
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

8 | P a g e
www.ijacsa.thesai.org

A Framework for Improving the Performance of

Ontology Matching Techniques in Semantic Web

Kamel Hussein Shafa’amri

Princess Sumaya University for Technology

Amman, Jordan

Jalal Omer Atoum

Princess Sumaya University for Technology

Amman, Jordan

Abstract—Ontology matching is the process of finding

correspondences between semantically related entities of

different ontologies. We need to apply this process to solve the

heterogeneity problems between different ontologies. Some

ontologies may contain thousands of entities which make the

ontology matching process very complex in terms of space and

time requirements. This paper presents a framework that

reduces the search space by removing entities (classes, properties)

that have less probability of being matched. In order to achieve

this goal we have introduced a matching strategy that uses multi

matching techniques specifically; string, structure, and linguistic

matching techniques. The results obtained from this framework

have indicated a good quality matching outcomes in a low time

requirement and a low search space in comparisons with other

matching frameworks. It saves from the search space from (43%

- 53%), and saves on the time requirement from (38% - 45%).

Keywords- Ontology matching; RDF statements;Semantic web;

Similarity Aggregation.

I. INTRODUCTION

In the current World Wide Web (WWW) computers and
machines have no idea about the semantic of the information
that are transferred through the web; the transferred
information are not machine understandable. The role of
computers is only to present the transferred information using
web browsers [19].

However, the next generation of the WWW is called a
Semantic Web. The role of the computers in the Semantic
Web is not only to present the information, but for the
computers to read and process the information in the
WebPages, and extract knowledge from this information.

The computer can understand the information in the
Semantic Web by using a data structure called Ontology.
Ontology provides a knowledge representation in a particular
domain; it defines concepts (classes and properties) in a given
domain, and shows the relationships between the defined
concepts [1], [19].

Different people may develop different ontologies that
describe a particular domain; this causes heterogeneity
problems between ontologies that describe the same domain.
In general different ontologies for a specific domain may use
different data formats, modeling languages and structures to
represent certain knowledge. The heterogeneity problem leads
to inability to get accurate search results in semantic web. For
example, some ontologies define a car as a “car” and another

ontologies define a car as an “automobile”, so if we write a
keyword “car” in a semantic web search engine then the result
of the search engine will be a list of all WebPages that are
based on ontologies that define car as a “car”, and this list will
not contain the WebPages that are based on ontologies that
define a car as “automobile”.

In general, ontology provides knowledge in a certain
domain to help the machines to make intelligent decisions.
Ontology consists of four components: concepts, object
properties, data properties and Individuals. In ontologies, we
can define RDF statements. An RDF statement consists of
three elements [1], [19]: Resource (Subject or Domain),
Object Property (Predicate or Property), Value (Object or
Range).

To solve the heterogeneity problem between ontologies,
we must apply a process called ontology matching process.
Ontology matching is the process of finding correspondences
between semantically related entities of different ontologies.
These correspondences stand for different relations such as
equivalence, more general, or disjointness, between ontologies
entities.

II. BACKGROUND

There are several types of matching techniques that are
used to find the correspondences entities between ontologies.
These techniques are string-based techniques, language-based
techniques and structural techniques [9].

Several ontology matching systems were developed to find
matched entities between different ontologies, such as Naive
Ontology Mapping (NOM) [7], PROMPT [15], Anchor-
PROMPT [14] and GLUE [5]. These previous systems take
two ontologies as inputs and use different ontology matching
techniques to test all entities of the first ontology with all
entities of the second ontology in order to find the matched
entities between the input ontologies [6]. So the search space
and time requirements of these previous systems are very
large.

To reduce the search space and time requirement of the
ontology matching process, we present in this paper an
ontology matching framework (system). This framework uses
a multi matching techniques specifically; string, structure, and
linguistic matching techniques, and depends on some
important features of ontologies; such as RDF statements and
class hierarchies.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

9 | P a g e
www.ijacsa.thesai.org

III. PROPOSED ONTOLOGY MATCHING FRAMEWORK

A. System Overview

As shown in Fig.1, the proposed matching system (PMS)
takes two ontologies as input, and determines the matched
entities (e.g. classes, object properties, data properties)
between these two ontologies. PMS compares entities of the
same type.

Specifically, it compares classes of ontology1 with classes
of ontology2, object properties of ontology1 with object
properties of ontology2, and data properties of ontology1 with
data properties of ontology2. PMS uses three types of
matching techniques, string and linguistic techniques in a
combined framework called "structure matching".

In order to reduce the search space of the matching
process, PMS is dependent on RDF statements and class
hierarchies which are the base components in ontologies. This
PMS matches RDF statements of ontology1 with RDF
statements of ontology2, and matches class hierarchies of
ontology1 with class hierarchies of ontology2.

The output of PMS is a set of matched entities with their
similarity values (confidence measures) each between 0 and 1.
All the entities that have similarity values greater than a pre-
defined threshold are considered to be correct matched
entities. And the output, also, includes the relationship types
between the matched entities (equivalence and subsumption).
The matching relationship is dependent on similarity values.
Our PMS focuses on one-to-one (1:1) and many-to-many (m:
m) match relationships, since they are the most commonly
used.

B. Structure of Ontology Matching Framework

The proposed system PMS has three stages: pre-
processing, matching process and post-processing.

1) Pre-processing
In this stage, PMS extracts the features of the input

ontologies. As shown in Fig.2, the system will read all RDF
statements and put them in a list that is called RDF statements
list. Each element in the RDF statements list will be one RDF
statement (subject, object properties, object).

Fig. 1. System Overview.

Fig. 2. Ontology Features Extraction.

Then, the system reads all leaves classes and their super-

classes and put them in a list that is called leaves-super list.
Each element in the leaves-super list will be an object that
contains a leaf class and its super classes. Finally, the system
reads all ontology classes and their data properties and put
them in data properties list. Each element in data properties
list will be an object that contains class and its data properties.

2) Matching Process
Structure matching consists of two stages; the first one

involves matching of RDF statements and the second one
involves matching of class hierarchies. Matching class
hierarchies also consists of two sub stages, matching of leaves-
super classes and matching of class-data properties.

a) Similarity Aggregation

In order to combine the similarity values of string matcher
and linguistic matcher, we use the following similarity
aggregation function [4]:

Where e1 is an entity of ontology1 and e2 is an entity of
ontology2, Simagg() is similarity combination of string
similarity Sims () and linguistic similarity SimL (), Ws is a
string weight and WL is a linguistic weight. Ws, WLЄ [0, 1]
and Ws + WL = 1. We used Ws = 0.3 and WL = 0.7. This
means that the linguistic matcher is more important than the
string matcher.

b) Matching RDF Statements

As mentioned earlier, an RDF statement has three
components (Subject, Object property, Object). PMS will
match every RDF statement in RDF-statements-list-A of
ontology1 with every RDF statement in RDF-statements-list-B
of ontology2 as illustrated in Fig.3.

PMS computes the similarity aggregation value of the
subject of an RDFstatement-A with the subject of an
RDFStatement-B, if their similarity aggregation value is
greater than the threshold value (matched subject) then it will
compute the similarity aggregation value of the object
property of an RDFStatement-A with the object property of an
RDFStatement-B. If their similarity aggregation value is
greater than the threshold value (matched object property) then
it will compute the similarity aggregation value of the object
of an RDFStatement-A with the object of an RDFStatement-B.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

10 | P a g e
www.ijacsa.thesai.org

Fig. 3. RDF Statements Matching Process.

 Also, PMS adds the tested subjects and objects to the tested
classes list, and adds the tested object properties to the tested
object properties list. Then, PMS checks if the object, subject
classes, and object properties were tested before, by searching
the tested corresponding list. These operations are done to
prevent computing similarity aggregation values for classes
(subjects and objects) and object properties more than once.

Finally, the system will add matched subjects and objects
with their similarity aggregation values to the matched classes
list, and will add matched object properties with their
similarity aggregation values to the matched object properties
list.

Matching RDF statements using this scenario will reduce

the search space of the matching process for the following

reasons:

 PMS ignores the object properties and the objects of RDF

statements if the subjects of RDF statements are not
matched.

 PMS ignores the object of RDF statements if the subjects

or the objects properties of RDF statements are not

matched.

The outputs of the matching RDF statement process are the
following four lists:

1) Matched classes list.

2) Matched object properties list.

3) Tested classes list.

4) Tested Object Properties List.

c) Matching Class Hierarchies

In PMS, there are two types of class hierarchies, the first

one leaves-superClasses and the second one class-data

property. Each type has its own matching process.

 Matching leaves-superClasses

In this stage, PMS reads four lists; two lists are outputted
from the previous process (Matching RDF Statements), which
are the matched classes list and the tested classes list. And the
other two lists are the leaves-superList-A of ontology1 and the

leaves-superList-B of ontology2. Then, PMS will apply the
matching process as illustrated in Fig.4.

PMS computes the similarity aggregation value of the leaf
in leaves-superList-A with the leaf of leaves-superList-B, if
their similarity aggregation value is greater than the threshold
value (matched leaves) then it will compute the similarity
aggregation value for all super classes of the matched leafs.

Also, PMS adds the tested leaves classes and super-classes
to tested classes list. Then, PMS checks if the leaves and
super-classes were tested before, by searching the tested
corresponding list. These operations are done to prevent
computing similarity aggregation values for classes more than
once.

Matching leaves-super classes using this scenario will
reduce the search space of the matching process because PMS
ignores the super-classes if the leaves are not matched.

The outputs of the matching leaves-superClasses process
are the following two lists:

1) Matched classes list.

2) Tested classes list.

 Matching Class-data Property

In this stage, as illustrated in Fig.5, PMS reads three lists:
matched classes list, dataProperties list-A of ontology1 and
dataProperties list-B of ontology2. Data Properties list
contains objects. Each object presents a class and its data
properties. PMS check every pair of matched classes in the
matched classes list, if they have data properties.

Also, PMS adds the tested data properties to tested data
properties list. Then, PMS checks if the data properties were
tested before, by searching the tested corresponding list. These
operations are done to prevent computing similarity
aggregation values for data properties more than once.

Again, matching class-data property using this scenario
will reduce the search space of the matching process because
the system will ignore the data properties of non-matching
classes, and the system will try to match the data properties of
matched classes only.

Fig. 4. Leaves-SuperClasses Matching Process.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

11 | P a g e
www.ijacsa.thesai.org

Fig. 5. Data Properties Matching Process.

The outputs of the matching Class-data Property process
are the following two lists:

1) Matched data properties list.
2) Tested data properties list.

d) Final Outputs of the Matching Process

The final outputs of the PMS will be three lists as follows:

 Matched classes list.

 Matched object properties list.

 Matched data properties list.

3) Post-Processing
In this stage, the PMS assigns matching relationship R to

the matched entities (Classes, Object properties, Data
properties) according to their similarity value [9].

 If Simagg (e1, e2) = 1 then R is the equivalence

relation.

 If Simagg (e1, e2) ≥ threshold then R is a
subsumption relation.

Where Simagg (e1, e2) is the similarity aggregation value
between matched entities e1 and e2.

4) String Matcher Implementation
For string matchers, the PMS uses Levenshtein distance

similarity measure [17] and soundex similarity measure [17],
[22] in combined manner as follows:

5) Linguistic Matcher Implementation

For linguistic matchers, the PMS uses Wordnet similarity
measures of Wu & Palmer similarity measure [18] and path
similarity measure [20] in combined manner as follows:

IV. PROPOSED FRAMEWORK EVALUATION

There are two types of evaluations that are used to evaluate
the PMS. The first evaluation is done by counting the number
of tested entities that were tested and by computing the time
requirement that are needed by the system to find the matched
entities. The second type of evaluation is based on compliance
measures to evaluate the quality of the matched results.

A. Compliance Measures

Following the work in [8], Compliance Measures are used
to evaluate the degree of compliance of the results of matching
algorithms. Compliance measures consist of three measures
Precision, Recall and F-measure. These measures are used to
evaluate the quality of the matching process and its results.
Precision and Recall are based on the comparison of an
expected result provided by a reference alignment and the
effective result of the evaluated system. Finally, F-measure
combines the measures of Precision and Recall as single
efficiency measure.

B. Traditional Matching System

For the purpose of evaluating our PMS we have developed
a matching system called (Traditional Matching System) TMS
that is based on the work of some existing ontology matching
systems such as NOM [7], PROMPT [15], Anchor-PROMPT
[14] and GLUE [5]. The TMS matches all classes of the first
ontology with all classes of the second ontology, and matches
all object properties of the first ontology with all object
properties of the second ontology, and matches all data
properties of the first ontology with all data properties of the
second ontology. The goal of developing the TMS is to
compare it with the PMS.

C. Conference Dataset

The conference dataset, shown in Table 1, has been
proposed in OAEI 2010 and it includes seven ontologies that
are dealing with conference organization. These ontologies
have been developed within OntoFarm project [21], and are
quite suitable for ontology matching task because of their
heterogeneous character. Every ontology in this dataset has a
number of classes, a number of object properties and a number
of data properties. The matching process will be done on each
pairs of these ontologies.

TABLE 1. CONFERENCE DATASET [21].

Ontology

Name

of

classes

of object

properties

of data

properties

Cmt 29 49 10

Conference 59 46 18

ConfOf 38 13 23

Edas 103 30 20

Ekaw 73 33 0

iasted 140 38 3

sigkdd 49 17 11

D.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

12 | P a g e
www.ijacsa.thesai.org

E. TMS vs. PMS

The comparison of the PMS and the TMS was done on the
same computer system ((Intel (R) Core (TM) 2 Duo CPU,
2.4GHz, 3 GB RAM) and Windows 7)). We had applied the
matching process using the PMS and the TMS between each
pair of ontologies of the conference dataset at different
threshold values (0.5, 0.7, 0.85, and 1).

1) Search Space and Time Requirement Evaluation
Figures 6 and 7 present the average number of tested

entities and the average time requirement at different threshold
values (0.5, 0.7, 0.85, and 1) that are needed by both systems
TMS and PMS to match all the pairs of Conference dataset
ontologies.

We can notice from these two Figures, that the number of
tested entities and the time requirement that were needed to
find the matched entities in the TMS are larger than the
number of tested entities and time requirement that were
needed by the PMS, this is due to the fact that the TMS tests
more entities than the PMS.

Furthermore, we can notice that the number of tested
entities and the time requirement for the TMS remain the same
regardless of the threshold values. Whereas, in the PMS they
are inversely dependent on the threshold value.

2) Compliance Measures Evaluation
Figures 8, 9 and 10, present the average compliance

measures results (Precision, Recall and F-measure) of all the
matched pairs of Conference dataset ontologies, at different

threshold values (0.5, 0.7, 0.85, and 1) for both TMS and

PMS.

Fig. 6. Average Number of Tested Entities.

Fig. 7. Average Time Requirement.

Fig. 8. Average Precision Measure.

Fig. 9. Average Recall Measure.

Fig. 10. Average F-measure.

We can notice from these Figures the following:

 At all thresholds values the Precision value of the PMS

is better than the Precision value of the TMS. Hence,

the PMS returns more accurate matching results than

the TMS.

 At all thresholds values the Recall value of the TMS is
better than the Recall value of the PMS. This means

that the TMS returns more matched entities that are

existed in reference alignment R than the PMS;

 At Threshold values (0.5, 0.7, and 0.85) the F-measure

value of the PMS is better than the F-measure of the

TMS. But at threshold value 1 the F-measure value of

the TMS is better than the F-measure of the PMS; this

is due to the fact that F-measure is dependent on

Recall and Precision values.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

13 | P a g e
www.ijacsa.thesai.org

F. Comparison with other Existing Matching Systems

We had made a comparison between the PMS and other
matching systems that participated in OAEI 2010 in terms of
Precision, Recall and F-measure. These systems are AgrMaker
[11], AROMA [3], ASMOV [12], CODI [13], Ef2Match [2],
Falcon [10] and GeRMeSMB [16]. This comparison is done at
threshold values of 0.5 and 0.7. Figures 11 and 12 show the
results of this comparison.

We can notice from these Figures the following:

 The PMS at threshold 0.5 and at threshold 0.7 has the

lowest Precision value, because the PMS returns the

largest number of matched entities but a few of them

are existed in the reference alignment.

 The PMS has the highest Recall value at threshold 0.5.
This means that the PMS returns the largest number of

matched entities that are existed in reference

alignment than the other matching systems.

 The PMS has a good Recall value between the Recall

values of the other systems at threshold 0.7.

 The PMS has a low F-measure value at threshold 0.5

and at threshold 0.7.

Fig. 11. Comparison with Other Matching Systems at Threshold = 0.5.

 Fig. 12. Comparison with Other Matching Systems at Threshold = 0.7.

V. CONCLUSION

The main goal of this paper was to reduce the complexity
(search space and time requirement) of the ontology matching
process. This paper have introduced an ontology matching
framework that reduces the search space and the time
requirement of the matching process by removing entities
(classes, properties) that have less probability of being
matched. The proposed ontology matching framework had
used a multi matching techniques in order to find the
correspondences entities between ontologies.

The proposed matching framework saves (43% - 53%)
from the number of tested entities (search space). Furthermore,
the proposed matching framework saves on time requirement
of the matching process from (38% - 45%) in comparisons
with other matching frameworks.

The drawback of the proposed matching framework is that
it can’t find all possible alignments entities between
ontologies, due to the fact that the PMS doesn’t test all entities
of the matching ontologies. Hence, the PMS is recommended
to be used in matching large ontologies, since it will produce a
huge number of matching entities that could be enough for
web searching using semantic web.

REFERENCES

[1] G. Antoniou and F. Harmelen , “A semantic web prime”, (2
nd

 ed).

London: Massachusetts Institute of Technology, 2008.

[2] W. Chua and J. Kim, “Eff2Match results for OAEI 2010”, proceedings

of the 5th international workshop on ontology matching, Shanghai,

China, 2010.

[3] J. David F. Guillet and H. Briand , “Matching directories and OWL

ontologies with AROMA”, proceedings of the 15th ACM international

conference on Information and knowledge management, ACM, New

York, USA, pp. 831-831, 2006.

[4] H. Do and E. Rahm, “COMA - A system for flexible combination of

schema matching approaches”, proceedings of the very larged data bases

conference (VLDB), Hong Kong, China, pp610-621, 2002.

[5] A.Doan, J. Madhavan, P. Domingos and A.Halevy, “Ontology matching:

a machine learning approach” In: S. Staab, and R. Studer (Ed),

handbook on ontologies in information system, (pp.385–404), Berlin:

Springer-Verlag, 2003.

[6] M. Ehrig and S.Staab, “QOM: quick ontology mapping”, Proceedings of

the international semantic web conference (ISWC), Hiroshima, Japan,

pp. 683–697, 2004.

[7] M. Ehrig and Y. Sure. “Ontology mapping - an integrated approach”,

proceedings of the 1st european semantic web symposium (ESWS), vol.

3053, pp.76–91, Heraklion: Springer-Verlag, 2004.

[8] J. Euzenat, “Semantic precision and recall for ontology alignment

evaluation”, proceedings of international joint conference on artificial

intelligence (IJCAI), Hyderabad, India, pp. 248-253, 2007.

[9] J.Euzenat and P. Shvaiko, “Ontology matching”, (1
st
 ed.). Berlin:

Springer-Verlag, 2007.

[10] W. Hu, J. Chen, G. Cheng and Y. Qu , “ObjectCoref & Falcon-AO:

results for OAEI 2010”, proceedings of the 5th international workshop

on ontology matching, Shanghai, China, 2010.

[11] C. Isabel. S. Cosmin, C. Michele, F. Caimi, M. Palmonari, F. Antonelli

and K. Ulas, “Using agreementmaker to align ontologies for OAEI

2010”, proceedings of the 5th international workshop on ontology

matching, Shanghai, China, 2010.

[12] Y. Jean-Mary P. Shironoshita and M. Kabuka, “ASMOV results for

OAEI 2010”, proceedings of the 5th international workshop on ontology

matching, Shanghai, China, 2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No. 1, 2012

14 | P a g e
www.ijacsa.thesai.org

[13] J. Noessner and M. Niepert, “CODI: Combinatorial Optimization for

Data Integration – results for OAEI 2010”, proceedings of the 5th

international workshop on ontology matching, Shanghai, China, 2010.

[14] N. Noy and M. Musen, “Anchor-PROMPT: using non-local context for

semantic matching” ,proceedings of international joint conference on

artificial intelligence (IJCAI), Seattle, US, pp. 63–70, 2001.

[15] N. Noy and M. Musen, “The PROMPT suite: interactive tools for

ontology merging and mapping”. international journal of human-

computer studies, vol. 59(6), pp. 983–1024, 2003.

[16] C. Quix, A. Gal, T. Sagi and D. Kensche, “An integrated matching

system: GeRoMeSuite and SMB Results for OAEI 2010”, proceedings

of the 5th international workshop on ontology matching, Shanghai,

China, 2010.

[17] M. Taye, “Ontology alignment mechanisms for improving web-based

searching”, unpublished doctoral dissertation, De Montfort University,

United Kingdom, England, 2009.

[18] Z. Wu and M. Palmer, “Verb semantics and lexical selection”.

proceedings of 32nd annual meeting of the association for computational

linguistics (ACL), Las Cruces, US, pp. 133–138, 1994.

[19] L. Yu, “Introduction to the semantic web and semantic web services”,

(1
st
 ed.). Florida: Taylor & Francis Group, 2007.

[20] Pedersen, Ted. “Wordnet similarity”, from,

http://search.cpan.org/dist/WordNet

Similarity/lib/WordNet/Similarity/path.pm .

[21] Ontology alignment evaluation initiative,

http://oaei.ontologymatching.org/ .

[22] “Soundex”, from http://en.wikipedia.org/wiki/Soundex.

http://mail.psut.edu.jo/uwc/webmail/attach/Pedersen

