
Automating RDF Dataset Transformation and
Enrichment

Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo, and Jens Lehmann

Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany
{sherif,ngonga,lehmann}@informatik.uni-leipzig.de

Abstract. With the adoption of RDF across several domains, come growing re-
quirements pertaining to the completeness and quality of RDF datasets. Currently,
this problem is most commonly addressed by manually devising means of enrich-
ing an input dataset. The few tools that aim at supporting this endeavour usually
focus on supporting the manual definition of enrichment pipelines. In this pa-
per, we present a supervised learning approach based on a refinement operator
for enriching RDF datasets. We show how we can use exemplary descriptions
of enriched resources to generate accurate enrichment pipelines. We evaluate our
approach against eight manually defined enrichment pipelines and show that our
approach can learn accurate pipelines even when provided with a small number
of training examples.

1 Introduction

Over the last years, the Linked Data principles have been used across academia and in-
dustry to publish and consume linked data [16]. With this adoption of Linked data come
novel challenges pertaining to the integration of these datasets for dedicated applica-
tions such as tourism, question answering, enhanced reality and many more. Providing
consolidated and integrated datasets for these applications demands the specification of
data enrichment pipelines, which describe how data from different sources is to be inte-
grated and altered so as to abide by the precepts of the application developer or data user.
Currently, most developers implement customized pipelines by compiling sequences of
tools manually and connecting them via customized scripts. While this approach most
commonly leads to the expected results, it is time-demanding and resource-intensive.
Moreover, the results of this effort can most commonly only be reused for new versions
of the input data but cannot be ported easily to other datasets. Over the last years, a few
frameworks for RDF data enrichment such as LDIF1 and DEER2 have been developed.
The frameworks provide enrichment methods such as entity recognition [22], link dis-
covery [15] and schema enrichment [4]. However, devising appropriate configurations
for these tools can prove a difficult endeavour, as the tools require (1) choosing the right
sequence of enrichment functions and (2) configuring these functions adequately. Both
the first and second task can be tedious.

1 http://ldif.wbsg.de/
2 http://aksw.org/Projects/DEER.html

http://ldif.wbsg.de/
http://aksw.org/Projects/DEER.html

In this paper, we address this problem by presenting a supervised machine learning
approach for the automatic detection of enrichment pipelines based on a refinement op-
erator and self-configuration algorithms for enrichment functions. Our approach takes
pairs of concise bounded descriptions (CBDs) of resources {(k1, k′1) . . . (kn, k′n)} as in-
put, where k′i is the enriched version of ki. Based on these pairs, our approach can learn
sequences of atomic enrichment functions that aim to generate each k′i out of the corre-
sponding ki. The output of our approach is an enrichment pipeline that can be used on
whole datasets to generate enriched versions.

Overall, we provide the following core contributions: (1) We define a supervised
machine learning algorithm for learning dataset enrichment pipelines based on a refine-
ment operator. (2) We provide self-configuration algorithms for five atomic enrichment
steps. (3) We evaluate our approach on eight manually defined enrichment pipelines on
real datasets.

2 Preliminaries

Enrichment: Let K be the set of all RDF knowledge bases. Let K ∈ K be a finite
RDF knowledge base. K can be regarded as a set of triples (s, p, o) ∈ (R ∪ B) × P ×
(R ∪ L ∪ B), where R is the set of all resources, B is the set of all blank nodes, P
the set of all predicates and L the set of all literals. Given a knowledge base K, the
idea behind knowledge base enrichment is to find an enrichment pipeline M : K →
K that maps K to an enriched knowledge base K′ with K′ = M(K). We define M
as an ordered list of atomic enrichment functions m ∈ M, where M is the set of all
atomic enrichment functions. 2M is used to denote the power set of M, i.e. the set of
all enrichment pipelines. The order of elements in M determines the execution order,
e.g. for an M = (m1,m2,m3) this means that m1 will be executed first, then m2, finally
m3. Formally,

M =

φ if K = K′,
(m1, . . . ,mn),where mi ∈ M, 1 ≤ i ≤ n otherwise,

(1)

where φ is the empty sequence. Moreover, we denote the number of elements of M
with |M|. Considering that a knowledge base is simply a set of triples, the task of any
atomic enrichment function is to (1) determine a set of triples ∆+ to be added the source
knowledge base and/or (2) determine a set of triples ∆− to be deleted from the source
knowledge base. Any other enrichment process can be defined in terms of ∆+ and ∆−,
e.g. altering triples can be represented as combination of addition and deletion.

In this article we cover two problems: (1) how to create self-configurable atomic
enrichment functions m ∈ M capable of enriching a dataset and (2) how to automat-
ically generate an enrichment pipeline M. As a running example, we use the portion
of DrugBank shown in Figure 1. The goal of the enrichment here is to gather informa-
tion about companies related to drugs for a market study. To this end, the owl:sameAs
links to DBpedia (prefix db) need to be dereferenced. Their rdfs:comment then needs
to be processed using an entity spotter that will help retrieve resources such as the
Boots Company. Then, these resources need to be attached directly to the resources in

the source knowledge base, e.g., by using the :relatedCompany property. Finally, all
subjects need to be conformed under one subject authority (prefix ex).

:Aspirin

:Paracetamol

:Ibuprofen

:Quinine

db:Ibuprofen

db:Aspirin

Ibuprofen was extracted by the research arm
of Boots Company during the 1960s ...

:Druga

a

a
a

owl:sameAs

owl:sameAs

rdfs:comment

Fig. 1: RDF graph of the running example. Ellipses are RDF resources, literals are rect-
angular nodes. Gray nodes stand for resources in the input knowledge base while nodes
with a white background are part of an external knowledge base.

Refinement Operators: Below, we give definitions of refinement operators and
their properties. Refinement operators have traditionally been used, e.g. in [11], to tra-
verse search spaces in structured machine learning problems. Their theoretical proper-
ties give an indication of how suitable they are within a learning algorithm in terms of
accuracy and efficiency.

Definition 1 (Refinement Operator and Properties). Given a quasi-ordered space
(S ,4) an upward refinement operator r is a mapping from S to 2S such that ∀s ∈ S :
s′ ∈ r(s) ⇒ s 4 s′. s′ is then called a generalization of s. A pipeline M2 ∈ M belongs
to the refinement chain of M1 ∈ M iff ∃i ∈ N : M2 ∈ ri(M1), where r0(M) = M and
ri(M) = r(ri−1(M)). A refinement operator r over the quasi-ordered space (S ,4) can
abide by the following criteria. r is finite iff r(s) is finite for all s ∈ S . r is proper if
∀s ∈ S , s′ ∈ r(s) ⇒ s , s′. r is complete if for all s and s′, s′ 4 s implies that there
is a refinement chain between s and s′. A refinement operator r over the space (S ,4) is
redundant if two different refinement chains can exist between s ∈ S and s′ ∈ S .

3 Knowledge Base Enrichment Refinement Operator

Our refinement operator expects the set of atomic enrichment functionsM as input and
returns an enrichment pipeline M as output. Each positive example e ∈ E is a pair of
CBDs (k, k′), with k ⊆ K and k′ ⊆ K′, the K′ stands for the enriched version of K. Note
that we model CBDs as sets of RDF triples. Moreover, we denote the resource with the
CBD k as resource(k). For our running example, the set E could contain the pair shown
in Figure 2a as k and in Figure 2b as k′.

The set of all first elements of the pairs contained in E is denoted source(E). The
set of all second elements is denoted target(E). To compute the refinement pipeline
M, we employ an upward refinement operator (which we dub ρ) over the space 2M

of all enrichment pipelines. We write M ⊇ M′ when M′ is a subsequence of M, i.e.,
m′i ∈ M′ → m′i = mi, where mi resp. m′i is the ith element of M resp. M′.

:Ibuprofendb:Ibuprofen :Drugaowl:sameAs

(a) Non-enriched CBD of Ibuprofen

ex:Ibuprofendb:Ibuprofen

Ibuprofen was extracted by the research arm
of Boots Company during the 1960s ...

:Drug

:BootsCompany

a

:relatedCompany

owl:sameAs

rdfs:comment

(b) Enriched CBD of Ibuprofen

Fig. 2: Ibuprofen concise bound description before and after enrichment

Proposition 1 (Induced quasi-ordering). ⊇ induces a quasi-ordering over the set 2M.

Proof. The reflexivity of ⊇ follows from each M being a subsequence of itself. The
transitivity of ⊇ follows from the transitivity of the subsequence relation. Note that ⊇ is
also antisymmetric. �

We define our refinement operator over the space (2M,⊇) as follows:

ρ(M) =
⋃
∀m∈M

M ++ m (++ is the list append operator) (2)

We define precision P(M) and recall R(M) achieved by an enrichment pipeline on E as

P(M) =

∣∣∣∣∣∣ ⋃
k∈source(E)

M(k)
⋂ ⋃

k′∈target(E)
k′
∣∣∣∣∣∣∣∣∣∣∣∣ ⋃

k∈source(E)
M(k)

∣∣∣∣∣∣
,R(M) =

∣∣∣∣∣∣ ⋃
k∈source(E)

M(k)
⋂ ⋃

k′∈target(E)
k′
∣∣∣∣∣∣∣∣∣∣∣∣ ⋃

k′∈target(E)
k′
∣∣∣∣∣∣

.

(3)
The F-measure F(M) is then

F(M) =
2P(M)R(M)

P(M) + R(M)
. (4)

Using Figure 2a from our running example as source and Figure 2b as target with the
CBD of :Iboprufen being the only positive example, an empty enrichment pipeline
M = φ would have a precision of 1, a recall of 3

4 and an F-measure of 6
7 . Having

defined our refinement operator, we now show that ρ is finite, proper, complete and not
redundant.

Proposition 2. ρ is finite.

Proof. This is a direct consequence ofM being finite. �

Proposition 3. ρ is proper.

Proof. As the quasi order is defined over subsequences, i.e. the space (2M,⊇), and we
have |M′| = |M| + 1 for any M′ ∈ ρ(M), ρ is trivially proper. �

Proposition 4. ρ is complete.

Proof. Let M resp. M′ be an enrichment pipeline of length n resp. n′ with M′ ⊇ M.
Moreover, let m′i be the ith element of M′. Per definition, M ++ m′n+1 ∈ ρ(M). Hence,
by applying ρ n′ − n times, we can generate M′ from M. We can thus conclude that ρ is
complete. �

Proposition 5. ρ is not redundant.

Proof. ρ being redundant would mean that there are two refinement chains that lead to a
single refinement pipeline M. As our operator is equivalent to the list append operation,
it would be equivalent to stating that two different append sequences can lead to the
same sequence. This is obviously not the case as each element of the list M is unique,
leading to exactly one sequence that can generate M. �

4 Learning Algorithm

The learning algorithm is inspired by refinement-based approaches from inductive logic
programming. In these algorithms, a search tree is iteratively built up using heuristic
search via a fitness function. We formally define a node N in a search tree to be a triple
(M, f , s), where M is the enrichment pipeline, f ∈ [0, 1] is the F-measure of M (see
Equation 4), and s ∈ {normal, dead} is the status of the node. Given a search tree, the
heuristic selects the fittest node in it, where fitness is based on both F-measure and
complexity as defined below.

4.1 Approach

For the automatic generation of enrichment pipeline specifications, we created a learn-
ing algorithm based on the previously defined refinement operator. Once provided with
training examples, the approach is fully automatic. The pseudo-code of our algorithm
is presented in Algorithm 4.1.

Our learning algorithm has two inputs: a set of positive examples E and a set of
atomic enrichment operatorsM. E contains pairs of (k, k′) where each k contains a CBD
of one resource from an arbitrary source knowledge base K and k′ contains the CBD
of the same resource after applying some manual enrichment. Given E, the goal of our
algorithm is to learn an enrichment pipeline M that maximizes F(M) (see Equation 4).

As shown in Algorithm 4.1, our approach starts by generating an empty refinement
tree τwhich contains only an empty root node. Using E, the algorithm then accumulates
all the original CBDs in k (Source(E)). Using the same procedure, k′ is accumulated
from E as the knowledge base containing the enriched version of k (Target(E)). Un-
til a termination criterion holds (see Section 4.3), the algorithm keeps expanding the
most promising node (see Section 4.2). Finally, the algorithm ends by returning the best
pipeline found in τ: (GetPipeline(GetMaxQualityNode(τ))).

Having a most promising node t at hand, the algorithm first applies our refinement
operator (see Equation 2) against the most promising enrichment pipeline Mold included
in t to generate a set of atomic enrichment functionsM ← ρ(Mold). Consequently, us-
ing both kold (as the knowledge base generated by applying Mold against k) and k′, the
algorithm applies the self configuration process of the current atomic enrichment func-
tion m ← SelfConfig(m, kold, k) to generate a set of parameters P (a detailed descrip-
tion for this process is found in Section 5). Afterwards, the algorithm runs m against
kold to generate the new enriched knowledge base knew ← m(kold, P). A dead node
N ← CreateNode(M, 0, dead) is created in two cases: (1) m is inapplicable to kold

(i.e., P == null) or (2) m does no enrichment at all (i.e., knew is isomorphic3 to kold).
Otherwise, the algorithm computes the F-measure f of the generated dataset knew. M
along with f are then used to generate a new search tree node N ← CreateNode(M, f ,
normal)). Finally, N is added as a child of t (AddChild(t, N)).

4.2 Most Promising Node Selection

Here we describe the process of selecting the most promising node t ∈ τ as in Get-
MostPromisingNode() subroutine in Algorithm 4.1. First, we define node complexity as
linear combination of the node’s children count and level. Formally,

Definition 2 (Node Complexity). The complexity of a node N = (M, f , s) in a refine-
ment tree τ is a function c : N × τ→ [0, 1] , where c(N, τ) = α |Nd |

|τ|
+ βNl

τd
, |Nd | is number

of all N’s descendant nodes, |τ| is the total number of nodes in τ, Nl is N’s level, τd is
τ’s depth, α is the children penalty weight, β is the level penalty weight and α + β = 1.
Seeking for simplicity, we will use the c(N) instead of c(N, τ) in the rest of this paper.

We can then define the fitness f (N) of a normal node N as the difference between
its enrichment pipeline F-measure (Equation 4) and weighted complexity. f (N) is zero
for dead nodes. Formally,

Definition 3 (Node fitness). Let N = (M, f , s) be a node in a refinement tree τ, N’s
fitness is the function

f (N) =

0 if s = dead,
F(M) − ω · c(N) if s = normal.

(5)

where M is the enrichment pipeline contained in the node N, ω is the complexity weight
and 0 ≤ ω ≤ 1.

Note, that we use the complexity of pipelines as second criterion, which makes the
algorithm (1) more flexible in searching less explored areas of the search space, and
(2) leads to simpler specification being preferred over more complex ones (Occam’s
razor[3]). The parameter ω can be used to control the trade-off between a greedy search
(ω = 0) and search strategies closer to breadth first search (ω > 0). The fitness function
can be defined independently of the core learning algorithm.

Consequently, the most promising node is the node with the maximum fitness through
the whole refinement tree τ. Formally, the most promising node t is defined as t =

arg max
∀N∈τ

f (N), where N is not a dead node. Note that if several nodes achieve a maxi-

mum fitness, the algorithm chooses the shortest node as it aims to generate the simplest
enrichment pipeline possible.

4.3 Termination Criteria

The subroutine TerminationCriterionHolds() in Algorithm 4.1 can check several ter-
mination criteria depending on configuration: (1) optimal enrichment pipeline found

3 http://www.w3.org/TR/rdf11-concepts/

http://www.w3.org/TR/rdf11-concepts/

(i.e., a fixpoint is reached), (2) maximum number of iterations reached, (3) maximum
number of refinement tree nodes reached, or a combination of the aforementioned crite-
ria. Note that the termination criteria can be defined independently of the core learning
algorithm.

Algorithm 4.1: EnrichmentPipelineLearner(E+,M)

comment: initialize τ

τ← CreateRootNode()
k ← Source(E)
k′ ← Target(E)
repeat

comment: Expand most promising node of τ

t ← GetMostPromisingNode(τ)
Mold ← GetPipeline(t)
M← ρ(Mold)
comment: Create a child of t for each m ∈ M

for each m ∈ M

do

kold ← Mold(k)
P← SelfConfig(m, kold, k′)
knew ← m(kold, P)
if P == null or knew == kold

then
{
N ← CreateNode(M, 0, dead)

else
{

f ← F(m)
N ← CreateNode(M, f , normal)

AddChild(t,N)
until TerminationCriterionHolds(τ)
return (GetPipeline(GetMaxQualityNode(τ)))

5 Self-Configuration

To learn an appropriate specification from the input positive examples, we need to de-
velop self-configuration approaches for each of our framework’s atomic enrichment
functions. The input for each of these self-configuration procedures is the same set of
positive examples E provided to our pipeline learning algorithm (algorithm 4.1). The
goal of the self-configuration process of an enrichment function is to generate a set of
parameters P = {(mp1, v1), . . . , (mpm, vm)} able to reflect E as well as possible. In cases
when insufficient data is contained in E to carry out the self-configuration process, an
empty list of parameters is returned to indicate inapplicability of the enrichment func-
tion.

5.1 Dereferencing Enrichment Functions

The idea behind the self-configuration process of the enrichment by dereferencing is
to find the set of predicates Dp from the enriched CBDs that are missing from source
CBDs. Formally, for each CBD pair (k, k′) construct a set Dp ⊆ P as follows: Dp =

{p′ : (s′, p′, o′) ∈ k′}\{p : (s, p, o) ∈ k}. The dereferencing enrichment function will
dereference the object of each triple of ki given that this object is an external URI,
i.e. all o in ki with (s, p, o) ∈ ki, o ∈ R and o is not in the local namespace of the
dataset will be dereferenced. Dereferencing an object returns a set of triples. Those are
filtered using the previously constructed property set Dp, i.e. when dereferencing o the
enrichment function only retains triples with subject o and a predicate contained in Dp.
The resulting set of triples is added to the input dataset.

We illustrate the process using our running example: In the first step, we compute
the set Dp = {:relatedCompany, rdfs:comment} which consists of the properties
occurring in the target but not in the source CBD. In the second step, we collect the
set of resources to dereference, which only consists of the element db:Ibuprofen.
In the third step, we perform the actual dereferencing operation and retain triples for
which the subject is db:Ibuprofen and the predicate is either :relatedCompany or
rdfs:comment. In our example, no triples with predicate :relatedCompany exist, but
we will find the desired triple (db:Ibuprofen, rdfs:comment, "Ibuprofen ..."),
which is then added to the input dataset.

5.2 Linking Enrichment Function

The aim of link discovery is as follows: Given two sets Rs ⊆ R of source resources
and Rt ⊆ R of target resources, we aim to discover links L ⊆ Rs × Rt such that for any
(s, t) ∈ L we have δ(s, t) ≤ θ where δ is a similarity function and θ a threshold value. The
goal of the linking enrichment function is to learn so called link specifications includ-
ing a similarity function δ and a threshold θ. To this aim, we rely on an unsupervised
hierarchical search approach, which optimizes a target function akin to F-measure. The
search space of all link specifications is split into a grid and the approach computes
the objective function for all points in the grid. Thereafter, the region surrounding the
point which achieves the highest score is selected as new search space. This approach
is applied iteratively until a stopping condition (e.g., a maximal number of iterations) is
reached. More details can be found at [18].

5.3 NLP Enrichment Function

The basic idea here is to enable the extraction of all possible named entity types. If this
leads to the retrieval of too many entities, the unwanted predicates and resources can be
discarded in a subsequent step. The self-configuration of the NLP enrichment function
is parameter-free and relies on FOX [17]. The application of the NLP self configuration
to our running example generates all possible entities included in the literal object of
the rdfs:comment predicate. The result is a set of related named entities all of them
related to our ex:Iboprufen object by the default predicate fox:relatedTo as shown
Figure 3a. In the following 2 sections we will see how our enrichment functions can
refine some of the generated triples and delete others.

:Ibuprofendb:Ibuprofen :Drug

:BootsCompany

:Brufen

a

fox:relatedTo

owl:sameAs

fox:relatedTo

(a) NLP enriched CBD of Ibuprofen

ex:Ibuprofendb:Ibuprofen :Drug

:BootsCompany

:Brufen

a

ex:relatedCompony

owl:sameAs

fox:relatedTo

(b) Conformed CBD of Ibuprofen

Fig. 3: Ibuprofen CBD after NLP and predicate conformation enrichment

5.4 Conformation Enrichment Functions

The conformation-based enrichment currently allows for both subject-authority-based
conformation and predicate-based conformation. The self-configuration process of sub-
ject-authority-based conformation starts by finding the most frequent subject author-
ity rk in source(E). Also, it finds the most frequent subject authority rk′ in the target
dataset target(E). Then this self-configuration process generates the two parameters:
(sourceSubjectAuthority, rk) and (targetSubjectAuthority, rk′). After that,
the self-configuration process replaces each subject authority rk in source(E) by rk′.

Back to our running example, the authority self-conformation process generates the
two parameters (sourceSubjectAuthority, ":") and (targetSubjectAuthority,
"ex:"). Replacing each ":" by "ex:" generates, in our example, the new conformed
URI "ex:Iboprufen".

We define two predicates p1, p2 ∈ P to be interchangeable (denoted p1 � p2) if
both of them have the same subject and object. Formally, ∀p1, p2 ∈ P : p1 � p2 ⇐⇒

∃s, o | (s, p1, o) ∧ (s, p2, o).
The idea of the self-configuration process of the predicate conformation is to change

each predicate in the source dataset to its interchangeable predicate in the target dataset.
Formally, find all pairs (p1, p2) | ∃s, p1, o ∈ k ∧ ∃s, p2, o ∈ k′ ∧ (s, p1, o) ∈ k ∧
(s, p2, o) ∈ k′. Then, for each pair (p1, p2) create two self-configuration parameters
(sourceProperty, p1) and (targetProperty, p2). The predicate conformation
will replace each occurrence of p1 by p2.

In our example, let us suppose that we ran the NLP-based enrichment first then
we got a set of related named entities all of them related to our ex:Iboprufen object
by the default predicate fox:relatedTo as shown in Figure 3a. Subsequently, apply-
ing the predicate conformation self-configuration will generate (sourceProperty,
fox:relatedTo) and (targetProperty, ex:relatedCompany) parameters. Con-
sequently, the predicate conformation module will replace fox:relatedTo by ex:re-
latedCompany to generate Figure 3b.

5.5 Filter Enrichment Function

The idea behind the self-configuration of filter-based enrichment is to preserve only
valuable triples in the source CBDs k and discard any unnecessary triples so as to
achieve a better match to k′. To this end, the self-configuration process starts by finding
the intersection between source and target examples I =

⋃
(k,k′)∈E

k ∩ k′. After that, it gen-

erates an enrichment function based on a SPARQL query which is only preserving pred-
icates in I. Formally, the self-configuration results in the parameter set P =

⋃
p∈K∩K′∩P

p.

d1 Dereferencing d2 Authority Conformation d3 NLP

d6 Filter d4d5 Predicate Conformation

Fig. 4: Graph representation of the learned pipeline of our running example, where d1 is
the positive example source presented in Figure 2a and d6 is the positive example target
presented in Figure 2b.

Back to our running example, let us continue from the situation in the previous sec-
tion (Figure 3b). Performing the self-configuration of filters will generate P = {fox:re-

latedTo}. Actually applying the filter enrichment function will remove all unrelated
triples containing the predicate fox:relatedTo. Figure 4 shows a graph representa-
tion for the whole learned pipeline for our running example.

6 Evaluation

The aim of our evaluation was to quantify how well our approach can automate the
enrichment process. We thus assumed being given manually created training examples
and having to reconstruct a possible enrichment pipeline to generate target CBDs from
the source CBDs. In the following, we present our experimental setup including the
pipelines and datasets used. Thereafter, we give an overview of our results, which we
subsequently discuss in the final part of this section.

6.1 Experimental Setup

We used three publicly available datasets for our experiments:

1. From the biomedical domain, we chose DrugBank4 as our first dataset. We chose
this dataset because it is linked with many other datasets5, from which we can ex-
tract enrichment data using our atomic enrichment functions. For our experiments
we deployed a manual enrichment pipeline Mmanual, in which we enrich the drug
data found in DrugBank using abstracts dereferenced from DBpedia, then we con-
form both DrugBank and DBpedia source authority URIs to one unified URI. For
DrugBank we manually deployed two experimental pipelines:

4 DrugBank is the Linked Data version of the DrugBank database, which is a repository of
almost 5000 FDA-approved small molecule and biotech drugs, for RDF dump see http://
wifo5-03.informatik.uni-mannheim.de/drugbank/drugbank_dump.nt.bz2

5 See http://datahub.io/dataset/fu-berlin-drugbank for complete list of linked
dataset with DrugBank.

http://wifo5-03.informatik.uni-mannheim.de/drugbank/drugbank_dump.nt.bz2
http://wifo5-03.informatik.uni-mannheim.de/drugbank/drugbank_dump.nt.bz2
http://datahub.io/dataset/fu-berlin-drugbank

– M1
DrugBank = (m1,m2), where m1 is a dereferencing function that dereferences

any dbpedia-owl:abstract from DBpedia and m2 is an authority conforma-
tion function that conforms the DBpedia subject authority6 to the target subject
authority of DrugBank7.

– M2
DrugBank = M1

DrugBank ++ m3, where m3 is an authority conformation function
that conforms DrugBank’s authority to the Example authority8.

2. From the music domain, we chose the Jamendo9 dataset. We selected this dataset as
it contains a substantial amount of embedded information hidden in literal proper-
ties such as mo:biography. The goal of our enrichment process is to add a geospa-
tial dimension to Jamendo, e.g., the location of a recording or place of birth of a
musician. To this end, we deployed a manual enrichment pipeline, in which we
enrich Jamendo’s music data by adding additional geospatial data found by apply-
ing the NLP enrichment function against mo:biography. For Jamendo we deploy
manually one experimental pipeline:

– M1
Jamendo = {m4}, where m4 is an NLP function that find locations in mo:biography.

3. From the multi-domain knowledge base DBpedia [12] we used the class Admin-
istrativeRegion for our experiments. As DBpedia is a knowledge base with a
large ontology, we build a set of five pipelines of increasing complexity:

– M1
DBpedia = {m5}, where m5 is an authority conformation function that conforms

the DBpedia subject authority to the Example target subject authority.
– M2

DBpedia = m6 ++ M1
DBpedia, where m6 is a dereferencing function that derefer-

ences any dbpedia-owl:ideology.
– M3

DBpedia = M2
DBpedia ++ m7, where m7 is an NLP function that finds all named

entities in dbpedia-owl:abstract.
– M4

DBpedia = M3
DBpedia++ m8, where m8 is a filter function that filters for abstracts.

– M5
DBpedia = M3

DBpedia ++ m9, where m9 is a predicate conformation function that
conforms the source predicate dbpedia-owl:abstract to the target predicate
of dcterms:abstract.

Altogether, we manually generated a set of eight pipelines, which we then applied
against their respective datasets. The evaluation protocol was as follows: Let M be one
of the manually generated pipelines. We applied M to an input knowledge base K and
generated an enriched knowledge base K′ = M(K). We then selected a set of resources
in K and used the CBD pairs of selected resources and their enriched versions as exam-
ples E. E was then given as training data to our algorithm, which learned an enrichment
pipeline M. We finally compared the triples in K′ (which we used as reference dataset)
with the triples in M(S) to compute the precision, recall and F-measure achieved by our
approach. All generated pipelines are available at the project web site10.

6 http://dbpedia.org
7 http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs
8 http://example.org
9 Jamendo contains a large collection of music related information about artists and recordings,

for RDF dump see http://moustaki.org/resources/jamendo-rdf.tar.gz
10 https://github.com/GeoKnow/DEER/tree/master/evaluations/pipeline_

learner

http://dbpedia.org
http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs
http://example.org
http://moustaki.org/resources/jamendo-rdf.tar.gz
https://github.com/GeoKnow/DEER/tree/master/evaluations/pipeline_learner
https://github.com/GeoKnow/DEER/tree/master/evaluations/pipeline_learner

Table 1: Test of the effect of ω on the learning process using the Drugbank dataset,
where |E| = 1, M is the manually created pipeline, |M| is the complexity of M, M′ is the
pipeline generated by our algorithm, and In is the number of iterations of the algorithm.

ω |M| |M′| |τ| In P(M′) R(M′) F(M′)

0 3 1 61 10 1.0 0.99 0.99
0.25 3 1 61 10 1.0 0.99 0.99
0.50 3 1 61 10 1.0 0.99 0.99
0.75 3 3 25 4 1.0 1.0 1.0
1.0 3 1 61 10 1.0 0.99 0.99

All experiments were carried out on a 8-core PC running OpenJDK 64-Bit Server
1.6.0 27 on Ubuntu 12.04.2 LTS. The processors were 8 Hexa-core AMD Opteron 6128
clocked at 2.0 GHz. Unless stated otherwise, each experiment was assigned 6 GB of
memory. As termination criteria for our experiments, we used (1) a maximum number
of iterations of 10 or (2) an optimal enrichment pipeline found.

6.2 Results

We carried out two sets of experiments to evaluate our refinement based learning al-
gorithm. In the first set of experiments, we tested the effect of the complexity weight
ω to the search strategy of our algorithm. The results are presented in Table 1. In the
second set of experiments, we test the effect of the number of positive examples |E| on
the generated F-measure. Results are presented in Table 2.

Configuration of the Search Strategy. We ran our approach with varying values of
ω to determine the value to use throughout our experiments. This parameter is used for
configuring the search strategy in the learning algorithm, in particular the bias towards
simple pipelines. As shown in Section 4.2, this is achieved by multiplying ω with the
node complexity and subtracting this as a penalty from the node fitness. To configure
ω, we used the first pipeline M1

DrugBank. The results suggest that setting ω to 0.75 leads
to the best results in this particular experiment. We thus adopted this value for the other
studies.

Effect of Positive Examples. We measured the F-measure achieved by our approach
on the datasets at hand. The results shown in Table 2 suggest that when faced with data
as regular as that found in the datasets Drugbank, DBpedia and Jamendo, our approach
really only needs a single example to be able to reconstruct the enrichment pipeline
that was used. This result is particularly interesting, because we do not always generate
the manually created reference pipeline described in the previous subsection. In many
cases, our approach detects a different way to generate the same results. In most cases
(71.4%) the pipeline it learns is actually shorter than the manually created pipeline.
However, in some cases (4.7%) our algorithm generated a longer pipeline to emulate
the manual configuration. As an example, in case of M1

Jamendo the manual configuration

Table 2: Test of the effect of increasing number of positive examples in the learning
process. For this experiment we set ω = 0.75. M is the manually created pipeline, |M| is
the size of M, TM(KB) is the time for applying M to the entire dataset, M′ is the pipeline
generated by our algorithm, Tl is the learning time, |τ| is the size of the refinement tree τ,
In is the number of iterations performed by the algorithm, and all times are in minutes.

M |E| |M| TM(KB) |M′| TM′(KB) Tl |τ| In P(M′) R(M′) F(M′)

M1
DBpedia

1 1 0.2 1 1.6 1.3 7 1 1.0 1.0 1.0
2 1 0.2 1 1.8 1.3 7 1 1.0 1.0 1.0

M2
DBpedia

1 2 23.3 1 0.1 0.2 7 1 1.0 0.99 0.99
2 2 15 2 17 0.3 55 9 0.99 1.0 0.99

M3
DBpedia 1 3 14.7 3 15.2 6.1 55 9 1.0 0.99 0.99

2 3 15 2 15.1 0.1 55 9 0.99 0.99 0.99

M4
DBpedia 1 4 0.4 2 0.1 0.7 13 2 0.99 0.99 0.99

2 4 0.6 2 0.3 0.9 13 2 0.99 1.0 0.99

M5
DBpedia 1 5 22 2 0.1 0.7 13 2 1.0 1.0 1.0

2 5 25.5 2 0.2 0.9 13 2 1.0 1.0 1.0

M1
DrugBank

1 2 3.5 1 4.1 0.1 61 10 0.99 0.99 0.99
2 2 3.6 1 3.4 0.1 61 10 0.99 0.99 0.99

M2
DrugBank

1 3 25.2 1 0.1 0.1 61 10 1.0 0.99 0.99
2 3 22.8 1 0.1 0.1 61 10 1.0 0.99 0.99

M1
Jamendo

1 1 10.9 2 10.6 0.1 13 2 0.99 0.99 0.99
2 1 10.4 2 10.4 0.1 7 1 0.99 0.99 0.99

was just one enrichment function, i.e, NLP-based enrichment to find all locations in
mo:biography. Our algorithm learns this single manually configured enrichment as
(1) an NLP enrichment function that extracts all named entities types and then (2) a
filter enrichment function that filters all non-location triples. Our results also suggest
that our approach scales when using a small number of positive example as on average
the learning time for one positive example was around 48 seconds.

7 Related Work

Linked Data enrichment is an important topic for all applications that rely on a large
number of knowledge bases and necessitate a unified view on this data, e.g., Question
Answering frameworks [13], Linked Education [6] and all forms of semantic mashups
[9]. In recent work, several challenges and requirements to Linked Data consumption
and integration have been pointed out [14]. For example, the R2R framework [2] ad-
dresses those by enabling the publish of mappings across knowledge bases that allow
to map classes and defined the transformation of property values. While this framework
supports a large number of transformations, it does not allow the automatic discovery of
possible transformations. The Linked Data Integration Framework (LDIF) [21], whose

goal is to support the integration of RDF data, builds upon R2R mappings and technolo-
gies such as SILK [10] and LDSpider11. The concept behind the framework is to enable
users to create periodic integration jobs via simple XML configurations. Still these con-
figurations have to be created manually. The same drawback holds for the Semantic
Web Pipes12 [20], which follows the idea of Yahoo Pipes13 to enable the integration
of data in formats such as RDF and XML. By using Semantic Web Pipes, users can
efficiently create semantic mashups by using a number of operators (such as getRDF,
getXML, etc.) and connect these manually within a simple interface. KnoFuss [19] ad-
dresses data integration from the point of view of link discovery. It begins by detecting
URIs that stand for the same real-world entity and either merging them together or
linking them via owl:sameAs. In addition, it allows to monitor the interaction between
instance and dataset matching (which is similar to ontology matching [7]). Fluid Op-
erations’ Information Workbench14 allows to search through, manipulate and integrate
datasets for purposes such as business intelligence. [5] describes a framework for se-
mantic enrichment, ranking and integration of web videos, and [1] presents semantic
enrichment framework of Twitter posts. Finally, [8] tackles the linked data enrichment
problem for sensor data via an approach that sees enrichment as a process driven by
situations of interest. To the best of our knowledge, the work we presented in this paper
is the first generic approach tailored towards learning enrichment pipelines of Linked
Data given a set of atomic enrichment functions.

8 Conclusions and Future Work

In this paper, we presented an approach for learning enrichment pipelines based on a
refinement operator. To the best of our knowledge, this is the first approach for learn-
ing RDF based enrichment pipelines and could open up a new research area. We also
presented means to self-configure atomic enrichment pipelines so as to find means to
enrich datasets according to examples provided by an end user. We showed that our ap-
proach can easily reconstruct manually created enrichment pipelines, especially when
given a prototypical example and when faced with regular datasets. Obviously, this does
not mean that our approach will always achieve such high F-measures. What our results
suggest is primarily that if a human uses an enrichment tool to enrich his/her dataset
manually, then our approach can reconstruct the pipeline. This seems to hold even for
relatively complex pipelines.

Although we achieved reasonable results in terms of scalability, we plan to further
improve time efficiency by parallelising the algorithm on several CPUs as well as load
balancing. The framework underlying this study supports directed acyclic graphs as
enrichment specifications by allowing to split and merge datasets. In future work, we
will thus extend our operator to deal with graphs in addition to sequences. Moreover,
we will look at pro-active enrichment strategies as well as active learning.

11 http://code.google.com/p/ldspider/
12 http://pipes.deri.org/
13 http://pipes.yahoo.com/pipes/
14 http://www.fluidops.com/information-workbench/

http://code.google.com/p/ldspider/
http://pipes.deri.org/
http://pipes.yahoo.com/pipes/
http://www.fluidops.com/information-workbench/

References
1. F. Abel, Q. Gao, G.-J. Houben, and K. Tao. Semantic enrichment of twitter posts for user

profile construction on the social web. In Proc. of ESWC, pages 375–389. Springer, 2011.
2. C. Bizer and A. Schultz. The R2R Framework: Publishing and Discovering Mappings on the

Web. In Proceedings of COLD, 2010.
3. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Inf. Process.

Lett., 24(6):377–380, Apr. 1987.
4. L. Buhmann and J. Lehmann. Pattern based knowledge base enrichment. In 12th Interna-

tional Semantic Web Conference, 21-25 October 2013, Sydney, Australia, 2013.
5. S. Choudhury, J. G. Breslin, and A. Passant. Enrichment and ranking of the youtube tag

space and integration with the linked data cloud. Springer, 2009.
6. S. Dietze, S. Sanchez-Alonso, H. Ebner, H. Q. Yu, D. Giordano, I. Marenzi, and B. P. Nunes.

Interlinking educational resources and the web of data: A survey of challenges and ap-
proaches. Program: electronic library and information systems, 47(1):60–91, 2013.

7. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE), 2007.
8. S. Hasan, E. Curry, M. Banduk, and S. O’Riain. Toward situation awareness for the semantic

sensor web: Complex event processing with dynamic linked data enrichment. Semantic
Sensor Networks, page 60, 2011.

9. H. H. Hoang, T. N.-P. Cung, D. K. Truong, D. Hwang, and J. J. Jung. Semantic informa-
tion integration with linked data mashups approaches. International Journal of Distributed
Sensor Networks, 2014, 2014.

10. R. Isele and C. Bizer. Learning Linkage Rules using Genetic Programming. In Sixth Inter-
national Ontology Matching Workshop, 2011.

11. J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators.
Machine Learning journal, 78(1-2):203–250, 2010.

12. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale, multilingual knowl-
edge base extracted from wikipedia. Semantic Web Journal, 2014.

13. V. Lopez, C. Unger, P. Cimiano, and E. Motta. Evaluating question answering over linked
data. Web Semantics: Science, Services and Agents on the World Wide Web, 21:3–13, 2013.

14. I. Millard, H. Glaser, M. Salvadores, and N. Shadbolt. Consuming multiple linked data
sources: Challenges and experiences. In COLD Workshop, 2010.

15. A.-C. Ngonga Ngomo. On link discovery using a hybrid approach. Journal on Data Seman-
tics, 1:203 – 217, December 2012.

16. A.-C. Ngonga Ngomo, S. Auer, J. Lehmann, and A. Zaveri. Introduction to linked data
and its lifecycle on the web. In Reasoning Web. Semantic Technologies for Intelligent Data
Access, pages 1–90. Springer Berlin Heidelberg, 2014.

17. A.-C. Ngonga Ngomo, N. Heino, K. Lyko, R. Speck, and M. Kaltenböck. SCMS - semanti-
fying content management systems. In ISWC 2011, 2011.

18. A.-C. Ngonga Ngomo and K. Lyko. Unsupervised learning of link specifications: determin-
istic vs. non-deterministic. In Proceedings of the Ontology Matching Workshop, 2013.

19. A. Nikolov, V. Uren, E. Motta, and A. Roeck. Overcoming schema heterogeneity between
linked semantic repositories to improve coreference resolution. In Proceedings of the 4th
Asian Conference on The Semantic Web, pages 332–346, 2009.

20. D. L. Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, and C. Morbidoni. Rapid prototyp-
ing of semantic mash-ups through semantic web pipes. In WWW, pages 581–590, 2009.

21. A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker. LDIF - linked data integration
framework. In COLD, 2011.

22. R. Speck and A. N. Ngomo. Ensemble learning for named entity recognition. In Proc. of
ISWC (International Semantic Web Conference) 2014, pages 519–534, 2014.

	Automating RDF Dataset Transformation and Enrichment
	Introduction
	Preliminaries
	Knowledge Base Enrichment Refinement Operator
	Learning Algorithm
	Approach
	Most Promising Node Selection
	Termination Criteria

	Self-Configuration
	Dereferencing Enrichment Functions
	Linking Enrichment Function
	NLP Enrichment Function
	Conformation Enrichment Functions
	Filter Enrichment Function

	Evaluation
	Experimental Setup
	Results
	Configuration of the Search Strategy.
	Effect of Positive Examples.

	Related Work
	Conclusions and Future Work

