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Abstract: In recent years, the number of shared biomedical ontologies has 
increased dramatically, resulting in a need for integration of these knowledge 
sources. Automated solutions to aligning ontologies address this growing need. 
However, only very recently, solutions for scalability of ontology alignment 
have begun to emerge. This research investigates scalability in alignment of 
large-scale ontologies. We present an alignment algorithm that bounds 
processing by selecting optimal subtrees to align and show that this improves 
efficiency without significant reduction in precision. We apply the algorithm  
in conjunction with our approach that includes modelling ontology alignment  
in a Support Vector Machine. 
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1 Introduction 

The number of ontologies available on the web has increased significantly in recent 
years, particularly in the Biomedical domain; for example, the Open Biomedical 
Ontologies (OBO) (Smith et al., 2004) and the Gene Ontology (GO) (Ashburner et al., 
2000). However, as different parties generate ontologies independently, the level of 
heterogeneity across platforms increases (Euzenat and Shvaiko, 2007). And, despite use 
of a standard language for ontology representation, such as OWL, there are still vast 
differences in ontology design. Therefore, there is a growing need to integrate ontologies 
using automated methods. 

To reduce the impediments to integrating data sources using ontologies, researchers 
are seeking to apply ontology alignment techniques to automatically discover 
relationships across ontological components. Ontology alignment (also referred to as 
matching (Euzenat and Shvaiko, 2007; Rahm and Bernstein, 2001), mapping (Noy, 
2004), and merging (Noy and Musen, 2003)), is the process of discovering relationships 
between entities across two or more ontologies based upon a variety of techniques that 
use entity labels, structure, semantics, and external resources to determine the 
relationships. We will use the term ontology alignment in this work. Ontology alignment 
is viewed as a potential solution to a broad set of challenges, including data integration, 
agent negotiation, and web service composition (Ehrig, 2007) as well as peer-to-peer 
information sharing and advanced navigation and query answering on the web (Euzenat 
and Shvaiko, 2007).  

The original goal of this research was to apply a SVM approach to align large-scale 
biomedical ontologies using non equivalence relations. Details of this approach can be 
found in Stoutenburg (2009). At the onset of large-scale testing, however, we 
encountered significant challenges in opening large-scale ontologies for processing.  
We found similar challenges even when using open source tools that are widely used in 
the semantic community, such as the Protege tool for editing and managing ontologies.  
In addition, when feature extraction for the SVM was applied in the alignment process, 
the application ran initially for up to three days when processing fairly small numbers of 
ontology pairs. Therefore, it became apparent that investigating scalability would be an 
essential part of this research. Our work in this area is the focus of this paper. 
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2 Related work 

In 2009, scalability of ontology alignment remains a key challenge and approaches to 
address the challenge are only starting to emerge. In the Ontology Alignment Evaluation 
Initiative (OAEI)1 in 2007 and 2008, participants were encouraged to align large data 
sets, including the Anatomy, Food and Library ontologies (Euzenat et al., 2007; 
Caracciolo et al., 2008). However, only four of seventeen tools accomplished alignment 
tasks with the largest ontologies in OAEI 2007 and only three in OAEI 2008. Paulheim 
found that the very large biomedical ontologies, such as GO and NCI Thesaurus2 cannot 
be processed by top performing ontology alignment tools (Paulheim, 2008). 

To date, research into developing scalable infrastructures for processing and 
reasoning over ontologies has been in two main areas: first, developing a representation 
approach that combines semantic richness (i.e., expressiveness) with scalable 
performance; and second, harnessing the power and scalability of database systems to 
represent ontologies (Hepp et al., 2008). Solutions to scaling ontology alignment are only 
starting to emerge. In fact, scalability continues to be one of the grand challenges of 
ontology construction and use (Hepp et al., 2008) and scaling ontology alignment in 
particular remains a research area (Giunchiglia et al., 2009). 

Some early attempts at scaling ontology alignment include elimination of candidates 
prior to alignment. Typically, light-weight string-based matching has been applied for 
candidate elimination in large-scale ontology alignment; for example (Zhang and 
Bodenreider, 2007; Kirsten et al., 2007). The problem with these approaches is that they 
are comparing lexical instead of semantic qualities of ontological classes. Thus, this 
approach risks reduced accuracy, specifically, reduced recall. Some of the more 
successful approaches that use string-based matching to eliminate candidates perform 
alignment using domain-specific knowledge sources (Zhang and Bodenreider, 2007; 
Kirsten et al., 2007). Use of domain-specific knowledge sources, however, precludes 
these solutions from performing successful alignment in other domains. Other work has 
adapted match algorithms to reduce the use of memory. Mork showed how large 
biomedical ontologies, the Foundational Model of Anatomy (FMA) and Galen,3 could be 
aligned by considering only direct subclasses and superclasses of each class to align.  
This work was successful in aligning large biomedical ontologies, but it is important to 
note that the ontologies were not expressed in OWL, instead a frame-based system was 
used (Mork and Bernstein, 2004). 

Very few alignment approaches have addressed the challenges of large scale ontology 
alignment. In OAEI 2007, only four of seventeen approaches aligned the largest 
ontologies, including the Anatomy, Food and Library tracks (Euzenat et al., 2007).  
One approach, DSSIM, applied manual partitioning in order to process the large 
ontologies (Nagy et al., 2007). Others, including RIMOM (Tang et al., 2006) and 
PRIOR+ (Mao and Peng, 2007) applied light-weight string-matching techniques as 
alternatives to full-scale alignment. An approach by Wang and Xu was presented at 
OAEI 2007 called Lily, but Lily did not align the largest ontologies until OAEI 2008. 
Wang and Xu refer to a scalability approach “generic ontology matching method  
based on semantic subgraphs”, but this work has not yet been published (Wang and  
Xu, 2008). At the Ontology Matching workshop in 2008, Paulheim proposed two  
 
 
 



 

 

   

 
 

   

 

 

   

    Scaling alignment of large ontologies 387    
 

    
 
 

   

   
 

   

   

 

   

       
 

approaches to enhance the scalability of ontology alignment: overlapping partitions and 
optimised thresholding (Paulheim, 2008). These are discussed in further detail in  
Section 3. 

Partitioning ontologies as an approach to improving scalability is risky, since most 
ontology alignment approaches rely on ontological structure to some degree. Performed 
naively, partitioning could lead to significant degradation in alignment accuracy.  
One approach to avoiding this issue involves the creation of overlapping partitions.  
In this approach, the direct neighbours of each concept are included in the  
partition, thus creating overlapping partitions. This approach has shown significant  
improvement in alignment accuracy though there is significant cost in time complexity 
(Paulheim, 2008). 

A divide-and-conquer strategy for alignment is described by Hu in late 2008  
(Hu et al., 2008). In this approach, ontologies are partitioned into blocks by measuring 
structural proximity, with each block being labelled with RDF sentences (Zhang et al., 
2007). Each block is mapped using entities matched beforehand and alignments are 
determined across blocks (Hu et al., 2008). Hu reports that this approach reduced 
execution time of alignment, down to 12 min for the OAEI Anatomy track.  
By comparison, in OAEI 2008, DSSIM, RIMOM and PRIOR+ report execution times  
of 4 h, 75 min and 23 min, respectively. However, the execution time for partitioning is 
not reported. Based on our results (Stoutenburg, 2009), we believe this is because the 
partitioning likely took days to run even on moderately sized ontologies. Furthermore, 
Hu’s structural proximity matrix does not consider the qualitative properties of the 
relations between ontological nodes. Each link in the graph is treated as if were the same 
relation. Thus, if the relation between ontological concepts is a non equivalence relation, 
then the structural proximity matrix approach breaks down in alignment. 

Stuckenschmidt and Klein propose an algorithm for partitioning ontologies in which 
the degree of dependency between concepts is measured, but the semantics of the 
partitions are not maintained (Cuenca-Grau et al., 2007). Algorithms are proposed in  
Noy and Musen (2003) and Seidenberg and Rector (2006) to partition ontologies by 
traversing relationships between concepts and produce stand-alone fragments. However, 
as pointed out in Cuenca-Grau et al. (2007), these approaches do not characterise the 
logical properties of the extracted fragments. The notion of ontology modules and 
methods for extracting them are formally defined in Cuenca-Grau et al. (2007). These 
efforts partition ontologies based on the semantics. However, despite the high accuracy of 
the results in Cuenca-Grau et al. (2007) for example, these partitioning methods often 
result in modules (or partitions) that are still quite large, on the order of thousands of 
classes (Hu et al., 2008). 

3 Definitions 

3.1 Ontology 

Typically, definitions of ontology are designed to meet the goals of the researcher but 
there are some core components that comprise any definition. At a minimum, an ontology 
can be defined to consist of a nonempty set of classes, a nonempty set of relations,  
a hierarchy among classes, a hierarchy among properties, and a set of functions that map 
classes via properties, the latter being an expression of class relationships. Ehrig defines 
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this set of features as Core Ontology (Ehrig, 2007). Some definitions of ontology include  
instances (Euzenat and Shvaiko, 2007) while others define instances and the instantiation 
function to be part of a Knowledge Base (Ehrig, 2007). Interestingly, Euzenat explicitly 
defines a subset of relations that exist in an ontology, such as subclass (he calls it 
specialisation), disjointness (exclusion), instantiation and assignment (Euzenat and 
Shvaiko, 2007). Euzenat also defines data types to be part of an ontology while  
Ehrig defines data types to be a special case of class. Also, Ehrig states that an ontology 
must consist of a lexicon that defines the names of classes and relations and a lexical 
reference for those names. We prefer Ehrig’s approach to defining ontology since it 
provides a modular definition of the components of an ontology in such a way that 
operations and algorithms can be more precisely defined. However, we use some 
elements of both approaches in the definition below.  

Definition 1 (Ontology): An ontology is a 6-tuple O = <C, R, ≤C, ≤R, σ, A>, such that: 

• C is a nonempty set of classes: {C1, C2, ..., Cn} 

• R is a nonempty set of relations: {R1, R2, ..., Rn} 

• C, R are disjoint 

• ≤C
 is a class hierarchy, a partial order on C 

• ≤R, is a relationship hierarchy, a partial order on R 

• σ : R → C × C, representing relationships between classes 

• A is a set of class axioms, possibly empty: {A1, A2, ..., An}. 

Note that in this work, we do not operate over instances. Therefore, we leave instances 
out of the definition of ontology. 

Similar to Ehrig’s definition, we denote that if c1 <C c2, where c1, c2 ∈ C, then c1 is a 
subclass of c2 and c2 is a superclass of c1. If c1 <C c2, and ! c3 ∈ C such that c1 <C c3 <C c2, 
then c1 is a direct subclass of c2 and c2 is a direct superclass of c1. We also borrow, in part 
from Ehrig, the concept of a set of entities and we say that an entity e ∈ E in ontology  
O is a class or relation, such that e|O ∈ C ! R. We treat data types as a set D " C, i.e., a 
special set of classes, as in Euzenat and Shvaiko (2007). 

3.2 Ontology alignment 

To formally define ontology alignment, we first define correspondence, inspired by  
Ehrig (2007). This definition uses the same sets C, R, and E defined above. 

Definition 2 (Correspondence): Consider two ontologies oi, oj. Let Ci and Ri represent 
classes and relations in oi, respectively. Let Cj and Rj represent classes in oj, respectively. 
A correspondence CORR is a 4-tuple = <ei, ej, φ, p>, where: 

• ei ∈ oi, ej ∈ oj 

• if ei ∈ Ci, then ej ∈ Cj, or if ei ∈ Ri then ej ∈ Rj 

• φ represents a nonempty set of relationships 
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• ≤C is a class hierarchy, a partial order on C 

• p ∈ ! such that p ∈ [0, 1], denoting a confidence on the relationship φ. 

We define φ as the set of relationships that will be acquired using ontology alignment 
techniques. These relations may not exist in the ontologies. For example, most ontology 
alignment techniques seek to acquire equivalence across ontological entities. In this 
work, we seek to acquire hyponymy. However, our work is distinguished from previous 
work in ontology alignment because we also seek to discover what we call generic 
relation r; that is, we seek to acquire relations between ontological entities ei, ej that exist 
in at least one of the ontologies. This is shown in and explained further in Section 4. 

Given this definition of correspondence, we can now define an ontology alignment, 
which is very similar to Ehrig (2007). 

Definition 3 (Ontology alignment): An ontology alignment is a set of correspondences. 

3.3 Relations used to align ontologies 

One of the primary goals of this research is to acquire relationships between ontological 
entities beyond similarity and equivalence. As discussed in Section 2, we define the set of 
relationships φ as a special set of relationships between entities that our algorithms are 
designed to discover. These relationships include the following. 

• Hyponymy, a relation that denotes a subcategory of a more general class. 

• Hypernymy, a relation that denotes a generalisation of a more specific class. 

• Correspondences such that φ ∈ Ri ! Rj; that is, we will discover properties across 
ontological entities that are defined in the original ontologies, as depicted in  
Figure 1. We will define these set of relations to be in the set General Relation r. 

Figure 1 Example of mapping classes cross-ontology using relationships within the original 
ontologies (see online version for colours) 
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4 Domain for alignment 

In this work, we performed ontology alignment in the Biomedical domain. We chose to 
align components of the GO (Ashburner et al., 2000) with the Mammalian Phenotype 
(MP) ontology (Smith et al., 2004), part of the OBO.4 The GO provides a controlled 
vocabulary to describe gene and gene product attributes in any organism (Ashburner  
et al., 2000). It consists of three major categories of descriptors: biological processes, 
molecular function and cellular component. The MP ontology supports annotation of 
mammalian phenotypes in the context of mutations, quantitative trait loci and strains that 
are used as models of human biology and disease (Smith et al., 2004). The MP ontology 
is primarily based on experimental studies conducted using mouse as the model 
organism. We chose to align these two ontologies because: 

• they are well-developed and frequently updated 

• they are widely used by the biomedical research community 

• they have great potential for application in the area of translational research. 

For example, discoveries in experiments conducted with mice could then be linked to 
various gene products that may share similar GO attributes, which may ultimately 
contribute to hypothesis generation with regard to human disease development. Details 
on the ontologies used in this evaluation are provided in Table 1. 

Table 1 Biomedical ontologies used in performance evaluation 

† Ontology OWL classes OWL object properties 

go Gene Ontology http://www.geneontology.org/ 26763 4 

mp Mammalian Phenotype ontology 
http://www.informatics.jax.org/ 
searches/MP_form.shtml 

29205 1 

The column denoted with † is used to indicate the short name of the ontology,  
for reference throughout this document. 

5 Ontology alignment approach 

We modelled ontology alignment in a SVM. Consider a set of ontologies we collect from 
the web: O = o1, o2, …, on. We operate over one ontology pair at a time. Let an ontology 
pair be (oi, oj). Let the set of k classes in ontology oi be denoted by ci1, ci2, …, cik. Let the 
set of l classes in ontology oj

 be denoted by cj1, cj2, …, cjl. Let R be the set of non 
equivalence relations to acquire cross-ontology; that is, R = {subclass, superclass, 
inferred relations}. Ontology alignment is the process of evaluating each class pair  
(cik, cjl) to see if a relationship in R exists between them. We model this process in an 
SVM by letting each object in the SVM represent a class pair. We model a set of  
features that exist between each class pair in order to evaluate whether R exists between 
the pair. 

 
 



 

 

   

 
 

   

 

 

   

    Scaling alignment of large ontologies 391    
 

    
 
 

   

   
 

   

   

 

   

       
 

There are five main types of features used in this work to identify correspondences: 
pattern-based (which use semantics, structure and external data sources), string-based, 
linguistic-based, bag-of-word-based and extrinsic-based (which include syntactic and 
semantic knowledge). We selected features that are domain-independent so that the 
models can be used broadly. There were over 50 features defined over all relations types 
in the SVM, with over 20 used per relationship type. There was a heavy reliance on 
pattern- and linguistic-based approaches as well as use of the OpenCyc upper ontology 
and WordNet. We used string-based features that include simple comparisons such as, 
detection that class names in a pair end with the same n words. Another feature detects if 
words end in the same substring. We also use the string metric by Stoilos et al. (2005). 
This approach scores based on the largest common substring between strings and has 
been shown to enhance performance in ontology alignment using equivalence. Some of 
the linguistic-based features include detection of meaningful prefixes in strings, such as 
sub-, super- and others that might suggest a subclass relationship, for example. We also 
used bag-of-word processing to extract features of class pairs. This was particularly 
useful in ontologies in which class names consisted of multiple words, typical for 
biomedical ontologies. For example, we scored the number of synonyms, hyponyms and 
hypernyms in each class pair. Interestingly, we used an additional string-based technique 
to obtain inferred relationships cross-ontology. We performed a string distance metric 
that operated over the relationship name from the original ontology and each of  
the class names in different combination. This was designed to identify relationships 
across the biomedical ontologies, such as PositiveRegulationOfPlateletActivation 
positivelyRegulates PlateletActivation. Finally, extrinsic data sources were used in our 
feature extractors. We detect syntactic and semantic relationships between the class 
names using online knowledge sources, in particular, WordNet and Open Cyc. WordNet 
and OpenCyc are consulted to identify direct relationships between class pairs, such as 
synonymy, hyponymy and hypernymy. The sources are used to identify direct 
relationships between classes in a pair but are also used in the patterns described earlier 
in this section. The complete set of evidence primitives used to align provided in 
Stoutenburg (2009). 

The architecture used in this work for ontology alignment is shown in Figure 2.  
The architecture consists of a Feature Extractor and SVM. The Feature Extractor 
identifies the features that exist between each class pair using the feature types described 
in Stoutenburg (2009). The Feature Extractor applies multiple techniques, including 
string-, linguistic-, structure-, semantic- and pattern-based approaches to derive features. 
In addition, it makes use of OWL semantics and consults external knowledge  
sources including OpenCyc and WordNet. The Feature Extractor represents each class 
pair as a vector of features identified. The SVM utilises training data to optimise 
parameters and to construct a model. The SVM model is used to predict class 
membership between each class pair; it predicts whether a particular relationship exists 
between each class pair based on the features extracted. Of course, a unique Feature 
Extractor and SVM model were developed for each relationship to be acquired.  
The alignment result is expressed as an XML 4-tuple, including each class from the class 
pair, the relationship, and a relationship indicator indicating whether the relationship 
exists between the pair. In this work, we predicted discrete values, so the relationship 
indicator is ∈ [0, 1]. 
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Figure 2 Architecture for alignment (see online version for colours) 

 

6 Metrics for large-scale ontology alignment 

Determining precision and recall in large-scale ontology alignment is difficult. Ideally, 
we would have access to a complete reference alignment with all ‘true’ results;  
but to build such a set of data for large-scale alignments is manual, difficult and  
time-consuming, requiring large groups of domain experts. This is particularly true in 
alignments with non equivalence relations. Data sets with known results for alignment 
with subclass, superclass and inferred relations simply do not yet exist. Therefore, it is 
necessary to use metrics that estimate precision and recall. We decided to use a set of 
metrics proposed by Kirsten et al. (2007) which applies rough approximations for 
precision and recall using relative quality measures. Kirsten identifies two primary 
accuracy approximation metrics: match coverage, designed to approximate recall, and 
match ratio, designed to approximate precision. Match coverage essentially measures 
how many classes are identified in the alignment. Let co1 be the set of all classes in 
ontology o1 and let c1–match be the set of concepts in o1 that appear in any alignment pair. 
Let co2 be the set of all classes in ontology o2 and let c2–match be the set of concepts in o2 

that appear in any alignment pair. Then, 
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According to Kirsten, high match coverage indicates that a significant number of 
concepts were matched. For example, 90% match coverage would indicate that 90% of 
the classes are matched, which would suggest high recall. Therefore, Kirsten  
recommends attaining match coverages that are high, above 60%. This metric assumes 
that it is expected that a large number of concepts should match across ontologies.  
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This may not always be the case, so low match coverage measures may not necessarily be 
an indicator of poor recall. 

To estimate precision, match ratio measures the ratio between the number of 
correspondences and the number of matched concepts. The idea is that precision of a 
matched result is better if a single concept is matched to fewer concepts (preferably 
similar concepts) and not loosely matched (Kirsten et al., 2007). To define match ratio, 
let corro1o2 be the correspondences found in the alignment process. Then, 
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The combined match ratio is defined similar to f-score, as follows: 

1 2

1 2

2 | | =  .
| | + | |

o o

match match

corrCombinedMatchRatio
c c− −

×  

Match ratios that are too high indicate concepts mapped to many other concepts,  
a suggestion of low precision. Match ratios close to 1.0 indicate the highest precision. 
Kirsten states that match ratios between 2–9 indicate reasonable levels of precision.  

We use these set of metrics to estimate precision and recall in our large-scale 
alignment results. We also perform random spot checks of the resultant alignments to 
strengthen confidence in the results. 

7 Optimising ontology alignment with a Branch and Bound approach 

To improve scalability of alignment, we developed an algorithm based on a Branch and 
Bound approach. This algorithm considers each concept in ontology oi and semantically 
compares it with concepts in ontology oj seeking to eliminate subtrees in ontology oj that 
are not likely to align. The algorithm moves depth first through the graph of oj; if a 
concept in oj is not semantically close to the concept under consideration in oi, it is 
pruned from further consideration along with all of its children. Once the pairs of 
concepts to align are selected, alignment begins. This algorithm is designed to reduce the 
time complexity such that O(n2) is a maximum; the actual complexity is typically much 
less, depending on the number of semantically close concepts cross-ontology.  
This approach is detailed in Figure 3. 

The most important component of this algorithm is the method used to evaluate 
whether two concepts are ‘semantically close’. Semantic closeness is determined by the 
relationship that we seek to acquire in the alignment. For example, if we seek to align 
using subclass relationships, then ‘semantic closeness’ might be defined to be the 
existence of hyponymy relations among words in class names cross-ontology. If we seek 
to align using superclass relationships, then we might define ‘semantic closeness’ to be 
the existence of hypernymy relations among words in class names cross-ontology.  
Our goal was to select a feature set that would prune unlikely candidates, resulting in a  
computationally inexpensive yet still highly accurate approach. Depending on the feature 
selected, we could expect to encounter varying execution times as well as varying 
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accuracy results. As a starting point to align with subclass, we selected a feature that 
measures how many hyponyms occur between class names cross-ontology. 

Figure 3 The algorithm for branchAndBoundAlign(oi, oj) 

 

The evaluation was performed by aligning the Mammalian Phenotype (MP) Ontology 
and the Biological Process subset of the Gene Ontology (gobp) using subclass relations, 
with bag of words hyponymy used as the semantic distance check. As shown in Figure 4, 
the algorithm results in a dramatic reduction in execution time over the original 
alignment algorithm. The Branch and Bound algorithm aligns in an average of 
approximately 38 h as compared to an average of 96 h with the original alignment 
algorithm. On average, we found that time complexity was cut by approximately 1/3. 

Figure 4 Branch & Bound alignment performance comparison for up to 1000 pairs (including 
time to select pairs to align) (see online version for colours) 

 

To complete our assessment of the value of the Branch and Bound algorithm,  
we evaluated whether the algorithm results in a reduction in accuracy. To do that, we 
compared the performance of the Branch and Bound algorithm with the performance of 
the original method when aligning the mp and gobp ontologies. To measure accuracy, we 
used the approximation metrics described in Section 6. The evaluation was performed 
with the SVM models built for the Biomedical domain in an earlier part of this research. 
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We averaged the performance over 3 SVM models. The semantic distance test was 
performed using the features that measures how many hyponyms appear between words 
in each class name. A comparison of the average match coverage metrics, which estimate 
recall, are shown in Figure 5. These results show that estimated recall is significantly 
lower, particularly for the second ontology. This is not entirely unexpected, given the 
nature of the algorithm; i.e., we might expect that less classes in ontology 2 are matched, 
since they are being pruned in the process. Recall from Section 6 that Kirsten 
recommends match coverage to be above 60%; however, we believe that in this case, low 
match coverage may not necessarily be an indicator of poor recall. However, we will still 
seek to improve the match coverage of the Branch and Bound algorithm. Match ratios, on 
the other hand, are satisfactory since they fall well within the range recommended by 
Kirsten, as shown in Figure 6. This suggests that precision is not negatively impacted  
by the Branch and Bound approach. Recall from Section 6 that we seek match ratios in 
the range of 2–9, with 1 being considered a perfect score. Therefore, these results are 
quite encouraging. Given the nature of the Branch and Bound algorithm, we would 
expect that precision should remain as high as the original approach, since the alignment 
process remains constant. These estimated metrics were validated with random spot 
checks of the alignments by biomedical researchers. Their results were favourable with 
roughly 80% of the alignments being correct. 

Figure 5 Comparison of large-scale alignment accuracy of Branch & Bound and Original 
Algorithm using match coverage (an estimate of recall) (see online version for colours) 

 

Figure 6 Comparison of large-scale alignment accuracy of Branch & Bound and Original 
Algorithm using match ratio (an estimate of precision) (see online version for colours) 
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The key to improving recall of the algorithm is to select the optimal feature for use in 
pruning, the feature that best determines ‘semantic closeness’. This set of features should 
result in higher recall but not significantly increase processing time. Therefore we 
performed experiments to identify optimal semantic distance features for use in the for 
subclass alignment. We compared the following features to determine if they would 
improve recall. 

• hyponyms between words in class names cross-ontology 

• hypernyms between words in class names cross-ontology 

• synonyms between words in class names cross-ontology 

• hyponyms and hypernyms between words in class names cross-ontology. 

The results are shown in Figure 7. Again, these experiments involved aligning the mp and 
gobp ontologies. We found that using the feature to detect hyponyms between class terms 
worked the best of all the single features. However, this was the feature originally used, 
therefore recall was not improved. Combining hypernyms and hyponyms worked best 
overall, delivering a slight improvement in recall. However, even with the combination of 
features, recall remains quite low. The use of match coverage as an estimation of recall 
may be flawed however, since the measure assumes all classes must be matched. With 
this limitation in mind, we believe that utilising domain resources is the likely solution to 
optimising recall for the Branch and Bound algorithm. The disadvantage, of course, is 
that the solution will not work in all domains. 

Figure 7 Comparison of match coverage performance of features to detect semantic closeness 
(see online version for colours) 

 

In the case of the Stoilos metric, the algorithm execution time was higher, more than 50% 
higher, therefore, we abandoned that approach for semantic closeness. In addition, we did 
not expect that a string metric would yield good results for semantic distance. In all other 
cases, execution time was not significant increased over the results discussed earlier in 
this section; in all cases, execution time remained within 5% of the original optimisation. 
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8 Experimental results: alignment of large scale biomedical ontologies 

In this section, we present the results for aligning large-scale ontologies from the OBO 
collection using subclass relations. We aligned eight pairs of ontologies using the SVM 
models developed in earlier work. Recall that we use match coverage and match ratios  
to estimate recall and precision, respectively. A comparison of match coverage can be 
seen in Figure 8. In most cases, the alignment performs well. In particular, the NCI 
Thesaurus (nci) and Mouse Anatomy (ma) alignments result in strong match coverage,  
as do alignments of the Mammalian Phenotype (mp) and Mouse Anatomy (ma). This is 
especially encouraging since the SVM models were trained on mp, gobp examples, 
primarily. Match coverage performance on mp, gobp is also very good. 

Match coverage for pairs mp, gomf and mp, gocc is not as strong. An analysis of the 
results revealed that many features were extracted for class pairs. For example, in the  
mp, gomf pair, features were extracted in well over 8000 class pairs. However, in most 
cases, only single features were identified. The SVM was trained with positive examples 
that typically possessed multiple features. Therefore, this suggests that the SVM should 
be trained with a more diverse set of data. In addition, further analysis is needed to 
identify features that will result in better match coverage for a broader set of ontologies in 
the Biomedical domain. However, it should also be noted that Kirsten’s metric is a rough 
estimate, since it assumes that all classes must have a match. Clearly, that is not a 
reasonable expectation in a complex domain such as Biomedical. 

Figure 8 Match coverage for alignment of large-scale biomedical ontologies (estimate of Recall) 
(see online version for colours) 

 

Match ratio comparisons of large-scale alignment using subclass relations are shown in 
Figure 9. Again, in most cases, estimated precision looks very good. This is especially 
promising given that the SVM models were trained on mp, gobp examples, primarily.  
The estimated precision in the pair mp, gomf is troublesome; the results show that an 
inordinate number of matches occur in mp, an unexpected result. An analysis of the 
results showed that in fact, too many single classes were being matched to multiple 
classes, an indicator of low precision. Random spot checks confirmed low precision.  
This suggests that additional features should be identified and incorporated into the SVM 
to improve precision in a broader set of class pairs. However, overall, estimated precision 
is within the acceptable range (2–9), per Kirsten. In fact, Kirsten’s precision results were 
in the range of 8–46 in the Biomedical domain (Kirsten et al., 2007). This suggests that 
our approach is highly precise. 
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Note that we supplemented these results with spot checks of the alignments by 
biomedical researchers. Data to spot check was selected randomly. The results were 
favorable in general, with roughly 80% of the alignments being successful. This is an 
encouraging result and strengthens our confidence in the use of the estimation metrics. 

Figure 9 Match ratios for alignment of large-scale biomedical ontologies (estimate of Precision) 
(see online version for colours) 

 

9 Conclusions 

Solutions to scaling ontology alignment are only starting to emerge. In fact, scalability 
continues to be one of the grand challenges of ontology construction and use (Hepp et al., 
2008) and scaling ontology alignment in particular remains a research area (Giunchiglia 
et al., 2009). We analysed some approaches in this paper; in particular, we looked at Hu’s 
approach to ontology partitioning using a divide and conquer approach (Hu et al., 2008). 
Hu’s algorithm does not consider the qualitative nature of links between classes and the 
execution time of partitioning is not reported. While pushing the complexity of alignment 
to an a priori process is a good approach (as it takes steps toward near real-time 
alignment), we found that Hu’s approach is too expensive computationally. 

We briefly described our approach to ontology alignment using non equivalence 
relations. To scale ontology alignment, we presented an algorithm that is based on a 
Branch and Bound approach. In this novel approach, the algorithm considers each 
concept in the first ontology and compares it, depth first, to concepts in the second 
ontology. If the concept pairs are not ‘semantically close’, then the concept in ontology 2 

is pruned from further consideration as are its children. This approach caps the maximum 
time complexity at O(n2), and on average, we found that time complexity was cut by 1/3. 

Since reference alignments for large-scale ontology alignments are not available and 
not feasible to create, we used emerging metrics from Kirsten et al. (2007) to 
approximate precision and recall. We found that the Branch and Bound approach did not 
significantly reduce precision but it did reduce recall. We worked to identify functions to 
optimise the tradeoff between execution time and recall. We found that hyponymy 
relations between class names worked best as a single feature to identify semantic 
closeness. Identification of hyponymy relations in conjunction with hypernymy relations 
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cross-ontology worked best to improve recall, without significant increase in execution 
time. Precision remained at fairly high levels in these experiments. 

Finally, we present large-scale alignments of biomedical ontologies using subclass 
relations. In most cases, the algorithms performed well, according to estimated metrics 
and random spot checks. Alignment performed well even on ontologies that were not 
used in training the SVMs, such as the nci, ma and ma, nci pairs. In a few cases, we did 
find that performance was not satisfactory, as in the case of the mp, gomf and mp, gocc 
pairs. Analysis of the results showed that performance could be improved in two ways:  

• by adding new features to the SVM 

• by training the SVM with a broader set of training examples. 

In general, however, our results suggest that our approach is feasible for use in real world 
applications, in terms of time complexity and accuracy. 
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