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ABSTRACT
We investigate the problem of creating and analyzing sam-
ples of relational databases to find relationships between
string-valued attributes. Our focus is on identifying at-
tribute pairs whose value sets overlap, a pre-condition for
typical joins over such attributes. However, real-world data
sets are often ‘dirty’, especially when integrating data from
different sources. To deal with this issue, we propose new
similarity measures between sets of strings, which not only
consider set based similarity, but also similarity between
strings instances. To make the measures effective, we de-
velop efficient algorithms for distributed sample creation and
similarity computation. Test results show that for dirty
data our measures are more accurate for measuring value
overlap than existing sample-based methods, but we also
observe that there is a clear tradeoff between accuracy and
speed. This motivates a two-stage filtering approach, with
both measures operating on the same samples.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design

General Terms
Algorithms, Experimentation, Measurement, Performance

1. INTRODUCTION
A central problem that arises when integrating database

systems, is to identify relationships between tables and at-
tributes. Clearly this is not a novel issue, and a large num-
ber of approaches and algorithms for determining such rela-
tionships (semi-)automatically have been developed [1]. At
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the core of such methods lies the identification of match-
ing attributes. Here one can distinguish between schema-
based matchers and instance-based matchers [2]. In general,
instance-based matchers are much slower, since they rely on
the actual data sets rather than just schema information, but
they are also potentially more accurate. This is particularly
true when integrating data from different sources, which do
not conform to any common naming standards. But even for
databases using well-standardized attribute names, schema-
based matchers are limited in their power: while they may
help to identify attributes with the same semantic domain,
they cannot verify whether they reference the same real-
world objects. To obtain the latter information, we must
examine the actual values stored for each attribute.

Looking more closely, we can distinguish two different
types of attribute matches: domain equivalence and value
overlap. Attributes sharing many common values almost
always share the same semantic domain (e.g. people, loca-
tions, companies). While distinct domains can share values,
e.g. “Darwin”, it is unlikely that attributes from different
domains have significant overlap. All attribute pairs with
matching domains may be relevant for data integration, and
thus should be discovered. However, it is also important to
know whether an overlap in values exists, as this is essen-
tial in deciding whether joins or approximate joins - partic-
ularly vital for areas such as (semi-)automatic schema in-
tegration or keyword search over relational databases - on
the attributes in question may be sensible. Tables carrying
information about the same entities should be integrated
differently (via join on such attributes) from tables carrying
information about different entities from the same domain
(via union). In most cases, joins on attributes without com-
mon values can safely be considered as being ‘not sensible’.

One application scenario for attribute matching is the ini-
tial ad-hoc integration in the data-space approach [3, 4],
where the goal is to loosely integrate data from very differ-
ent, usually distributed database systems. Here it is not re-
alistic to assume that relationships are precise, or that data
is clean and formatted in a consistent manner. To some de-
gree, the same problem of ‘dirtiness of data’ is bound to arise
in many other data integration scenarios. While classic data
cleaning techniques exist to deal with some of these prob-
lems, they are usually too expensive to be applied as an
initial step when dealing with large numbers of attributes
or large data volumes, and/or require domain-specific in-
formation (e.g. ontologies) which may be tricky to obtain.



We therefore require a method for quickly identifying candi-
date matches, with reasonable if not optimal accuracy. Af-
terwards, accuracy can be improved through more complex
automatic techniques or human inspection, if necessary.

To deal with large volumes of potentially distributed data,
we employ sampling techniques as already suggested in [5].
Sampling can be done locally where the data is stored, and
only the sample set needs to be transmitted. Once all sam-
ples have been collected, they can then be analyzed to find
matching attribute pairs. Even if data is not distributed,
using samples can speed up computation significantly.

To cope with the problem of dirty data (typos, different
formatting, etc.), we introduce a novel sampling technique
which preserves the ‘synchronization’ property (discussed in
detail in Section 2.1) of classic sampling techniques [6, 7, 5].
Importantly this also works for string values which are only
similar, rather than identical. As a result of synchronization,
sample sizes can be much smaller compared to independent
random sampling. Furthermore, we propose new similarity
measures, which allow us to match strings with small dif-
ferences, and which can be computed easily and efficiently
from our samples. We will focus on relational databases only,
although in principle we are simply comparing sets-of-sets,
which happen to be obtained by transforming each string in
an attribute’s value set into a set of substrings. Thus our
methods should be applicable to other data models as well.
Our main contributions are:

1. an extension of sampling methods to sets-of-sets
(sets of ‘dirty’ strings)

2. efficient similarity measures between sets-of-sets
(sets of ‘dirty’ strings)

Note that for similarity measures to be ‘efficient’, it must
be possible to estimate them using small samples, and to
compute such approximations quickly. In combination, our
methods can be used to rapidly identify relationships (value
overlap to be precise) between attributes, which is an im-
portant task in data integration. Our approach differs from
existing work in that it specifically caters for dirty data,
while remaining efficient enough to be useful for initial inte-
gration of large data sets.

Closely related work is discussed in Section 2, where we
describe a framework and techniques used for clean value
sets, comparing values for equality only. This is then ex-
tended in Section 3 to incorporate similarity between val-
ues. Variations to our approach which increase accuracy
without slowing computation are presented in Section 4. A
more accurate but computationally more expensive similar-
ity measure is given in Section 5, followed by experimental
results in Section 6. Further, more loosely related work is
discussed briefly in Section 7. Section 8 concludes.

2. SET SIMILARITY
In the following we shall discuss a general framework for

attribute matching, and existing work in this area. The
methods described are designed for clean values, but they
form the basis for our approach. Thus an in-depth discussion
is necessary.

The first step towards finding matching attributes is to
compute similarity for all pairs of value-sets. In the Bell-
man system [5], a (relatively small) signature for each at-
tribute’s value set is generated using sampling techniques.

If data is distributed, these will then be sent to a central
location where they are analyzed. The result is a similarity
graph, with attributes as vertices, and weighted edges be-
tween them denoting the similarity of the associated value
sets. A well-known measure for similarity of sets is their
resemblance or Jaccard index.

Definition 1. The resemblance of two sets A, B is

res(A,B) :=
|A ∩ B|
|A ∪ B|

When generating samples, one must assure that the re-
semblance of A and B can be estimated from their samples,
and that such estimates are accurate for reasonably small
samples. Furthermore, each attribute should only be sam-
pled once, and the same sample be used for comparison with
all other attributes.

2.1 Sample Generation
The signature for an attribute contains a unique identifier,

a sample of the value set, and possibly other data such as
the size of the attribute’s value set or sampling parameters.
Mostly though, we will be talking about the signature S(A)
of a value set A, and mean just the sample set.

Sampling should be synchronized, i.e., if a particular value
x is sampled for A then it is also sampled for B (provided
it lies in B), and vice versa:

x ∈ S(A) and x ∈ B ⇒ x ∈ S(B)

Independent random sampling could mean that even iden-
tical value sets produce different, possibly even disjoint sig-
natures. Consider two attributes with one million distinct
values each: Even if their value sets are identical, we need to
sample about 1000 values from each before we can expect an
intersection size of 1. To estimate their overlap with reason-
able accuracy we require at least 100,000 values as sample,
whereas 100 values are sufficient for synchronized sampling
[5]. Efficient sampling is necessary to make value-based at-
tribute matching scale.

In [6] Broder describes two approaches for creating effi-
cient signatures. The first uses a (pseudo-)random total or-
dering on the set of all values, and takes as signature the s

smallest values in each set, for some constant s. It is impor-
tant to note that the same ordering is used for all sets. Then
the signatures S(A), S(B) of two sets A, B can be compared
as follows: For u := min(max(S(A)), max(S(B))) we have

S(A) ∩ S(B) = {x ∈ A ∩ B | x ≤ u}
Thus any value above u in S(A), S(B) is ‘useless’ for deter-
mining intersection sizes, so the effective signatures used for
comparing A and B are

S
′(A) := {x ∈ S(A) | x ≤ u}

S
′(B) := {x ∈ S(B) | x ≤ u}

We can then interpret results about the intersection size
|S′(A)∩S′(B)| = |S(A)∩S(B)| as randomly selecting |S′(A)∪
S′(B)| distinct values from A∪B, and getting |S′(A)∩S′(B)|
values in A∩B. Note that although the signature size is fixed
by s, the effective signature size varies.

The second approach in [6], originally proposed in [8],
takes as signature all values having a hash value that is di-
visible by a constant m. Here we have

S(A) ∩ S(B) = {x ∈ A ∩ B | x = 0 mod m}



We can again see this as randomly selecting |S(A) ∪ S(B)|
distinct values from A∪B. However, the approach becomes
troublesome when sets vary greatly in size, which is often the
case. Then a small constant m generates large signatures for
large sets and thus high transport and computation costs,
while a large constant generates small signatures for small
sets, making estimates for their intersection size inaccurate.

To address this problem, Broder proposes a variant of
the second approach, where the value m = 2i for some i

depends on the size of the value set, chosen to generate sig-
natures of roughly equal size. This allows for more accurate
comparison of small sets without causing signatures of large
sets to grow too large. However, when comparing two sig-
natures which use different constants iA, iB , then only the
values which are 0 mod 2max(iA,iB) can contribute to the
intersection, so we have again ‘useless’ values, and effective
signatures

S
′(A) := {x ∈ S(A) | x = 0 mod 2iB}

S
′(B) := {x ∈ S(B) | x = 0 mod 2iA}

The methods of signature generation discussed so far can
all be performed quickly in near-linear time, and compar-
ing two signatures with respect to intersection size amounts
to randomly selecting |S(A) ∪ S(B)| or |S′(A) ∪ S′(B)| dis-
tinct values from A ∪ B. In [5] a different approach is used
known as ‘min hashing’, originally proposed by Broder in
[9] for finding near-duplicate documents. Instead of taking
as signature the s smallest elements w.r.t. a single ran-
dom ordering, the signature consists of the minimum values
w.r.t. s different random orderings (hash functions). Then
given the signatures for two sets A, B, the minimal value
minσ(A ∪ B) in A ∪ B w.r.t. an ordering σ can be com-
puted as minσ(minσ(A),minσ(B)). This value lies in A∩B

iff minσ(A) = minσ(B). Thus we are effectively selecting a
single value from A∪B at random for each of the s random
orderings. A nice property of this sampling approach is that
one can easily group minimal values into blocks, and then
compare signatures block-wise by reducing each block to a
single hash value [9]. This is a trade-off between speed and
accuracy, which is very favourable for finding pairs with high
resemblance threshold (say 0.9), but unfortunately not for
low resemblance thresholds (say 0.1), which are needed for
attribute comparison.

Signature size is constant for min hashing, and at the
same time we have no ‘useless’ elements. However, we are
effectively using only one element of every pair of elements
minσ(A), minσ(B), which gives us an effective sample size
equal to one of the signatures, whereas the approaches in
[6] provide effective sample sizes at least as large as one of
the signatures, and usually larger. Furthermore, multiple
independent sampling has a slightly larger variance than se-
lecting the full sample set at once (without chance of dupli-
cates). Finally, computation of the signature can take longer
than the approaches proposed in [6], as we need to compare
elements w.r.t. s different, independent orderings. For these
reasons we consider the signature generation methods in [6]
preferable for our purposes. We will use and extend ‘mod
2i’-sampling, since computation of effective signature size
is slightly easier and faster than for Broder’s first ‘min’-
sampling technique, but note that ‘min’-sampling can be
extended in a similar manner as well.

While we only discussed comparison of two attributes
A, B, it is easy to see that S(A) depends only on A, with no

knowledge of B required. Thus, when comparing three or
more attributes, we still only need to sample each attribute
once, using the same sample S(A) to compare A to B and
to C.

3. SET-OF-SETS SIMILARITY
Resemblance is a measure for value set similarity which

works well for reasonably clean data sets where data formats
are uniform. However, there are many cases where values of
different string-attributes don’t match exactly, but are simi-
lar, and we would like to treat them as matching, considering
small differences to be due to coding errors, i.e., dirty data.
One way to deal with this is to replace each string by a set
of chunks - e.g. words, q-grams (substrings of fixed length
[10]) or possibly v-grams (substrings of variable length [11])
occurring in it, and then to compare these sets of chunks.
A method for converting strings into sets of chunks is called
a chunking strategy. A very simple way for comparing at-
tributes based on chunks is to form for each attribute the set
(or multi-set) of chunks occurring in any of its values, and
then compare these sets. Such an approach has been sug-
gested in [5]. Technically this can be done exactly as before
- the only difference is that we are now comparing sets of
chunks instead of sets containing the original values. While
this gives us a rough estimate on whether two value sets have
something in common, it is not very accurate since correla-
tions between chunks (i.e., whether they originate from the
same string value) are not taken into account.

Example 1. Consider the following three (very small) val-
ue sets, corresponding to three different attributes:

A1 :
James Bond
Jason Bourne

A2 :
Bond James
Bourne Jason

A3 :
Bourne James
Bond Jason

If we form their 3-gram sets as described above (using only
substrings of words), we get

A1 :{Jam,ame,mes,Bon,ond,Jas,aso,son,Bou,our,urn,rne}
A2 :{Bon,ond,Jam,ame,mes,Bou,our,urn,rne,Jas,aso,son}
A3 :{Bou,our,urn,rne,Jam,ame,mes,Bon,ond,Jas,aso,son}
Here A2 and A3 map to exactly the same sets of chunks,
and thus appear to be identical and equally similar to A1,
although A2 should really be considered closer to A1 and
somewhat different from A3.

What we propose is a new measure for attribute similarity.
For this we also map each string value to the set of its chunks,
but don’t combine all chunk sets into one. For the tables
from Example 1 we then get

A1 :{{Jam,ame,mes,Bon,ond}, {Jas,aso,son,Bou,our,urn,rne}}
A2 :{{Bon,ond,Jam,ame,mes}, {Bou,our,urn,rne,Jas,aso,son}}
A3 :{{Bou,our,urn,rne,Jam,ame,mes}, {Bon,ond,Jas,aso,son}}
We therefore have a new problem to solve: instead of mea-

suring similarity between sets, where elements are just equal
or not, we measure similarity between sets-of-sets, where



elements of the inner sets (the chunks) are compared for
equality. Note that as in the example above, different (but
usually quite similar) values can have identical chunk sets.
This may be an advantage or a disadvantage, depending on
whether such values are considered to be equivalent.

At this point one may wonder why it isn’t possible to
just apply existing sampling techniques as discussed in Sec-
tion 2.1, and then compare samples using some similarity
measure for strings. The reason is that similar (but not
identical) pairs of strings are just as likely to appear in sam-
ples as dissimilar ones. Thus for dirty data without any (or
very few) exact matches, the sampling approaches discussed
effectively become independent random samples, which are
painfully ineffective for identifying shared values.

3.1 Set-of-Sets Sampling
When selecting samples for measuring set intersection, the

synchronized sampling approaches discussed in Section 2.1
ensured that an element from A, B either gets selected for
both samples (if present), or neither:

x ∈ S(A) and x ∈ B ⇒ x ∈ S(B)

That condition, as opposed to independent random sam-
pling, allowed us to obtain accurate estimates with small
samples. When selecting samples for sets-of-sets, we must
now also consider similar elements. That is, when x ∈ A

is similar to y ∈ B (written as x ∼ y), we would like for
either both or neither of them to appear in their respective
samples:

x ∈ S(A) and x ∼ y ∈ B
‘probably’⇒ y ∈ S(B)

For this we developed a sampling method where the prob-
ability of both x, y appearing in the respective samples will
depend on the similarity of x and y.

Definition 2 (SoS-sample). Let A be a set-of-sets over
some universe U, σ ⊆ U × U a linear ordering, and V ⊆ U .
The Set-of-Sets-sample (SoS-sample) of A w.r.t. σ,V is

SoS(A) := {a ∈ A | minσ(a) ∈ V}

In the context of database integration, think of U as the
set of all strings. For practical purposes, we will simply use
a hash function H to map U to N, as in [6, 5]. Then σ

is induced by H using the natural ordering of N, that is,
x ≤σ y iff H(x) ≤ H(y), and V := {u ∈ U | H(u) = 0
mod n}. Just as for ‘mod n’-sampling in the context of sets,
n can be fixed or 2i where i depends on the set size.

As the following theorem shows, the probability of both
a, b appearing in their respective SoS-samples does indeed
depend directly on their similarity.

Theorem 1. Let U be finite and σ chosen uniformly at
random and independent from V, which is created by se-
lecting each element in U independently with probability p.
Then for a ∈ A, b ∈ B the probability that a, b have the same
minimal element w.r.t. σ and are both sampled is

P (minσ(a) = minσ(b) ∈ V) = p · res(a, b)

When transmitting SoS-samples for identifying similar at-
tributes, it is not always space-efficient to use sets of chunks,
as chunks may overlap (depending on the chunking strategy
used). Instead, we will send the original string values from

which the chunk sets were generated, and reconstruct the
chunk sets after transmission. As an added bonus, this al-
lows us to use the same signatures to estimate set similarity,
as described in Section 2, since the chunk sets of identical
values from different value-sets A,B appear in both SoS-
samples if they appear in one. Also, samples consisting
of original values can be used for later human inspection
of attribute pairs where automated similarity results aren’t
decisive, or for other automatic similarity measures operat-
ing on strings rather than sets-of-sets (in particular oracle-
resemblance, as described in Section 5).

3.2 IR-Sum
We are looking for a similarity measure which can be ap-

proximated using samples of small size. In particular, if we
want to allow unbiased estimates using sample size one, our
measure for sets (of sets) A,B must take the form

F (A, B) =
∑

a ∈ A

b ∈ B

f(a, b) (1)

for some function f(a, b). While there is no inherent require-
ment to allow samples of size one (which would be extremely
unreliable), equation (1) still gives us an idea for how to con-
struct our similarity measure in general.

Intuitively, to obtain a similarity measure for A,B, the
function f(a, b) should measure the similarity between a and
b. Perhaps the most simple ‘similarity’ measure is equality:
f(x, x) = 1, f(x, y 6= x) = 0. This results in F (A, B) =
|A ∩ B|. Another very simple measure is f(a, b) = |a ∩ b|.
Closer inspection reveals that this simply defines a measure
between the bag-unions

⊎

A,
⊎

B, ignoring correlations:

F (A, B) =
∑

x∈(
⋃

A)∩(
⋃

B)

mult(x,
⊎

A) · mult(x,
⊎

B)

where mult(x,
⊎

A) denotes the multiplicity of x in the bag
⊎

A. Using f(a, b) = res(a, b) leads to similar results. While
the induced measure F doesn’t ignore correlations completely,
they still have rather low impact (e.g. for the sets of Exam-
ple 1 we get F (A1, A2) = 2, F (A1, A3) = 1.32, which shows
that A1 and A2 are more similar, but the difference is small).
The basic measure we propose is the following:

Definition 3 (IR-Sum). Given two sets-of-sets A,B,
the Intersection-Resemblance-Sum of A, B is

IRΣ(A, B) :=
∑

a∈A,b∈B

|a ∩ b| · res(a, b) =
∑

a∈A,b∈B

|a ∩ b|2
|a ∪ b|

We shall also refer to it as IR-Sum for short.

Applying this to the attributes from Example 1 we get

IRΣ(A1, A2) =
52

5
+

02

12
+

02

12
+

72

7
= 12

IRΣ(A1, A3) =
32

9
+

22

8
+

42

10
+

32

9
= 4.1

which indicates that A1, A2 are much closer than A1, A3,
as we would expect. We will discuss scaling to [0 . . . 1] to
obtain a similarity measure later on.

Of course, there are many other ways one could define
set-of-sets similarity. Suitable candidates include

∑ |a∩ b|n
or

∑

res(a, b)n for n ≥ 2, to name just a few. All of them



could sensibly distinguish cases like those in Example 1. So
what makes IR-Sum stand out? The answer is that we can
approximate it easily and efficiently.

3.3 Approximating IR-Sum
Exact computation of the IR-sum is expensive, and re-

quires access to the whole value sets (while complexity is
‘only’ quadratic, this can be prohibitive for large data sets).
Instead we will estimate it using SoS-samples:

Definition 4 (SoS-sum). The Set-of-Sets-sum of A, B

(short SoS-sum) w.r.t. σ,V is

SoSΣ(A, B) :=
∑

a ∈ A, b ∈ B

minσ(a) =
minσ(b) ∈ V

|a ∩ b|

Example 2. Consider the value sets of retailers below.
SoS-samples are created by splitting each string into chunks
and mapping them to integers using a fixed random function.
The minimal element is used to check whether to sample
the value, and which other values to compare it to. In this
example, we selected all values where the minimal element
is even (0 mod 21).

As indicated by the full and dotted lines, both matching
and non-matching sample values can map to the same min-
imal element, and thus contribute to the SoS-sum, but the
probability for non-matching values is lower (assuming they
have lower resemblance). Also, it can happen that matching
values (‘Kmart’ and ‘Kmart Corp’) both appear in the sam-
ple set, but map to different minimal elements. We don’t
compare such values since it would raise computation costs
significantly (several orders of magnitude for large sets1)
with little benefit, since the vast majority of such value pairs
will be non-matching.

Goodbuy 7→ 134
{Goo, ood, odb, dbu, buy}
{637, 524, 166, 373, 134}
Payless 7→ 51
{Pay, ayl, yle, les, ess}
{51, 907, 804, 1206, 281}
Ezyshop 7→ 102
{Ezy, zys, ysh, sho, hop}
{293, 647, 102, 388, 815}
Megabuy 7→ 134
{Meg, ega, gab, abu, buy}
{197, 764, 562, 233, 134}
Kmart 7→ 182
{Kma,mar, art}
{409, 182, 1570}

⇓
Goodbuy
Ezyshop
Megabuy
Kmart

Goodbuy Inc 7→ 134
{Goo, ood, odb, dbu, buy, Inc}
{637, 524, 166, 373, 134, 225}
Payless Ltd 7→ 51
{Pay, ayl, yle, les, ess,Ltd}
{51, 907, 804, 1206, 281, 335}
Topdeals 7→ 128
{Top, opd, pde, dea, eal, als}
{469, 807, 411, 128, 909, 583}
Megabuy 7→ 134
{Meg, ega, gab, abu, buy}
{197, 764, 562, 233, 134}
Kmart Corp 7→ 94
{Kma,mar, art,Cor, orp}
{409, 182, 1570, 94, 1347}

⇓
Goodbuy Inc
Topdeals
Megabuy
Kmart Corp

1This increase is only in part caused by the extra value com-
parisons. Equally significant are the need to explicitly calcu-
late resemblance between chunk sets, and loss of the minbag
optimization described in Section 3.5.2.

We can now use SoS-sum, which can be computed from
samples, to obtain an unbiased estimate for the IR-sum.

Theorem 2. Let samples be generated as in Theorem 1,
with p as sampling probability. Then the approximation

IRΣ(A, B) ≈ SoSΣ(A, B)

p
(2)

is an unbiased estimate.

3.4 Scaling to SoS-resemblance
Bigger sets generally have bigger IR-sums, so e.g. a result

of IRΣ(A, B) = 127.5 alone does not really tell us whether
or not A, B are very similar. Just as intersection size must
be scaled to obtain a similarity measure like set resemblance,
we must scale IR-sum to obtain a more meaningful value in
[0 . . . 1]. Let us begin with the following observation:

Proposition 1. Let A,B be sets-of-sets such that for all
a ∈ A, b ∈ B we have |a| = |b| and either a = b or a∩ b = ∅.
Then with n := |a| = |b| we have IRΣ(A, B) = n · |A ∩ B|.

Thus, up to a fixed factor n, we have the correspondences

|A ∩ B| ↔ IRΣ(A, B)

|A ∪ B| ↔ IRΣ(A, A) + IRΣ(B, B) − IRΣ(A, B)

While these correspondences only hold for sets meeting the
conditions of Proposition 1, they can provide us with a gen-
eralized definition for set-of-set resemblance.

Definition 5 (SoS-resemblance). We define the Set-
of-Set-resemblance, short SoS-resemblance, as

SoS-res(A,B) :=
IRΣ(A, B)

IRΣ(A, A) + IRΣ(B, B) − IRΣ(A, B)

It remains to show that this definition provides us with a
similarity measure for arbitrary sets A,B.

Definition 6. A function f : U ×U → R is a similarity
measure on U if

(i) f(a, b) ∈ [0 . . . 1] for all a, b ∈ U

(ii) f(a, b) = 1 iff a = b

Theorem 3. Let P+(U) denote the set of all finite, non-
empty subsets of U . SoS-resemblance is a similarity measure
on P+(P+(U)).

We can now estimate SoS-resemblance using our approx-
imations for IR-sum:

SoS-res(A, B) ≈ SoSΣ(A, B)

SoSΣ(A, A) + SoSΣ(B, B) − SoSΣ(A, B)

It is important to note that for this estimate we assume
that the sampling probability p is the same for SoSΣ(A, A),
SoSΣ(B, B), and SoSΣ(A, B). However, we may use differ-
ent probabilities of the form p = 2−i for different attributes.
This mismatch can be resolved by considering only the ef-
fective samples, as discussed in Section 2.1.

Example 3. For the attribute sets from Example 1 we get

SoS-res(A1, A2) =
12

12 + 12 − 12
= 1 (100%)

SoS-res(A1, A3) =
4.1

12 + 12 − 4.1
≈ 0.2 (20%)

which allows us to clearly distinguish them.



3.5 Efficient Computation
While sampling is central in making our method scale,

efficient analysis of samples is important as well.

3.5.1 Combined Similarity Computation
After computing the signature for each attribute and send-

ing them to a central location, we now need to analyze them.
For each pair of signatures S(A), S(B) we need to determine
their intersection size and/or IR-sum, from which we can
then estimate their (SoS-)resemblance. For intersection size
and IR-sum we need not worry about ‘effective’ signatures.
This is because for all the signature generation methods in
[6] (respectively SoS-sampling), we have the equalities

S
′(A) ∩ S

′(B) = S(A) ∩ S(B)

SoSΣ(S′(A), S′(B)) = SoSΣ(S(A), S(B))

Pairwise comparison of attributes is inefficient though,
since each value is processed multiple times. To avoid un-
necessary comparisons, we identify for each value the set of
all attributes containing it (for dirty data this is done sim-
ilarly, as described in Section 3.5.2), and then increase the
intersection size for each pair in that set. Perhaps the easi-
est way to do so is to create an inverted index by value over
all attributes. We followed this approach for simplicity of
presentation and implementation. For medium-sized data
sets with up to a few thousand attributes (value set size is
(mostly) irrelevant since we use samples), memory consump-
tion wasn’t a problem. For larger data sets, sorting based
approaches [7, 12] can be used.

In scenarios where many identical or near-identical value-
sets are expected, e.g. due to data duplication, clustering
methods (e.g. [7, 9]) can improve performance. We will not
discuss this further here.

3.5.2 Minbag-Sum
We now look for ways of making computation of SoS-

sum more efficient. For that, consider the ‘Goodbuy’ and
‘Megabuy’ values from Example 2. Since they both map to
the same minimal element, they will always be compared
to the same values from other attributes. We thus combine
their chunk sets to reduce the number of comparisons.

Definition 7 (minbag). Let A,U , σ,V be as in Defini-
tion 2. For each x ∈ U the minbag of x,A w.r.t. σ is the
bag (multiset)

mb(x,A) :=
⊎

{a ∈ A | minσ(a) = x}

The minbag-signature of A is then the set

MBSig(A) := {(x, mb(x,A)) | x ∈ V ∧ mb(x,A) 6= ∅}
For two sets-of-sets A, B over U, the minbag-sum of A,B is

MBΣ(A, B) :=
∑

x∈V

∑

y∈U

mult(y,mb(x,A)) ·
mult(y,mb(x,B))

Here mult(y,mb(x,A)) denotes multiplicity of y in mb(x,A).

Theorem 4. MBΣ(A, B) = SoSΣ(A, B).

Minbag-signatures can be derived from SoS-samples, and
given the minbag-signatures of attributes it is possible to
compute their minbag-sum. By avoiding unnecessary com-
parisons, this can be done quite efficiently for large sets of
attributes simultaneously, as described in Algorithm 1.

Algorithm 1 Compute Minbag-Sum

Input: MBSig(Ai) for i = 1 . . . n

Output: MBΣ(Ai, Aj) for i, j = 1 . . . n

1: MBΣ(∗, ∗) := 0
2: min-index(∗) := ∅
3: for all Ai do
4: for all (x,mb) ∈ MBSig(Ai) do
5: min-index(x) := min-index(x) ∪ {Ai}
6: for all x with min-index(x) 6= ∅ do
7: elem-index(∗) := ∅
8: for all Ai ∈ min-index(x) do
9: for all y ∈ mb(x,Ai) do

10: elem-index(y) := elem-index(y) ∪ {Ai}
11: for all y with elem-index(y) 6= ∅ do
12: for all Ai, Aj ∈ elem-index(y) do
13: MBΣ(Ai, Aj) += mult(y, mb(x,Ai))·

mult(y,mb(x,Aj))
14: return MBΣ

We first index all attributes by the min-values x in their
minbag-signatures. Then for each value x ∈ V we construct
another inverted index by elements of U , i.e., chunks (or
their hash-values). Just as for set-intersection, we then con-
sider for each y ∈ U in the index all pairs of attributes A, B

indexed under y and add mult(y,mb(x,A))·mult(y,mb(x,B))
to MBΣ(A, B). Let size(MBSig) denote the total number of
elements (chunks) in MBSig(A1), . . . , MBSig(An).

Theorem 5. Algorithm 1 terminates in time

O(size(MBSig) · n)

Note that this worst-case bound is reached when all (or
a fixed percentage) of sets-of-sets are similar. However, in
such cases, the number of positive minbag-sums returned is
quadratic in n, so that linear complexity in the input size
is impossible. If we impose a bound on the size of each
minbag-signature (which is practical for attribute samples),
Algorithm 1 becomes output-linear.

Extending an existing similarity graph to include new at-
tributes can easily be done in an efficient manner. All we
need to do is to compute signatures for the new attributes,
and compare them amongst themselves and to all existing
signatures. For this Algorithm 1 can simply be modified to
only loop over attribute pairs Ai, Aj in line 12 where at least
one attribute is new. By processing new attributes first, it is
possible to immediately drop ‘useless’ entries during index
construction, thus reducing memory requirements.

Instead of using inverted indices, it is also possible to
adapt sorting-based approaches such as the ‘Spider’ Algo-
rithm from [12], which require less memory.

To summarize, we employ the same general framework as
Bellman [5], but with different methods for sample creation
and analysis. For sampling we use SoS-samples as described
in Section 3.1. During the analysis phase, these are then
converted into minbag-signatures and compared using Al-
gorithm 1, to obtain the minbag-sum of all attribute pairs.
From these we can then estimate their SoS-resemblance.

4. VARIATIONS
In the following we will discuss some variations of IR-

sum, each addressing certain weaknesses of it. The options
proposed can be applied in any combination.



4.1 Reducing Mismatches
One problem inherent to every similarity measure, is that

non-matching values will often display some similarity. For
SoS-resemblance, this issue is particularly important, since
pair-wise comparison of values (which was necessary to en-
able sampling) causes large numbers of non-matching value
pairs to contribute to our measure. One way to filter out
such pairs is to increase the q-gram length (if we use q-gram
splitting as chunking strategy). However, this has the un-
desirable side-effect that small variations in matching string
values will have larger impacts on their resemblance. For ex-
ample, the strings ‘Jason Bourne’ and ‘Jason Boyrne’ have
resemblances of 9

13
, 7

13
and 5

13
for 2-grams, 3-grams and 4-

grams, respectively.
An alternative solution is to ignore all pairs which match

in only a single element. This can be done by reducing the
intersection size in the IR-sum definition by one:

Definition 8 (RIR-sum). We define the reduced in-
tersection size of two sets a, b as

ris(a, b) :=

{

|a ∩ b| if |a| = |b| = 1 or a ∩ b = ∅
|a ∩ b| − 1 otherwise

The Reduced Intersection-Resemblance-sum (RIR-sum) of
two sets-of-sets A, B is

RIRΣ(A, B) :=
∑

a∈A,b∈B

ris(a, b) · res(a, b)

For definition of reduced intersection size, the first case is
necessary to ensure that identical singular sets contribute to
the sum, and to avoid negative summands. The underlying
idea for RIR-sum is that whenever a pair of values shares
two or more q-grams, then this is most likely because they
share a larger (q+k)-gram (this intuition becomes more ac-
curate with growing q). As a consequence, using RIR-sum
instead of IR-sum reduces the contribution of non-matching
values (which typically share few q-grams) nearly as much as
increasing q-gram size. On the other hand, the contribution
of matching elements suffers only a minor reduction.

Computing RIR-sum (or rather, the corresponding re-
duced SoS-sum) is even faster than IR-sum (SoS-sum). For
this, observe that we only compare sets a ∈ A, b ∈ B with
the same minimal element x. Consequently, they always
share at least this minimal element x, so the reduction in in-
tersection size can be performed by not adding x to mb(x,A)
and mb(x,B), except for sets containing only x (first case
in Definition 8).

4.2 Reducing Multi-matches
By definition of IRΣ, a tuple in A can be matched with

multiple tuples in B (all of which have the same minimal ele-
ment). This has the undesirable effect that tuples containing
many common chunks can become the main contributers to
the measure. In other words, chunks which occur frequently
and thus carry little information are more important than
chunks occurring rarely (and thus carry more informational
value). One way to approach this problem (which we did
experiment with) is to assign weights to chunks based on
their frequency. However, we found a method which is not
only simpler, but also provides more accurate results, and
has a number of other desirable properties.

Our modification is simple: When approximating IR-sum,
instead of computing the minbag-sum

MBΣ(A, B) :=
∑

x∈V

∑

y∈U

mult(y, mb(x,A)) ·
mult(y, mb(x,B))

we ignore multiplicity and use minsets instead of minbags:

ms(x,A) :=
⋃

{a ∈ A | minσ(a) = x}

From this we can then compute the minset-sum

MSΣ(A, B) :=
∑

x∈V

|ms(x,A) ∩ ms(x,B)|

The result is a measure where each chunk in A (respectively
B) contributes to the measure at most once, less if it occurs
in many (similar) sets in A, and more if it appears in many
(dissimilar) sets in B.

In particular, one nice property of the resulting measure
is that it is stable w.r.t. duplicates in A: if a set-of-chunks
appears several times in A, these are eliminated when con-
structing minsets. While one could immediately object that
A was defined as a set, so duplicates can’t occur in the first
place, A may still contain near-duplicates, e.g. when a value
is entered twice with slightly different spellings. Such near-
duplicates are also treated appropriately for the most part.
That is, in all likelihood (if they possess the same minimal
q-gram, i.e., with a probability equal to their resemblance),
the duplicate chunks are eliminated.

Furthermore, since every chunk contributes to the mea-
sure at most once, we can use it to not only measure ‘dirty’
resemblance, but also ‘dirty’ subset containment. Classic

subset containment for clean data is measured as |A∩B|
|A|

.

However, the corresponding IR-sum fraction IRΣ(A,B)
IRΣ(A,A)

is not

a suitable measure, since IRΣ(A, B) can be bigger than
IRΣ(A, A). For MSΣ(A, B) and MSΣ(A, A) this can not
happen, so that the resulting fraction always lies in [0, 1].

Definition 9 (SoS-containment). Let A,B be sets-
of-sets. We define the set-of-sets-containment measure as

SoS-con(A, B) := EMSΣ(A,A) 6=0

(

MSΣ(A, B)

MSΣ(A, A)

)

It is clear by definition that MSΣ(A,B)
MSΣ(A,A)

(with re-sampling

if the sample for A is empty) is an unbiased estimate for
SoS-containment. Furthermore, SoS-containment extends

the classic subset-containment measure |A∩B|
|A|

: if every set

is a singleton (contains only the original value) then the two
measures become identical.

5. ORACLE-RESEMBLANCE
Unfortunately, while SoS-resemblance can quickly provide

us with a rough initial estimate whether (and how much) two
dirty value-sets overlap, we found that (especially for large
sets) the resemblance estimate wasn’t as close to the actual
resemblance as one may hope for (Section 6). To improve on
this, we propose a two-step process. In the first step, SoS-
resemblance is used to eliminate most unrelated attribute
pairs from consideration. This can be done quickly even for
large data sets. In a second refinement step, we then em-
ploy more accurate (but slower) estimation functions to the
remaining candidate matches. We will now investigate how



more accurate measures can be designed to allow (reason-
ably) efficient estimates based on the same SoS-signatures
we used to compute SoS-resemblance. Two problems that
limit the accuracy of SoS-resemblance are the following:

• Unrelated values which have only low similarity can
still increase the overall SoS-resemblance. This effect
increases with shorter chunks and larger value sets, but
can be mitigated by using min-sets (instead of min-
bags) as described in Section 4.2.

• Equivalent but not identical (“dirty”) values don’t in-
crease the overall SoS-resemblance as much as they
should. This effect increases with larger chunks and
higher error (typo) frequency.

Ideally, unrelated values should contribute nothing to the
overall similarity, while equivalent values should contribute
fully, i.e., as much as identical values. Let us assume for
a moment that we have some oracle Ω which decides for
each pair of string values whether or not they are equivalent.
Then we can make use of this oracle to construct a similarity
function between dirty value-sets as follows:

Definition 10 (oracle-resemblance). Let W denote
the universe of all possible values (e.g. all strings) and C :
W → P(U) a chunking strategy mapping values to finite sets
of chunks. Then for an oracle function Ω : W ×W → {0, 1}
we define the oracle-sum of two value-sets A, B ⊆ W as

ΩΣ(A, B) :=
∑

a∈A,b∈B

Ω(a, b)

and scale it to oracle-resemblance as

Ω-res(A,B) :=
ΩΣ(A, B)

ΩΣ(A, A) + ΩΣ(B, B) − ΩΣ(A, B)

Typically we will employ some string similarity/distance
function (e.g. edit-distance) to construct Ω, returning 1 if
the similarity/distance between the two values exceeds a pre-
defined threshold. While the result is hardly ever a perfect
oracle (i.e., one which makes no mistakes), we found that
even simple similarity/distance functions perform quite well
in terms of accuracy.

Furthermore, we can easily approximate oracle-resemblance
using our SoS-sample2. For this we only need to compensate
for the reduced probability of two equivalent but different
values having the same minimal chunk.

Definition 11. Let A ⊆ W . The chunk-based sample
SC(A) of A contains the original values of the SoS-sample
(Definition 2) of C(A):

SC(A) := {a ∈ A | minσ(C(a)) ∈ V }
The set-of-sets-oracle-sum is

SoS-ΩΣ(A, B) :=
∑

a ∈ SC(A)
b ∈ SC(B)

minσ(C(a)) =
minσ(C(b))

Ω(a, b)

res(C(a),C(b))

Recall from Section 3.1 that we actually transmit chunk-
based samples, rather than SoS-samples. Just as SoSΣ ap-
proximates IRΣ (Theorem 2), SoS-ΩΣ approximates ΩΣ.
2To be precise, we use the values from which our SoS-sample
is constructed by applying the chunking strategy C.

Theorem 6. Let Ω be compatible with C, i.e.,

Ω(a, b) = 1 ⇒ C(a) ∩ C(b) 6= ∅
for all a, b ∈ W . Then

ΩΣ(A, B) ≈ SoS-ΩΣ(A, B)

p

is an unbiased estimate.

Note that oracle-resemblance is not restricted to compar-
ing sets of strings - we can compare sets of arbitrary data
items. All we require is a chunking strategy (for sets-of-sets
this could simply be the identity mapping) and a compatible
oracle function.

6. EXPERIMENTAL RESULTS
We applied our methods to two publicly available data

sets, the WildFinder database (www.worldwildlife.org), and
a collection of medical data sets (www.medicare.gov). Our
main goals here were to establish accuracy and efficiency of
our approach (and existing ones for comparison).

6.1 Accuracy
In order to test accuracy of our sos-similarity measure,

we picked one attribute “common names” (containing ani-
mal names) from the WildFinder database, as well as two
attributes “corp name” and “NursingHomeName” from the
medical data set. We chose these value sets simply be-
cause they contain real string data (as opposed to e.g. zip
codes stored as strings), and because they were large enough
(15,000-35,000 distinct values).

To obtain a controlled amount of dirtiness necessary to
judge the accuracy of different measures in an objective and
easily quantifiable manner, we first created ‘clean’ sets with
known resemblance by selecting tuples from the value set
uniformly at random. Afterwards we introduced small er-
rors into each value3 of one data set. Here we considered
different types of errors (for each error introduced, the type
was chosen uniformly at random):

• INS: insert random character at random position

• DEL: delete character at random position

• REP: replace character at random position

• SWP: swap adjacent characters at random position

• PER: permute adjacent words at random position

This ‘dirty’ data was then compared to the clean data set
using SoS-resemblance. We used a rather large (maximal)
sample size of 1000 to limit inaccuracies due to sampling.
Furthermore, we also computed oracle resemblance, using
a simple oracle function which returns 1 whenever the two
strings have an edit-distance of 3 or less, or a 2-gram resem-
blance of 0.8 or more.

For comparison with existing methods, we measured q-
gram-resemblance, i.e., resemblance of the sets of all q-grams
as proposed in [5] for the Bellman System. Another ap-
proach we will briefly investigate are ‘data sketches’, also

3While it is unlikely that a real data set would contain typo-
graphical errors in every value, small differences in format-
ting can easily cause situations where all matching values
are represented by slightly different strings.



used in [5]. Here multi-sets of q-grams are regarded as vec-
tors over the space of all q-grams, and attributes are com-
pared via the euclidian distance of their normalized vectors.
As far as we know, these are the only sample-based similar-
ity measures for ‘dirty’ sets of strings proposed to date.

Naturally there are a number of parameters which may
impact on the result. Table 1 lists the different parameters
we vary and their default setting.

parameter range default

error number 1 - 4 1
value set size 100 - 5,000 1,000
q-gram length 2 - 4 3

Table 1: Test Parameter Settings

For SoS-resemblance, we report results with different vari-
ants applied, namely IRΣ, RIRΣ, MSΣ and RMSΣ (which
combines both variants).

Figure 1 shows the different resemblance measures and
sketch-distance graphs for different data sets. Unfortunately,
none of the measures for initial matching (i.e., all measures
except oracle-resemblance) return results very close to the
actual (clean) resemblance.

To measure accuracy, we consider two components:

• the range r of a measure: the difference between results
for clean resemblances 0 and 1

• the offset ∆ of a measure: the result for clean resem-
blance 0

Most desirable would be a large range and a small offset. As
all similarity measures are fairly linear (as shown in Figure
1 for the default case, and observed for other configurations
as well), it seems appropriate to ignore intermediate results.

To combine our two accuracy components into a single
measure, which simplifies presentation (without providing
an unfair comparison - in almost all cases measures with
larger range also had a lower offset), we use

accuracy :=
r2

r + ∆

As a results, any constant measure (range 0) will have accu-
racy 0, while the perfect “clean resemblance” measure (with
range 1, offset 0) has accuracy 1. For any positive range,
smaller offsets mean higher accuracy, while for any offset
(including offset 0) larger ranges mean higher accuracy.

Note that sketch-distance doesn’t quite fit this measure: a
small distance indicates similar rather than dissimilar sets,
and results are in [0,

√
2] rather than [0, 1]. We therefore

scale it accordingly for the purpose of measuring accuracy:

sketch-res(A,B) := 1 − sketch-dist(A,B)√
2

Finally, we computed the different similarity measures and
their accuracy. In each experiment we varied one parameter
within the range described in Table 1, while keeping the
other parameters at their default value. The results are
given in Figures 2.

The first thing we observe is that oracle-resemblance is the
clear winner in all configurations. The next best measure (in
terms of accuracy) is minset-based resemblance. Standard
SoS-resemblance and q-gram resemblance are both worse,

and neither is better than the other in all settings. The RIR-
sum modification consistently improves accuracy, albeit not
by much. Sketch-based resemblance does not appear to be
suitable for distinguishing sets with different resemblance.
However, it is important to note that sketch-based resem-
blance is not useless. It can be used for detecting attributes
with the same semantic domain (which is an equally impor-
tant task), thus complementing the other measures.

Not surprisingly, all measures become less accurate as
the number of errors (typos) increases. When varying q-
gram lengths, we found that 2-grams were too small to pro-
vide good results. 3-grams where slightly more accurate
than 4-grams for SoS-resemblance (IR-sum, RIR-sum) and
minset-based resemblance (MS-sum, RMS-sum), while 4-
grams were best for q-gram resemblance. Oracle-resemblance
is unaffected by choice of q-gram length (the variance in
accuracy is due to sampling). For value sets of different
sizes, we observed that larger value-sets result in lower ac-
curacy. This is true for all measures, although the impact is
greatest on standard SoS-resemblance and least on oracle-
resemblance. The reason for this is that larger sets (with
fixed string length) are more likely to contain very similar
but unrelated strings. Thus it can easily happen that dirty
but equivalent strings are less similar than unrelated strings,
which will necessarily introduce errors.

For sampling accuracy, we found that a sample size of
about 200 (sets of chunks) was sufficient to keep the stan-
dard deviation of SoS-resemblance well below 5%. Using
larger sample sets brought no significant improvements to
the overall accuracy of our resemblance measures, i.e., the
inaccuracies shown in Figure 2 are inherent to the measures,
and not due to approximation with samples.

6.2 Efficiency
To establish performance of our methods in terms of com-

putation time, we applied it to a collection of data sets about
medical plans, freely available from www.medicare.gov. To-
gether these databases measured over 5 GB in size and con-
tained 587 string-valued attributes (out of 791). We also ap-
plied it to the smaller Wildfinder database (35MB, 90 string
attributes). Our implementation was in Java, running on a
2.6 GHz PC with data stored in a MySQL database.

We varied the maximal sample size from 200 to 1000 tuples
(q-grams for q-gram resemblance, random projections for
sketchs). Note that for ‘mod 2i’-sampling we cannot fix the
sample size, only provide a maximum (or minimum), with
the result that most samples will contain between max

2
and

max tuples (between min and 2 ·min tuples for minimum).
We found that q-gram length had no significant impact on
computation time (results reported are for a q-gram length
of 3). Neither had the RIR-sum or minset variant (for SoS-
resemblance we report times using basic IR-sum).

Note that we separated extraction of data from the data-
base into dump files and signature generation from the dump
files. For creating the dump (which actually was the most
time consuming step for the medical data set, as it con-
tained many duplicate values) we just read one table at a
time (projected onto all string attributes) and filtered out
duplicate values after extraction. Compared to a previous
approach of simply using SQL queries of the form ‘SELECT
DISTINCT attribute FROM table’ for each string attribute,
this reduced time for dump creation from 14 minutes to just
2 minutes for the medical data set, and from 15 to 4 seconds
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Figure 1: similarity/distance measures for different data sets (default setting)

for the Wildfinder data set. Time taken for sample creation
(from dump files) as well as actual size of the signature file
is given in Table 2, for the medical data set (M) as well as
the Wildfinder database (W).

max=200 max=500 max=1000
time size time size time size

SoS(M) 9.0s 659KB 8.9s 1.1MB 8.7s 1.7MB
q-gram(M) 42s 330KB 42s 654KB 38s 1.1MB
sketch(M) 43s 1.0MB 90s 2.5MB 166s 5.1MB
SoS(W) 0.6s 38KB 0.6s 71KB 0.6s 109KB

q-gram(W) 3.1s 26KB 3.0s 41KB 3.0s 58KB
sketch(W) 3.6s 105KB 6.3s 261KB 12s 519KB

Table 2: Signature Generation

For SoS and q-gram signatures, maximum sampling size
had little effect on computation time - if anything, larger
sample sizes decreased sampling time slightly. This happens
because the main cost lies in reading and hashing the val-
ues, and since for larger sample sizes we get more attributes
where the number of distinct values lies below the maxi-
mal sample size. In such cases we can skip detailed analysis
and simply store the entire value set. SoS-sampling is faster
than q-gram sampling, as we only need to process minimal
q-grams, rather than all q-grams. The size of the signature
files grew, but less than proportional to the maximal sample
size. Again this is caused by attributes with small value sets
(e.g. less than 200) for which an increase in maximal sample
size has no or little effect. SoS signatures are larger than q-
gram signatures, as they store entire words rather than just
q-grams. The difference in size is less than one might ex-
pect, and again is due to attributes with fewer values than
the sample size allows4. For these the q-gram signatures
can actually grow larger than the SoS-signature, due to the
larger number of q-grams.

For sketch signatures, computation time grew almost lin-
early with sample size (number of random projections), as
did signature size. Both computation time and sample size
exceeded those of SoS and q-gram signatures, with the dif-
ference increasing for larger sample sizes.

Computation time for SoS-resemblance is given in Table 3.
Larger signatures increased computation time in a roughly
linear manner for all measures. Computation of q-gram re-
semblance is faster than SoS-resemblance, which in turn is
faster than sketch-distance. For the smaller WildFinder data
set, computation time is quite close, while sketch-distance

4Storage overheads also reduce the impact of string length.

max=200 max=500 max=1000
SoS(M) 1.6s 4.3s 5.7s

q-gram(M) 1.1s 2.4s 4.3s
sketch(M) 6.8s 17s 33s
oracle(M) 8m 20m 50m
SoS(W) 67ms 165ms 195ms

q-gram(W) 29ms 37ms 48ms
sketch(W) 73ms 193ms 383ms
oracle(W) 5.5s 12s 20s

Table 3: Resemblance Computation

computation becomes relatively slower for the medical data
set. The reason for this increase is that sketch-distance re-
quires pairwise comparison of sketches, and thus computa-
tion time grows quadratically in the number of attributes.
For SoS and q-gram resemblance, computation time grows
quadratically in the worst and linearly in the best case.

Oracle-resemblance is much slower than all other mea-
sures, and thus best applied as a second refinement step,
testing only attribute pairs with sufficiently high SoS-resem-
blance. For our medical database, over 98% of the 172,578
attribute pairs had an SoS-resemblance below 0.05, and thus
could be omitted from testing for oracle-resemblance.

7. RELATED WORK
Data integration is an old topic, and we cannot possibly

cover the vast body of literature available. At the same
time, we already provided an in-depth discussion of the most
closely related work in Section 2.

In this section we will only briefly discuss other, less closely
related approaches to schema matching and database sam-
pling. For more comprehensive surveys on these topics see
e.g. [1, 2, 13] and [14, 15].

7.1 Schema Matching
Matching individual attributes for similarity (whether val-

ue overlap or equivalence of semantic domains) is only one
important task of many during schema matching. More
comprehensive systems such as Bellman [5], Clio [16] or iMap
[17] also consider matches between attribute sets and sim-
ple transformations. Our work solves one specific task here,
e.g. that of an ‘overlap searcher’ in iMap, with the capabil-
ity of being able to find overlap between ‘dirty’ value sets.
Due to our focus on dirty data, our methods can also match
compound attributes (up to a degree), e.g. where ‘location’
matches ‘City’ plus ‘State’, and thus help reduce the search
space. A difference (good or bad, depending on the appli-
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Figure 2: Accuracy for different parameter settings and data sets

cation) to other approaches, e.g. [18], is that SoS-similarity
aims at finding overlap in value-sets, rather than domain
equivalence. After matching attributes have been identified
by our approach, it is possible to design queries using ap-
proximate joins [19, 20].

For matching individual values (for oracle functions) or
attribute names (for schema-based matchers), string similar-
ity measures are needed. Here a number of different metrics
have been proposed, including edit distance, affine gap dis-
tance, Smith-Waterman distance and q-gram distance [13].

7.2 Database Sampling
Various approaches for sampling databases have been pro-

posed. One important application is the estimation of join
sizes for query optimizations [21, 22, 23]. However, despite
the fact that we are looking for approximate join candidates,
we are not so much interested in estimating the join size of
these queries, but are looking for similarity of their value
sets. Join size is not such a good indicator for us, since a
single pair of similar frequent values (or absence of such a
pair) can have a huge impact. Thus any mismatch of values

can easily create a very wrong similarity result. Further-
more, samples must either be very large to obtain accurate
results, or otherwise require careful examination of both sets
to ensure that the ‘right’ values are selected, which is ineffi-
cient for more than 2 attributes.

Other sampling approaches aim to estimate aggregation
results [21, 24]. As they focus on a single attribute only,
they are not applicable to our problem. The issue of page-
level sampling vs row-level sampling is addressed in [25, 26],
but is not directly relevant to our work.

[21, 27] deal with sampling methods based on query op-
erators. For us, the relevant operator is (approximate) set
intersection. However, set intersection is not handled in [27],
while [21] concludes that independent random sampling “is
so inefficient that it is rarely worthwhile”.

To our knowledge, no methods for sampling sets to find
‘similar’ objects shared between them have been proposed.
Synchronized sampling methods for finding identical objects
between sets have been investigated for document matching
[8, 6, 9] and applied to database attributes in the Bellman
system [5]. We already discussed these in Section 2.



8. CONCLUSION
We have introduced the notion of SoS-resemblance for

measuring similarity between sets-of-sets. This new mea-
sure is amenable to efficient sampling techniques which we
have also developed, and allows efficient comparison of large
numbers of sets-of-sets. One important application motivat-
ing this work is to quickly identify string-valued attribute
pairs in relational databases allowing sensible approximate
joins, which is a vital step for integrating large databases.
Our method is designed to cope with ‘dirty’ data, where
values may be similar but not identical. While our experi-
ments have shown that our basic SoS-resemblance measure
is not sufficiently accurate (in some cases even less accurate
than existing methods), we introduced variants (RIR-sum,
minset-sum) which increase accuracy greatly with no impact
on computation time. Also, these variants (minset-sum to
be precise) allow detection of ‘dirty’ subset relationships.

To improve accuracy even further in a second analysis
stage, we discussed how our set-of-sets signatures can be
used by arbitrary string-similarity functions, leading to the
oracle-resemblance measure. As oracle-resemblance is time
consuming to compute, this is best done only on a reduced
set, where pairs of unrelated attributes have been filtered
out using SoS-resemblance. As both measures can operate
on the same samples, they work together well.

For future research, we note that our SoS-resemblance
measure and SoS-sampling method are not primarily de-
signed to operate on sets of strings, but on sets-of-sets. Thus
it seems likely that they could find application in other ar-
eas, in particular for other data formats such as XML. In
this context it may also be interesting to investigate how our
measure and sampling approach can be extended to deeper
nestings of sets, such as sets-of-sets-of-sets.

9. REFERENCES

[1] A. Y. Halevy, A. Rajaraman, and J. J. Ordille, “Data
integration: The teenage years,” in VLDB, 2006, pp.
9–16.

[2] E. Rahm and P. A. Bernstein, “A survey of approaches
to automatic schema matching,” VLDB J., vol. 10,
no. 4, pp. 334–350, 2001.

[3] M. J. Franklin, A. Y. Halevy, and D. Maier, “From
databases to dataspaces: a new abstraction for
information management,” SIGMOD Record, vol. 34,
no. 4, pp. 27–33, 2005.

[4] A. Y. Halevy, M. J. Franklin, and D. Maier,
“Principles of dataspace systems,” in PODS, 2006, pp.
1–9.

[5] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk, “Mining database structure; or, how
to build a data quality browser,” in SIGMOD, 2002,
pp. 240–251.

[6] A. Broder, “On the resemblance and containment of
documents,” in SEQUENCES: Proceedings of the
Compression and Complexity of Sequences. IEEE
Computer Society, 1997, p. 21.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig, “Syntactic clustering of the web,” Computer
Networks, vol. 29, no. 8-13, pp. 1157–1166, 1997.

[8] U. Manber, “Finding similar files in a large file
system,” in USENIX Winter, 1994, pp. 1–10.

[9] A. Z. Broder, “Identifying and filtering near-duplicate
documents,” in CPM, 2000, pp. 1–10.

[10] C. E. Shannon, A Mathematical Theory of
Communication. CSLI Publications, 1948.

[11] C. Li, B. Wang, and X. Yang, “Vgram: Improving
performance of approximate queries on string
collections using variable-length grams,” in VLDB,
2007, pp. 303–314.

[12] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz,
“Efficiently detecting inclusion dependencies,” in
ICDE, 2007, pp. 1448–1450.

[13] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios,
“Duplicate record detection: A survey,” IEEE Trans.
Knowl. Data Eng., vol. 19, no. 1, pp. 1–16, 2007.

[14] D. Barbar’a, W. Dumouchel, C. Faloutsos, P. J. Haas,
J. M. Hellerstein, Y. Ioannidis, H. V. Jagadish,
T. Johnson, R. Ng, V. Poosala, K. A. Ross, and K. C.
Sevcik, “The New Jersey data reduction report,” IEEE
Data Engineering Bulletin, vol. 20, pp. 3–45, 1997.

[15] F. Olken and D. Rotem, “Random sampling from
databases - a survey,” Statistics and Computing, vol. 5,
pp. 25–42, 1994.

[16] R. J. Miller, L. M. Haas, and M. A. Hernández,
“Schema mapping as query discovery,” in VLDB, 2000,
pp. 77–88.

[17] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and
P. Domingos, “iMAP: Discovering complex mappings
between database schemas,” in SIGMOD, 2004, pp.
383–394.

[18] B. T. Dai, N. Koudas, D. Srivastava, A. K. H. Tung,
and S. Venkatasubramanian, “Validating multi-column
schema matchings by type,” in ICDE, 2008, pp.
120–129.

[19] W. W. Cohen, “Integration of heterogeneous databases
without common domains using queries based on
textual similarity,” in SIGMOD, 1998, pp. 201–212.

[20] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava,
“Approximate string joins in a database (almost) for
free,” in VLDB, 2001, pp. 491–500.

[21] F. Olken and D. Rotem, “Simple random sampling
from relational databases,” in VLDB, 1986, pp.
160–169.

[22] S. Ganguly, P. B. Gibbons, Y. Matias, and
A. Silberschatz, “Bifocal sampling for skew-resistant
join size estimation,” in SIGMOD, 1996, pp. 271–281.

[23] S. Chaudhuri, R. Motwani, and V. R. Narasayya, “On
random sampling over joins,” in SIGMOD, 1999, pp.
263–274.

[24] S. Acharya, P. B. Gibbons, and V. Poosala,
“Congressional samples for approximate answering of
group-by queries,” in SIGMOD, 2000, pp. 487–498.

[25] S. Chaudhuri, G. Das, and U. Srivastava, “Effective
use of block-level sampling in statistics estimation,” in
SIGMOD Conf., 2004, pp. 287–298.

[26] P. J. Haas and C. Koenig, “A bi-level Bernoulli scheme
for database sampling,” in SIGMOD, 2004, pp.
275–286.

[27] J. Gryz, J. Guo, L. Liu, and C. Zuzarte, “Query
sampling in DB2 universal database,” in SIGMOD,
2004, pp. 839–843.


