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Abstract. Semantic Interoperability is a major issue for National Spatial data 
Infrastructures (NSDIs) and mapping across heterogeneous databases is 
essential for such interoperability. Mapping of schemas based on ontology 
mapping provides opportunities for semantic translation of schemas elements 
and hence for database queries across heterogeneous sources. Such semantics 
based mappings are usually human centered processes. This paper demonstrates 
semi-automatic mapping using semantic similarity values from an electronic 
lexicon. Lexical similarity of class names and class structures constitute 
knowledge base for mapping between two schemas. We employ semantic 
mapping based on synonym similarity matches from WordNet. We use 
heuristics based propagation of similarities using attribute mapping and 
superclass-subclass relations. The machine based similarity values are seen to 
be comparable to human generated values of mapping.  

Keywords: ontology, semantic mapping, lexical similarity, similarity 
propagation, heterogeneous databases,  

1   Introduction 

Spatial databases usually store information relating to different themes but also spatial 
information of the records. The spatial information, serves as the common geospatial 
domain for such databases serves as a central point of integrated usage of such data. 
Geographic Information Systems and more recently, Web Mapping Services (WMS) 
as promulgated by the Open Geospatial Consortium (OGC) [1], display geospatial 
data from such spatial databases. With increased possibilities of sharing of databases 
across domains and user groups based on frameworks such as geospatial web services 
and Spatial Data Infrastructures (SDIs), the need for resolving the semantic 
interoperability of data has been identified as a major requirement. National Spatial 
Data Infrastructures (NSDIs) can be considered as a typical testbed for semantic 
interoperability experiments across heterogeneous database users 
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    Semantic mapping across heterogeneous data sources is reported as a major 
requirement for National Spatial Data Infrastructures [2]. Such Infrastructures serve 
as a common interaction mechanism between multiple organizations which need to 
share geospatial data for their different applications. Figure 2 shows a typical scenario 
of data sharing in an NSDI with multiple (semantically heterogeneous) data sources 
being used. The traditional view of interoperability in an NSDI is based on mapping 
of information sources based on human based interaction and documentation. A 
strictly Top-Down approach advocating use of fixed class names can be seen as too 
rigid and impractical for actual use. On the other hand, schema mappings based on a 
bottom-up approach is difficult even if mappings can be achieved by organizations 
participating in the NSDI because  

(1) Schemas are continuously evolving  
(2) Human knowledge about semantics of the table names and attribute 
names are often not completely expressed in the names used. Therefore 
mapping should be seen as a probability based process. 
(3) It is not necessary that mappings exists always. In a probability based 
model this situation is equated with zero values. On the other hand it is not 
possible or necessary to have values for every mapping. Such cases where 
the mapping is not done should be equated to null values of probability of 
mapping. 

In addition to these observations about schema mappings of databases in an NSDI we 
also observe that organizations can join or leave the Infrastructure. Depending on this, 
new mappings need to be generated at times and older mappings need to evolve. 

Figure 1 Geospatial data usage scenario in an NSDI. The two types of data sources 
include geospatial data sources and attribute data sources. The semantics of the data source 
region S need not be same as that of the application region A 

S 

        
A 
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 It is imperative that a semi-automatic process of mapping of databases need 
to evolve. Ontology based mapping has been increasingly viewed as an engineering 
solution to the problems. Based on specifications of the conceptualizations [3] as a 
more generic layer above the schema specifications, ontologies serve as an 
intermediate step to specify and resolve semantics of the contents of a database 
system. Ontology based mapping allows us to generate schema translation rules [4]. 
Two categories of semantics can be differentiated in regard to  

(a) Classes or schema names and  
(b) Individuals or instances of the classes.  

While the later is by no means a trivial problem we state our approach based on 
semantics of the class or schema names. We aim to assist the generation of semantics 
based mapping for classes or schema names based on lexicon based similarity values. 
The approach is similar to the similarity flooding principle [5] but in our case, 
propagation of similarity values is somewhat restricted. It is based on heuristics such 
that class attributes and similarity values of superclasses and subclasses are reflected 
in the overall similarity values. The machine based values of similarity are compared 
to human generated values. 

1.1   Paper outline  

This section has provided the introduction and also explains the motivation of this 
work. Section 2 outlines the previous work in semantic mapping generation and 
describes the research problem at hand. Subsequently Section 3 describes the 
generation of lexical similarity values and their propagation based on attribute 
properties of classes and their superclass - subclass structures1. Finally in Section 4 
we analyze the similarity values vis-à-vis human generated values. Some conclusions 
and areas for future work are identified in the end. 

1.2   Motivation 

The motivation of our research is derived from efforts to achieve schema translations 
from heterogeneous databases that participate in the NSDI. Since the objective of 
sharing of resources in the NSDI is to maximize the usage of data and applications, 
the requirement of allowing semantics based translations of queries and data is 
primary in nature. We restrict our problems based on logical steps as follows: 
 
(i) To identify the translations (in the form of XQuery statements), which could be 
applied to interface semantically heterogeneous systems in the NSDI 
(ii) To generate such translations based on mappings between the ontologies of the 
two systems 
(iii) To semi-automate the process of mapping between the ontologies  

 

                                                           
1 The term Class Structure in this paper refers to three different constituents - the attributes of 

the class, its superclasses and subclasses.  
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The last step is rather the focus of this paper. Such Mapping between ontologies is 
dependent on both the explicit semantics of the class names or attribute names and 
also the implicit semantics of subclasses and superclass relations. When we consider 
the objective of translations it is important to have a directional mapping such that all 
members of the target schema mapped to the source schema as shown in figure 2. 

 

 

 

Figure 2 Ontology mapping between Target and Source. The different components of the 
Source ontology including layers, classes and their properties are mapped to each other. Layers 
can be considered as a group of classes. Classes can have inherited classes and so can layers. 
The relation between of layers and classes is not that of inheritance but rather that of 
aggregation. 

2   Generating Semantic mapping 

Semantic Mapping can be considered as process which generates rules for 
transformations between different data sources which do not necessarily have the 
same semantics for the same schema symbols. Schema symbols2, for our case consists 
of layer names, class names and property names. We also need to be clear that having 
different semantics for the same schema symbols also entails that sometimes 

1. Same symbols could have different meanings  
2. Different symbols could have the same meaning 
3. Some symbols in the first schema may not have corresponding symbols 

with the same meanings in second schema 
4. Some symbols in the first schema could correspond to more than one 

symbol in the second schema such that the meaning is conveyed by 
simple aggregation (or further complex functions of aggregation) of the 
multiple symbols in the second schema 

                                                           
2  We refer to schema elements as schema symbols to stress that these symbols have certain 

meaning and conceptualizations.  

Ontology OS1�                  OS1� OA1                    Ontology OA1 
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5. Some symbols in the first schema could correspond to part of a symbol in 
the second schema such that the meaning can be extracted fully from that 
corresponding symbol. 

6. Also some symbols in the first schema could correspond to multiple 
symbols in the second schema but combining aspect 4 and 5 above. 

 
Besides these we know that datatype heterogeneities (different datatype for the same 
schema component in different databases) are closely associated to the above contexts 
but we shall assume their absence for our case. 

As discussed in the introduction, we use ontology based mapping to achieve 
schema translations.  Now consider the situation described in figure 1 with attribute 
data source (S) and application (A). Here we have ontologies with elements 
corresponding to the different schema symbols – layers, classes, attributes as shown 
in figure 2. 

We assume existing ontologies (OS1, OS2…OSM) of the data sources and the 
applications (OA1, OA2…OAN). The aim of establishing semantic interoperability is 
now reduced to provide mapping (OS1� OA1…OSM � OSN). This higher level mapping 
is different from the XQuery-like physical level specification of mapping between 
schemas because it avoids datatype and other implementation constraints. The 
challenge here is to use an ontology of the database schemas and build up explicit 
mapping. Given two ontologies OS1�and OA1 (see figure 2) a mapping OS1� OA1 is a 
set of pairs (s,a) where s and a are concept contained in OS1�and  OA1 respectively. 
The mapping is complete and one-to-many. Any concept s maps to every concept in 
OA1w but with different intensities which is dependent on how similar it is to the target 
concept. When such similarities are taken into consideration while determining the 
matching we can assume the highest mapping value as 1 and lowest as 0. Thus a 
mapping is defined as a matrix of similarity values as below  

              
M[OS� OA] = {mS1A1, m S1A2,.. m S1An 

         m S2A1, m S2A2, … m S2An 

              ……  

                       m Sm,A1, m SmA2, … m SmAn} 
 

 such that  0 � m XY � 1    

(1) 

 
The values of semantic similarity are dependent on the notion of semantics which is 
employed. The similarity matrix can be used across ontologies if the notion of 
semantics is consistent.  

We discuss the previous work in the area of computing similarities for 
schema matching in the next section. Thereafter we explain the theoretical basis of 
our research problem. 
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2.1   Previous work 

Similarity based approach for schema mapping has been studied using different 
approaches. Shvaiko [6] has classified schema matching approaches and has 
discussed the heuristics based approaches both at structure and element level. The 
Similarity Flooding approach [5] as implemented in Rondo [8] utilizes a hybrid 
matching algorithm based on the ideas of similarity propagation. Schemas are 
presented as directed labeled graphs; the algorithm manipulates them in an iterative 
fix-point computation to produce mapping between the nodes of the input graphs. The 
technique starts from string-based comparison (common prefixes, suffixes tests) of 
the vertices’ labels to obtain an initial mapping which is refined within the fix-point 
computation. The basic concept behind the SF algorithm is the similarity spreading 
from similar nodes to the adjacent neighbors through propagation coefficients. From 
iteration to iteration the spreading depth and a similarity measure are increasing till 
the fix-point is reached. The result of this step is a refined mapping which is further 
filtered to finalize the matching process. 

Cupid [9] implements a hybrid matching algorithm comprising linguistic and 
structural schema matching techniques, and computes similarity coefficients with the 
assistance of a precompiled thesaurus. Input schemas are encoded as graphs. Nodes 
represent schema elements and are traversed in a combined bottom-up and top-down 
manner. Matching algorithm consists of three phases and operates only with tree-
structures to which no-tree cases are reduced. The first phase (linguistic matching) 
computes linguistic similarity coefficients between schema element names (labels) 
based on morphological normalization, categorization, string-based techniques 
(common prefixes, suffixes tests) and a thesaurus look-up. The second phase 
(structural matching) computes structural similarity coefficients weighted by leaves 
which measure the similarity between contexts in which individual schema elements 
occur. The third phase (mapping generation) computes weighted similarity 
coefficients and generates final mappings by choosing pairs of schema elements with 
weighted similarity coefficients which are higher then a threshold. Both Rondo [8] 
and Cupid [9] are important to our approach because they allow propagation of 
semantic similarity which is important to integrate the explicit and implicit semantic 
matching definitions stated previously. For a complete survey of other schema 
matching approaches see [6] and [10].  
 Lexical matching in ontologies has also been studied in detail in Semantic 
integration approaches using ontologies. A survey by Noy [10] separates matching 
approaches based on 
 

(i) shared upper ontologies based approaches and 
(ii) heuristics based machine learning approaches 

 
While both of the above are said to have advantages in different objective settings, the 
later is significant in the absence of a commitment to a shared upper ontology. The 
mappings in this case need to be stored as GAV or LAV similar to the approach in 
schema matching based on directional mappings [11] and with an overall objective of 
allowing query answering across heterogeneous data. The Heuristics based 
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approaches are reported to employ automatic or semi-automatic techniques by 
looking at 

• concept names 
• class hierarchies 
• property definitions  
• instance definitions 
• class descriptions (as Description logic statements)  

While instance based approaches such as GLUE [12] can be seen as helpful to 
understand the ontology commitment of the instances, the luxury of availability of 
time and access to the data instances cannot be assumed. Giunchiglia and Shvaiko 
[13] on the other hand use WordNet as a common source for grounding. Subsequently 
mappings such as generalizations, specializations, and disjointness are determined 
using a SAT prover. 

2.2 The ontology mapping problem 

An assessment of the problems of semantic interoperability in spatial data 
infrastructures can be seen in [14] Semantic mapping is reported to work at two 
levels- (1) explicit semantics of the schema elements and (2) implicit semantics 
resulting from schema structure including class hierarchies and attribute properties. 
We divide these based on the following definitions 
 
Definition 1. A mapping M is defined to be reflective of explicit semantics of the 
schema elements if and only if every schema element that maps to another schema 
element, can substitute the later in the absence of any schema structure.  
 
In a lexicon such substitution entails that one is a synonym of the other 
 
Example 1: For a mapping M [A, B] = {1, 0, 0, 1} where A={road, intersection} B = 
{street, crossing} we can say that it reflects explicit semantics of A and B if one could 
substitute ‘road’ by ‘street’ and ‘crossing’ by ‘intersection’. In WordNet [7] this 
condition would be true. Also if this criterion can be proved, the mapping can be 
termed as reflective of explicit semantics of the schema elements. 

 
Definition 2. A mapping M is defined to be reflective of implicit semantics resulting 
from super-class structures if and only if every element that maps to another element 
in the structure, has similar  super classes and attributes (Also the related super 
classes have the same criteria with respect to its own super-classes and attributes) 
 
Example 2: For a mapping M[A, B] = {1, 0, 0, 1}  where A and B have two 
elements each, let us assume one element of both A and B are sub classes of the other 
and represented in figure 3. Here only if the explicit similarity of attributes of 
element1 of A and element1 of B are higher M is reflective of implicit semantics of 
the super class structure. In this case the explicit similarity of attributes of Element 1 
of A and Element 2 of B should be 0 and so also that of attributes of element 2 of A 
and element1 of B. In regard to the implicit semantics of super-class we can say that 
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since element 2 of both A and B have similar super-classes, their own similarity value 
is higher than the original implicit value of similarity and explicit similarity of the 
attributes combined. 
 

 

 

Figure 3 Implicit semantics of the super class structure 

 
Definition 3. A mapping M is defined to be reflective of implicit semantics resulting 
from sub-class structures if and only if every element that maps to another element in 
the structure, has similar sub classes and attributes. Also the related sub classes have 
the same criteria with respect to its own sub-classes and attributes. 
 
Example 3: For a mapping M[A, B] = {1, 0, 0, 1}  where A and B have two 
elements each, let us assume one element of both A and B are sub classes of the other 
and represented in figure 4. The relation to similarity of attributes of Element1 and 
Element2 in both A and B is the same as explained in Example 2. In regard to the 
implicit semantics of sub-class we can say that since element 1 of both A and B have 
similar sub-classes, their own similarity value is higher than the original implicit 
value of similarity and explicit similarity of the attributes combined. (Note that here 
subclasses have same number of attributes although the significance of equal number 
of attributes cannot be considered as critical as is the case in Example 2) 

 
 

Figure 4 Implicit semantics of the sub class structure 
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Definition 4. A mapping M is defined to be reflective of complete semantics resulting 
from both schema structure and semantics of elements if and only if the mapping is 
reflective of implicit semantics of attributes, super-class and sub-class structures and 
explicit semantics of schema elements. 

Let us be clear that definition 1 does not qualify as a syntactic match of the labels 
of the schema elements. The substitutability sense implied here involves semantics 
and implied meaning of the label. This may not be clear from the label name alone 
and usually requires a more verbose description. Secondly since definition 4 can be 
seen as a combination of the other three definitions, we define our problem stepwise: 
to obtain mappings which are reflective of  

a.   Explicit semantics of the schema elements 
b.   Implicit semantics of the super-class schema structure 
c.   Implicit semantics of the sub-class schema structure   

3 Semantic mapping generation 

We describe the approach of generating the semantic mapping as a three step process, 
namely (i) generating values of lexical similarity based on synonym relations (ii) 
propagating the similarity values for sub classes and similarly for superclasses (iii) 
combining the values of step (ii) to obtain the most similar classes and attributes (of 
the source ontology) for each class and attribute of the target ontology. We describe 
each step as below. 

3.1 Generating Lexical similarity values 

Definition 5 Lexical similarity S is a function defined between two element names x 
and y where  

S(x,y)= � (measure of the distance of the two words in a lexicon)  
Such that 0 � S(x, y) � 1 
 
Remark 1 � is a weigthage function that we employ to sensitize our similarity 
function for optimality conditions. The measure of distance on the other hand is 
computed as the (d)-4 where d is the number of nodes traversed in the graph of the 
lexicon (say WordNet). In case d is null or zero we assign a zero value to the measure 
of distance. 

Lexical similarities are computed as binary values between two schemas 
components based on their corresponding entries in the lexicon. We assume a GAV 
approach by computing mappings for each target ontology. In the absence of a 
corresponding entry in the lexicon or in the case where there is no lexical relation we 
assume that d is null and zero respectively. Since there are two types of lexical 
relations in which we are interested (out of the 9 discussed by Evens and Smith [15]) 
we have lexical match algorithms for synonyms, hypernyms, and hyponym. For 
synonym relations the distance between two words is either 0 or 1 depending on their 
occurrence in a WordNet synset. For our case study the target ontology is that of 
Ordnance Survey UK [16] and source is OGC transportation schema (full version) [1]. 
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We list lexical similarities of class names based on synonyms in column 3 of table 1 
below.  

3.2 Propagation of similarities of attributes and superclasses 

If attributes of the target class have high similarity values with respect to certain 
attributes of the source class, such a mapping stands to be more attractive in 
comparison to any mapping where the attributes do not yield high similarity values. 
This is based on the definition of implicit semantics of superclass relations of 
definition 2 we can obtain a no penalty algorithm for computing the propagated 
similarity value as shown below. 
 

Figure 5 Algorithm for Propagation of similarity values of attributes and superclasses. 
,, βα φϕ ,  represent weightages of propagation 

For all attributes 
Obtain lexical similarity matrix Ma[OS� OT] for all attributes 

End For 
For all classes do 

Obtain lexical similarity matrix Mc[OS� OT]  such that class Tqc in OT has similarity 

value SpTqcm  with respect to class Spc  in source ontology OS 

 For all attributes (a1, a2,…an) of Tqc  do 

         If
βα
βα

+
+ )()( SpTqnSpTq acm

> )( SpTqcm then 

         

         )( SpTqcm =
βα
βα

+
+ )()( SpTqnSpTq acm

  

 End If 
 End For 
End For 
 
Set {ParentClassBasket} = Null 
 
While {ParentClassBasket} < OT 
   For all Classes in OT such that Parent Class Tqp  is in {ParentClassBasket} 

If  
φϕ
φϕ

+
+ )()( SpTqSpTq pmcm

> )( SpTqcm  then 

)( SpTqcm =
φϕ
φϕ

+
+ )()( SpTqSpTq pmcm

 

End If 
Include Tqc as member of {ParentClassBasket} 

   End For 
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In short this algorithm allows an increase of the similarity values if the combined 

value of similarity based on attribute similarity and thereafter, the superclass 
similarity has increased. The use of such weightages clearly shows the use of 
heuristics based measures. Table 1 below shows some values of improved similarity 
values using the propagation described above. 

Table 1:  Top class matches based on propagated values of similarity of supper classes 
and attributes 

3.3 Propagation of similarities of attributes and subclasses 

The propagation in this case is similar but uses subclass similarity values instead of 
the superclass similarity values. Results of the propagation are shown in the table 
below. 
 

Target Class )( Tqc  Source Class )( Spc  Lexical 
Similarity 

S(x,y) 

Propagated 
Similarity 

)( SpTqcm  

OS:RoadRouteInformation OGC:RailRoadRoute 0,6666667 0,766666667 

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211 

Target Class )( Tqc  Source Class )( Spc  Lexical 
Similarity 

S(x,y) 

Propagated 
Similarity 

)( SpTqcm  

OS:RoadRouteInformation OGC:RailRoadRoute 0,6666667 0,766666667 

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211 

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211 

OS:RoadPartiaRouteInformation OGC:RailRoadRoute 0,5714286 0,7 

OS:road OGC:RailRoadPoint 0,5 0,65 

OS:road OGC:RailRoadSegment 0,5 0,65 

OS:road OGC:RailRoadSwitch 0,5 0,65 

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667 

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667 

OS:roadInformationMember OGC:TransportationSegment 0,4047619 0,583333333 

OS:roadLink OGC:RailRoadStation 0,4 0,58 

OS:roadLink OGC:RailRoadPoint 0,4 0,58 

OS:roadLink OGC:RailRoadSegment 0,4 0,58 

OS:roadLink OGC:RailRoadRoute 0,4 0,58 

OS:roadNode OGC:RailRoadStation 0,4 0,58 

OS:roadNode OGC:RailRoadSegment 0,4 0,58 

OS:roadNode OGC:RailRoadRoute 0,4 0,58 

OS:roadNode OGC:RailRoadBridge 0,4 0,58 



 12 

OS:RoadPartiaRouteInformation OGC:RailRoadRoute 0,5714286 0,7 

OS:road OGC:RailRoadPoint 0,5 0,65 

OS:road OGC:RailRoadSegment 0,5 0,65 

OS:road OGC:RailRoadSwitch 0,5 0,65 

OS:road OGC:RailRoadStation 0,5 0,55000001 

OS:road OGC:RailRoadRoute 0,5 0,55000001 

OS:road OGC:RailRoadSignal 0,5 0,53 

OS:road OGC:RailRoadBridge 0,5 0,5 

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667 

OS:roadInformationMember OGC:TransportationSegment 0,4047619 0,583333333 

OS:roadLink OGC:RailRoadStation 0,4 0,58 

OS:roadLink OGC:RailRoadPoint 0,4 0,58 

OS:roadLink OGC:RailRoadSegment 0,4 0,58 

Table 2 Top class matches based on propagated values of similarity of subclasses and 
attributes 

3.4 Most similar mappings 

Generation of most similar mappings is based on a simple combination of the values 
generated from 3.2 and 3.3. We use weightages (50:50 and 70:30) to obtain two sets 
of most similar mappings. The basic lexical similarity values of both these mappings 
and also the attribute similarity propagation is same. The results are shown in the 
tables below.  
 

Target Class  Source Class Overall  Similarity  

   
 

OS:InformationPoint OGC:TransportationPath 0,591666667 
OS:InformationPoint OGC:TransportationPoint 0,723684211 
OS:road OGC:RailRoadPoint 0,65 
OS:road OGC:RailRoadSegment 0,65 
OS:road OGC:RailRoadSwitch 0,65 
OS:roadInformationMember OGC:TransportationSegment 0,583333333 
OS:roadLink OGC:RailRoadPoint 0,58 
OS:roadLink OGC:RailRoadSegment 0,58 
OS:roadLink OGC:RailRoadStation 0,58 

Table 3 Top class matches based on overall similarity 

 

)( Tqc )( Spc )( SpTqcm
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4 Analysis of machine generated similarity values 

Since the objective of generating similarity values is to assist in human based 
mapping and semi-automate the process of transformations, we need to analyze the 
generated values vis-à-vis human generated values of similarity in the absence of any 
assisting tool. The purpose here is to get an overview of how good the generated 
values are and also the presence of errors (which we shall group as false positives and 
false negatives) 

4.1 Human generated similarity values 

The human generated similarity values were obtained by a small experiment. A 
blank similarity matrix sheet, class-attribute list and the class diagrams of the 
ontologies A and T (Appendix) were made available to the subject. Three steps were 
followed 

(i) A score of similarity (binary value) was recorded for every class name of 
the target with respect to each class name of the target based on English 
meaning of the words. 

(ii) Two scores of similarity (binary values) were recorded for every class 
name of the target with respect to each class name of the target based on 
its position in the class structure. The first score is reflective of the 
subclass occurring in the class structure. Thus a class in the Target with 
same number of child classes and attributes as another class in the Source 
will have a higher score. The Second score is reflective of the superclass 
and hence if the target ontology superclass contains same number of 
attributes as the source ontology, it results in a higher score.  

(iii) The three scores which are recorded in the similarity matrix sheet are 
combined to obtain the most similar class and attributes. The basis of 
combination is not fixed but left to the judgment of the human so that if 
he/she feels that the English meaning of the word is more important for 
matching, the values of subclass structure and superclass structure can be 
ignore. By default an average of the three is taken. 

4.2 Performance parameters 

We can now compare the performance of our machine generated similarity values. 
Graph 1 shows the difference in similarity values expressed as percentages.  It 
should be remembered that the granularity of the human generated values is lower. 
Therefore it is more important to decide upon thresholds for the machine generated 
values in order to compare the two. Table 4, on the other hand, summarizes the top 10 
class matches obtained from the human based similarity values. The numbers in red 
are machine generated values lower than the threshold limits discussed. 
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Graph 1 Percentage difference of human and machine based similarity values. We can see 
that there is higher percentage change among lower values of machine based similarity  

 
False Positives: False Positives can be identified from the faulty values of the 
machine generated values. In our case this was 12.3% at t threshold of 0.50 and 
36.9% at a threshold of 0.40.  False positives were mainly seen in the cases where 
parts of the target class name existed as a part of the source class name.  

 
False Negatives: Table 4 below shows the top ten class matches. The lower three 
cases have low machine generated values which indicate that such matches would not 
quality for mapping between the schemas. Overall Percentage of False negatives has 
been observed to be 4% at a threshold of 0.30 although the occurrence is higher(25%) 
in the top 20 class matches based on human generated similarity values. 

 
Target Class  Source Class Machine   

Similarity  
   

 
OS:roadLink RailRoadRoute 0,58 
OS:roadLink RailRoadSegment 0,58 
OS:roadMember RailRoadStation 0,58 
OS:road RailRoadRoute 0,55 
OS:roadMember RoadLinearFeatureEvent 0,533333 
OS:roadLink TransportationPath 0,377778 
OS:ferryTerminal TransferCluster 0,267436 
OS:roadLink LinearFeatureEvent 0,169114 
OS:ferryTerminal RailRoadRoute 0,168297 

Table 4 Top ten matches based on human generated similarity values 

)( Tqc )( Spc )( SpTqcm
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5  Conclusions and Future work 

We have seen that lexical similarities of schema element labels and descriptions can 
help in ontology mapping. Along with similarity propagation based on heuristics 
allows integration of implicit semantics of the ontology structure and hence improves 
the mapping process. The propagation of similarity is directional in nature as opposed 
previous approaches [5,8,9]. However the experiments have also shown that there are 
problems with machine based similarity assessment.  

(i) The semantic similarity of individual words does not always provide a 
good indicator of the semantic similarity of group words. Since class 
descriptions were used for similarity assessment this led to false 
positives in many cases.  

(ii) Similarly although limited word senses were evaluated based on part of 
speech, word sense disambiguation would help to reduce number of 
false negatives. Such cases explain the occurrence of high percentage 
change of human generated similarity values among lower values 
machine generated values  

It is also important to note that use of heuristics and threshold values is critical in 
order to use the semi-automatic mapping approach. 

This is only the initial results from our efforts to allow transformations based 
on a semi-automated approach as discussed in the motivation. The whole exercise of 
ontology mapping can be seen in the context of ontology aware database management 
systems [17] and query answering across databases. Comparison of human generated 
values helps to see the utility of the approach. The main aspect of error prone and 
non-standard techniques followed in human based matching has not been out forth in 
this paper and is beyond the scope of this paper. We can assume that machine 
generated values provide an advantage. Future work in this area, therefore, has to 
involve a comparison of performance in human based mapping with and without the 
assistance of machine based values. 
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