work, we used mutual information and entropy to
represent interaction between attributes. These concepts are
popular in the information theory community and have
been well accepted in other domains as well [16]. Although
we found that mutual information is an effective tool for
capturing dependencies in an uninterpreted manner, there
exist other ways that this could be accomplished. One
interesting approach would be to use Bayesian network
structure learning [24], [26].

Bayesian networks capture dependency (or sometimes
causal) relations between attributes in the form of condi-
tional probability distributions. Another possible approach
for capturing interaction between attributes would be to use
integrity constraint inference techniques to infer functional
and approximate dependencies among attributes [31], [33],
[37]. It would be interesting to see how these approaches
compare with our mutual information-based approach.

Finally, Bernstein et al. presented model management
scenarios in their vision paper [11] and recently extended it
to handle more expressive mappings and to include the
mapping runtime in the model management framework [12].
They proposed a unified framework for applications to
access underlying models using high-level operators such

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1405

Fig. 9. Execution time of algorithms. (a) Census data result. (b) Lab data result.

as Match, Merge, Compose, Inverse, and ModelGen. A
large body of research followed the model management
initiative implementing the proposed operators [7], [10], [13],
[22], [42]. The schema-matching technique reported in this
paper works as a Match operator in model management.
Developing remaining operators using our uninterpreted
method would be an interesting area for future work.

6 CONCLUSION

We have proposed a two-step schema-matching technique
that works even in the presence of opaque column names
and data values. In the first step, we measure the pairwise
attribute correlations in the tables to be matched and
construct a dependency graph using mutual information as
a measure of the dependency between attributes. In the
second stage, we find matching node pairs across the
dependency graphs by running a graph-matching algorithm.

To our knowledge, our work is the first to introduce
an uninterpreted matching technique utilizing interattri-
bute dependency relations. We have shown that while a
single column uninterpreted matching such as entropy-
only matching can be somewhat effective alone, further
improvement was possible by exploiting interattribute
correlations.

In this work, we also investigated approximation
algorithms for the matching problem and showed that an
efficient implementation can be possible for our approach.
Among the algorithms we evaluated, the HC approach
showed the most promising results. It found close to
optimal solutions very quickly, suggesting that the graph-
matching problems arising in our schema-matching domain
are amenable to HC.

A good deal of room for future work exists. In our
work, we have only tested two simple distance metrics—
euclidean and normal. It is possible that more sophisti-
cated distance metrics could produce better results. It
would also be interesting to evaluate other dependency
models using different uninterpreted methods.

ACKNOWLEDGMENTS

Correspondence should be addressed to Jaewoo Kang. The
authors would like to thank Jin-Yi Cai for helpful discus-
sion. This paper is a substantially extended version of the
authors’ previous conference paper in [36]. This research
was supported by US National Science Foundation Grants
CSA-9623632, ITR 0086002, and in part by Korea University
Grant, Microsoft Research Internet Services Grant, and the
Second Brain Korea 21 Project Grant.

REFERENCES

[1] Operations Research: Deterministic Optimization Models. Prentice
Hall, 1995.

[2] J. Albert, Y.E. Ioannidis, and R. Ramakrishnan, “Conjunctive
Query Equivalence of Keyed Relational Schemas,” Proc. 16th ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems
(PODS ’97), pp. 44-50, 1997.

[3] H.A. Almohamad and S.O. Duffuaa, “A Linear Programming
Approach for the Weighted Graph Matching Problem,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 5,
pp. 522-525, May 1993.

[4] E.D. Andersen and K.D. Andersen, “The Mosek Interior Point
Optimizer for Linear Programming: An Implementation of the
Homogeneous Algorithm,” Proc. High Performance Optimization
Techniques (HPOPT), 1997.

[5] K.M. Anstreicher and N.W. Brixius, “A New Bound for the
Quadratic Assignment Problem Based on Convex Quadratic
Programming,” Math. Programming, vol. 89, pp. 341-357, 2001.

[6] P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini, “Inclusion and
Equivalence between Relational Database Schemata,” Theoretical
Computer Science, vol. 19, pp. 267-285, 1982.

[7] P. Atzeni, P. Cappellari, and P.A. Bernstein, “Modelgen: Model
Independent Schema Translation,” Proc. 21st Int’l Conf. Data Eng.
(ICDE ’05), pp. 1111-1112, 2005.

[8] C. Beeri, A.O. Mendelzon, Y. Sagiv, and J.D. Ullman, “Equivalence
of Relational Database Schemes,” SIAM J. Computing, vol. 10, no. 2,
pp. 352-370, 1981.

[9] J. Berlin and A. Motro, “Database Schema Matching Using
Machine Learning with Feature Selection,” Proc. 14th Int’l Conf.
Advanced Information Systems Eng. (CAiSE ’02), pp. 452-466, 2002.

[10] P.A. Bernstein, T.J. Green, S. Melnik, and A. Nash, “Implementing
Mapping Composition,” Proc. 32nd Int’l Conf. Very Large Data Base
(VLDB ’06), pp. 55-66, 2006.

[11] P.A. Bernstein, A.Y. Halevy, and R. Pottinger, “A Vision of
Management of Complex Models,” SIGMOD Record, vol. 29, no. 4,
2000.

[12] P.A. Bernstein and S. Melnik, “Model Management 2.0: Manip-
ulating Richer Mappings,” Proc. ACM SIGMOD ’07, pp. 1-12, 2007.

[13] P.A. Bernstein, S. Melnik, and J.E. Churchill, “Incremental Schema
Matching,” Proc. 32nd Int’l Conf. Very Large Data Base (VLDB ’06),
pp. 1167-1170, 2006.

[14] R.E. Burkard, E. Cela, P.M. Pardalos, and L.S. Pitsoulis, The
Quadratic Assignment Problem. In Handbook of Combinatorial
Optimization, vol. 2. Kluwer Academic Publishers, 1998.

[15] S. Castano, V. Antonellis, and S. Vimercati, “Global Viewing of
Heterogeneous Data Sources,” IEEE Trans. Knowledge and Data
Eng., vol. 13, no. 2, pp. 277-297, Mar./Apr. 2001.

[16] T.M. Cover and J.A. Thomas, Elements of Information Theory. John
Wiley & Sons, 1991.

[17] R. Dhamankar, Y. Lee, A. Doan, A.Y. Halevy, and P. Domingos,
“iMAP: Discovering Complex Mappings between Database
Schemas,” Proc. ACM SIGMOD, 2004.

[18] A. Doan, P. Domingos, and A.Y. Halevy, “Reconciling Schemas of
Disparate Data Sources: A Machine-Learning Approach,” Proc.
ACM SIGMOD, 2001.

[19] A. Doan, P. Domingos, and A.Y. Levy, “Learning Source
Description for Data Integration,” Proc. Third Int’l Workshop Web
and Databases (WebDB ’00), pp. 81-86, 2000.

[20] C. Domshlak, A. Gal, and H. Roitman, “Rank Aggregation for
Automatic Schema Matching,” IEEE Trans. Knowledge and Data
Eng., vol. 19, no. 4, pp. 538-553, Apr. 2007.

[21] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa, “Data Exchange:
Semantics and Query Answering,” Theoretical Computer Science,
vol. 336, no. 1, pp. 89-124, 2005.

[22] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan, “Composing
Schema Mappings: Second-Order Dependencies to the Rescue,”
ACM Trans. Database Systems, vol. 30, no. 4, pp. 994-1055, 2005.

[23] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan, “Quasi-Inverses of
Schema Mappings,” Proc. 26th ACM SIGACT-SIGMOD-SIGART
Symp. Principles of Database Systems (PODS ’07), pp. 123-132, 2007.

[24] N. Friedman, I. Nachman, and D. Peer, Learning Bayesian Network
Structure from Massive Datasets: The “Sparse Candidate” Algorithm,
pp. 206-215, 1999.

[25] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[26] L. Getoor, B. Taskar, and D. Koller, “Selectivity Estimation Using
Probabilistic Models,” Proc. ACM SIGMOD, 2001.

[27] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm
for Graph Matching,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 4, pp. 377-388, Apr. 1996.

[28] L.M. Haas, M.A. Hernández, H. Ho, L. Popa, and M. Roth, “Clio
Grows Up: From Research Prototype to Industrial Tool,” Proc.
ACM SIGMOD ’05, pp. 805-810, 2005.

[29] B. He and K.C.-C. Chang, “Making Holistic Schema Matching
Robust: An Ensemble Approach,” Proc. 11th ACM SIGKDD Int’l
Conf. Knowledge Discovery in Data Mining (KDD ’05), pp. 429-438,
2005.

1406 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

[30] B. He, K.C.-C. Chang, and J. Han, “Discovering Complex
Matchings Across Web Query Interfaces: A Correlation Mining
Approach,” Proc. 10th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’04), pp. 148-157, 2004.

[31] K.-J.R.H. Mannila, “Dependency Inference,” Proc. 13th Int’l Conf.
Very Large Data Base (VLDB ’87), pp. 155-158, 1987.

[32] M.A. Hernandez, R.J. Miller, and L.M. Haas, “Clio: A Semi-
Automatic Tool for Schema Mapping,” Proc. ACM SIGMOD, 2001.

[33] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen, “Efficient
Discovery of Functional and Approximate Dependencies Using
Partitions,” Proc. 14th Int’l Conf. Data Eng. (ICDE), 1998.

[34] R. Hull, “Relative Information Capacity of Simple Relational
Database Schemata,” SIAM J. Computing, vol. 15, no. 3, pp. 856-886,
1986.

[35] S. Ishii and M. aki Sato, “Doubly Constrained Network for
Combinatorial Optimization,” Neurocomputing, vol. 43, nos. 1-4,
pp. 239-257, 2002.

[36] J. Kang and J.F. Naughton, “On Schema Matching with
Opaque Column Names and Data Values,” Proc. ACM
SIGMOD ’03, June 2003.

[37] J. Kivinen and H. Mannila, “Approximate Inference of Functional
Dependencies from Relations,” Theoretical Computer Science,
vol. 149, no. 1, pp. 129-149, 1995.

[38] W.-S. Li and C. Clifton, “Semantic Integration in Heterogeneous
Databases Using Neural Networks,” Proc. 20th Int’l Conf. Very
Large Data Base (VLDB ’94), pp. 1-12, 1994.

[39] W.-S. Li and C. Clifton, “SEMINT: A Tool for Identifying Attribute
Correspondences in Heterogeneous Databases Using Neural
Networks,” J. Data and Knowledge Eng., vol. 33, no. 1, Dec. 2000.

[40] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic Schema
Matching with Cupid,” Proc. 27th Int’l Conf. Very Large Data Base
(VLDB), 2001.

[41] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to
Schema Matching,” Proc. 18th Int’l Conf. Data Eng. (ICDE), 2002.

[42] S. Melnik, A. Adya, and P.A. Bernstein, “Compiling Mappings to
Bridge Applications and Databases,” Proc. ACM SIGMOD ’07,
pp. 461-472, 2007.

[43] R.J. Miller, L.M. Haas, and M.A. Hernandez, “Schema Mapping as
Query Discovery,” Proc. 26th Int’l Conf. Very Large Data Base
(VLDB ’00), pp. 77-88, 2000.

[44] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan, “The Use of
Information Capacity in Schema Integration and Translation,”
Proc. 19th Int’l Conf. Very Large Data Base (VLDB ’93), pp. 120-133,
1993.

[45] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan, “Schema
Equivalence in Heterogeneous Systems: Bridging Theory and
Practice,” Proc. Fourth Int’l Conf. Extending Database Technology
(EDBT), 1994.

[46] T. Milo and S. Zohar, “Using Schema Matching to Simplify
Heterogeneous Data Translation,” Proc. 24th Int’l Conf. Very Large
Data Base (VLDB), 1998.

[47] E. Rahm and P.A. Bernstein, “On Matching Schemas Automati-
cally,” The VLDB J., vol. 10, no. 4, Dec. 2001.

[48] E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” The VLDB J., vol. 10, no. 4, 2001.

[49] J. Rissanen, “On Equivalences of Database Schemes,” Proc. First
ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems (PODS ’82), pp. 23-26, 1982.

[50] K. Rose, “Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems,”
Proc. IEEE, vol. 86, pp. 2210-2239, 1998.

[51] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[52] C. Schellewald, S. Roth, and C. Schnorr, “Evaluation of Convex
Optimization Techniques for the Weighted Graph-Matching
Problem in Computer Vision,” Proc. 23rd DAGM Symp. Pattern
Recognition (DAGM ’01), pp. 361-368, 2001.

[53] P. Shvaiko and J. Euzenat, A Survey of Schema-Based Matching
Approaches, pp. 146-171, 2005.

[54] S. Umeyama, “An Eigendecomposition Approach to Weighted
Graph Matching Problems,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 10, no. 5, pp. 695-703, Sept. 1988.

[55] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.
[56] L.-L. Yan, R.J. Miller, L.M. Haas, and R. Fagin, “Data-Driven

Understanding and Refinement of Schema Mappings,” Proc. ACM
SIGMOD, 2000.

Jaewoo Kang received the bachelor’s degree in
computer science from Korea University, Seoul
in 1994, the MS degree in computer science
from the University of Colorado at Boulder in
1996, and the PhD degree in computer science
from the University of Wisconsin-Madison in
2003. He served as a faculty member in the
Department of Computer Science, North
Carolina State University before moving to
Korea University, where he is currently an

assistant professor of computer science in the College of Information
and Communication. His research interests in a broad sense include
understanding the fundamental aspects of building a large-scale
information system that can answer complex queries over a large
number of heterogeneous data sources. He focuses on tackling the
challenge particularly in data integration, query optimization, semistruc-
tured data management, Web mining, and biomedical informatics.

Jeffrey F. Naughton received the bachelor’s
degree in mathematics from the University of
Wisconsin-Madison and the PhD degree in
computer science from Stanford University. He
served as a faculty member in the Department of
Computer Science, Princeton University before
moving to the University of Wisconsin-Madison,
where he is currently a professor of computer
science. His research interests have focused on
improving the performance and functionality

of database management systems. He has published more than
100 technical papers and received the US National Science Founda-
tion’s Presidential Young Investigator award in 1991 and was named an
ACM fellow in 2002.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KANG AND NAUGHTON: SCHEMA MATCHING USING INTERATTRIBUTE DEPENDENCIES 1407

