
Mining Concept Similarities for Heterogeneous
Ontologies

Konstantin Todorov1, Peter Geibel2, and Kai-Uwe Kühnberger3
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Abstract. We consider the problem of discovering pairs of similar con-
cepts, which are part of two given source ontologies, in which each con-
cept node is mapped to a set of instances. The similarity measures we
propose are based on learning a classifier for each concept that allows to
discriminate the respective concept from the remaining concepts in the
same ontology. We present two new measures that are compared exper-
imentally: (1) one based on comparing the sets of support vectors from
the learned SVMs and (2) one which considers the list of discriminat-
ing variables for each concept. These lists are determined using a novel
variable selection approach for the SVM. We compare the performance
of the two suggested techniques with two standard approaches (Jaccard
similarity and class-means distance). We also present a novel recursive
matching algorithm based on concept similarities.

1 Introduction

In A[rtificial] I[ntelligence], an ontology, in the broadest sense, is understood
as a collection of concepts and relations defined on these concepts, which alto-
gether describe and structure the knowledge in a certain domain of interest. The
O[ntology] M[atching] problem stems from the fact that different communities,
independently from one another, are likely to adopt different ontologies, given
a certain domain of interest. In consequence, multiple heterogeneous ontologies,
describing similar or overlapping fractions of the world are created. An ontology
matching procedure aims at reducing this heterogeneity by yielding assertions on
the relatedness of cross-ontology concepts, in an automatic or semi-automatic
manner. To these ends, according to [5], a matching procedure commonly re-
lies on extensional (related to the concepts instances), structural (related to the
inter-ontology concepts relations), terminological (language-related) or semantic
(related to logical interpretation) information, separately or in combination.

In this paper, we will expand on one of these general types of ontology match-
ing, known as instance-based matching. This comprises a set of approaches for
measuring the similarity of concepts from two source ontologies based on their
extensions – the instances that populate the respective concepts [9]. We consider
two training sets with classified examples, one for each of the two source ontolo-
gies. We assume that the examples in each training set are described using the
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same set of variables or attributes. The classes of the examples, however, belong
to two separate conceptual systems that serve as taxonomies and possess a hier-
archical, tree-like structure. The ontology nodes are thus implicitly assigned the
relevant examples from the training set, taking into account that the hierarchical
structure represents an is a-relationship between concept nodes.

Being given these two training sets together with the source ontologies, we
now consider the data mining task of discovering similarities between concepts of
the source ontologies based on the instances and the structures of the ontologies.
In the case that the similarities imply a suitable one-to-one mapping between
concept nodes of the two source ontologies, they can be used for computing the
“intersection” of the two source ontologies which forms the result of the matching
process.

In contrast to other learning-based matching approaches, which aim at es-
timating joint probabilities for concept pairs [4], we compute the similarity of
two concepts based on the similarity of their intra-ontology classifiers. In the
case of the S[upport] V[ector] M[achines] [3], this can be achieved by comparing
the support vectors characterizing the respective concepts. The support vectors
are examples for the respective concept that can be considered important for
discriminating it from other classes in the same ontology, and are thus relevant
for characterizing it with respect to the whole ontology.

We present a second generic approach, which bases concept similarity on
variable selection techniques that capture characteristics of the data in terms of
the relevance of variables for classifier learning. In the case of text documents,
these approaches allow to determine those words or terms that discriminate the
respective concept from other concepts in the same ontology. We introduce a
new technique for selecting variables for SVMs and use it for determining the
similarity of two concepts by comparing their lists of discriminative attributes.
The two novel similarity measures are tested against two standard techniques
used in state-of-the-art approaches: the Jaccard similarity and the class-means
distance.

The remainder of the paper has the following structure. Section 2 presents
relevant related approaches to ontology matching. Section 3 sets the ontology
matching framework in terms of definitions and assumptions. The two new ap-
proaches to measure concept similarity are suggested further in Section 4 (com-
parison of support vectors) and Section 5 (variable selection). A variable selection
criterion for SVM, together with a short introduction to the classifiers is pre-
sented in Section 6. Section 7 descriebs a recursive matching procedure based on
the proposed similarity measures. Finally, we present our experimental results
in Section 8 before we conclude with Section 9.

2 Related Work

As mentioned in the introduction, an important part of the existing OM-
approaches, including ours, are characterized as extensional, i.e. grounded in
the external world, relying on instances in order to judge intensional similarity.
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Among the basic assumptions of such approaches is that two ontologies use the
same instances to populate different conceptual structures and when this is not
so, mechanisms for extracting instances (from text corpora or other external
sources) should be made available (FCA-merge [15]). Other techniques rely on
estimating the concepts similarity by measuring class-means distances (Caiman
[11]) or estimating joint probabilities by the help of machine learning techniques
(Glue [4]). Most of these standard approaches are based on rather restrictive
assumptions, tend to be costly on a large scale or perform well for leaf-nodes
but fail to capture similarities on higher levels.

It is a relatively old idea that the gap between two conceptual systems can
be bridged by using the relations of the concepts within each of the systems.
The use of structure for judging concept similarities has found response in the
OM community, some examples of such algorithms being Anchor-Prompt [13],
Absurdist [6] and Onion [12].

Our work is much in line with the tradition of extensional concept repre-
sentation and similarity measurement. The relations between concepts are used
in order to improve and optimize the extensional similarity judgments. They
are taken into account by the recursive matching algorithm that is based on
pairwise concept similarities. In technical terms, an advantage of our method is
that most of it is accomplished with the training phase of the classification task.
In contrast to most instance-based techniques, our matching approach does not
rely on intersections of instance sets, nor on the estimation of joint probabilities.
It works with instance sets that might be different for both ontologies, which
avoids taking the costly step of extracting instances from external sources. Fi-
nally, in case of textual instances, the method makes available the list of the
most important words that characterize a similar pair of concepts - information
not readily available in the approaches cited above.

3 Populated Ontologies: Definition and Assumptions

Throughout this paper, an ontology, whose concepts are labels of real-world
instances of some kind, will be defined in the following manner (modifying a
definition found in [15]).

Definition 1. A populated ontology is a tuple O = {C, is_a, R, I, g}, where
C is a set whose elements are called concepts, is_a is a partial order on C, R is
a set of other (binary) relations holding between the concepts from the set C, I
is a set whose elements are called instances and g : C → 2I is an injection from
the set of concepts to the set of subsets of I.

In the formulation above, a concept is intensionally defined by its relations
to other concepts via the partial order and the set R, and extensionally by a set
of instances via the mapping g. We note that the sets C and I, are compulsorily
non-empty, whereas R can be the empty set. In view of this remark, the definition
above describes a hierarchical ontology : an ontology which, although not limited
to subsumptional relations, necessarily contains a hierarchical backbone, defined
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by the partial order on the set of concepts. If non-empty, R contains relations,
defined by the ontology engineer (for instance, graduated_at, employed_by,
etc.). The set I is a set of concept instances – text documents, images or other
(real world data) entities, representable in the form of real-valued vectors. The
injection g associates a set of instances to every concept. By definition, the empty
set can be associated to a concept as well, hence not every concept is expected
or required to have instances. Whether g takes inheritance via subsumption into
account in defining a concept’s instance-set (hierarchical concept instantiation)
or not (non-hierarchical instantiation) is a semantics and design-related issue [9].

Let us consider two ontologies O1 and O2 and their corresponding instance-
sets I1 = {i11, ..., i1m1

} and I2 = {i21, ..., i2m2
}, where each instance is represented

as an n-dimensional vector and m1 and m2 are integers. For a concept A ∈ C1

from ontology O1, we define a labeling SA = {(i1j , yAj )}, where yAj takes a value

+1 when the corresponding instance i1j is assigned to A, and −1 otherwise, for
j = 1, ...,m1. The labels split the instances of O1 into those that belong to the
concept A (positive instances), and those that do not (negative ones) defining
a binary classification training set. The same representation can be acquired
analogously for any concept in both ontologies O1 and O2.

4 Concept Similarity via Comparison of Intra-Ontlogy
Classifiers

A straightforward idea for determining the similarity sim(A,B) of two concepts
A and B consists in comparing their instance sets g(A) and g(B). For doing
so, we thus need a similarity measure for instances iA and iB . We can use,

for instance, the scalar product and the cosine s(iA, iB) = 〈iA,iB〉
‖iA‖‖iB‖ (i.e. the

normalized scalar product). Based on this similarity measure for elements, the
similarity measure for the sets can be defined by computing the similarity of the
mean vectors corresponding to class prototypes, i.e.

simproto(A,B) = s
( 1

|g(A)|

|g(A)|∑
j=1

iAj ,
1

|g(B)|

|g(B)|∑
k=1

iBk

)
. (1)

This method underlies the Caiman approach [11] in which concepts are assumed
to be represented by their mean vector. While this approach might be suitable for
leaf nodes, in which the data might be characterized by a unimodal distribution,
it is generally bound to fail for nodes higher up in the tree, whose instance set
might be composed of several subsets resulting in a multi-modal distribution.

The theory of hierarchical clustering (e.g., [1]) provides alternative methods
for defining similarities for pairs of sets. Examples are the similarity measures

simmin(A,B) = min
j,k

s(iAj , i
B
k ), simmax(A,B) = max

j,k
s(iAj , i

B
k ) (2)

and

simavg(A,B) =
1

|g(A)||g(B)|
∑
j,k

s(iAj , i
B
k ) . (3)
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The three measures correspond to different types of clustering methods: complete
link, single link, and average link clustering.

It is well-known that computing the similarity based on these measure can be
quite complex if the training sets are large. Moreover, the min- and max-based
measures can get easily spoiled by outliers in the training sets, whereas the
average link approach is also prone to the problem of multi-modal distributions.

Ontologies are based on the idea of discriminating between different concepts
or classes in order to conceptualize a domain. This idea also forms the basis of
the SVM described in more detail in Section 6. After successfully learning a clas-
sifier, the support vectors of class A correspond to those examples in g(A) that
have turned out to be most important for discriminating it from the other class
containing the instances for the concepts in C1 \ {A}. This means in particular
that the support vectors for the A-classifier are elements of g(A), whereas those
for B can be found in g(B). The idea which we propose is to base the measures
in (2) and (3) only on the support vectors. If we can train the classifiers success-
fully (i.e., with a low error), this will reduce complexity and can help solve the
problem of outliers and irrelevant examples.

5 Concept Similarity via Variable Selection

V[ariable] S[election] techniques (reviewed in [7]) serve to rank the input vari-
ables of a given problem (e.g. classification) by their importance for the output
(the class affiliation of an instance), according to certain evaluation criteria.
Technically speaking, a VS procedure assigns to each variable a real value –
a score – which indicates the variable’s pertinence. This can be of help for di-
mensionality reduction and for extracting important input-output dependencies.
Assuming that instances are represented as real-valued vectors, a VS procedure
in our study indicates which of the vector dimensions are most important for the
separation of the instances (within a single ontology) into those that belong to
a given concept and those that do not. In the case of documents, these might be
words or tokens that distinguish the respective concept from others in the same
ontology.

By the help of variable selection procedures carried out independently for
two concepts A ∈ C1 and B ∈ C2, on their corresponding sets SA = {(i1j , yAj )},
j = 1, ...,m1 and SB = {(i2k, yBk )}, k = 1, ...,m2, one scores the input variables
by their importance for the respective class separations. In that, the concepts A
and B can be represented by the lists of their corresponding variables scores in
the following manner:

Scores(A) = (sA1 , s
A
2 , ..., s

A
n ), Scores(B) = (sB1 , s

B
2 , ..., s

B
n ), (4)

Note that to score the input variables, one could rely on various selection
techniques. In previous studies, we have tested structural dimension reducing
methods (discriminant analysis), standard feature selection techniques for text
categorization (point-wise mutual information, chi-square statistics and docu-
ment frequency thresholding), as well as an SVM-based method [16]. The latter
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falls in the focus of the current paper and will be, therefore, introduced in more
detail in the following section.

On the basis of the concept representations in (4), different measures of con-
cept similarity can be computed [16]. The k -TF measure looks for re-occurring
elements in two lists of top k−scored variables. Alternatively, parameter-free
measures of statistical correlation, which act as measures of similarity, can be
computed over the ranks or directly over the scores associated to the variables.
Pearson’s coefficient, which has been used in the experimental part of this paper,
is given by

r =

∑n
i=1(sAi − sAmean)(sBi − sBmean)√∑n

i=1(sAi − sAmean)2
√∑n

i=1(sBi − sBmean)2
, (5)

where sAmean and sBmean are the means of the two respective score lists over all
n variables.

6 A Variable Selection Method for the SVM

In the following, Section 6.1 aims at familiarizing the reader with several concepts
from the SVM theory that are relevant for the introduction of our SVM-based
variable selection criterion described, in turn, in Section 6.2.

6.1 Support Vector Machines

The SVMs are inductive machine learners, initially designed to solve binary
classification tasks [3]. For reasons of space, we will provide knowledge about
the method limited to what is sufficient to understand the ideas behind SVM-
based variable selection (comprising existing methods and our approach).

Let us consider the following binary classification layout. Assume we have
l observations xi ∈ Rn and their associated ”truth” yi ∈ {−1, 1}. Data are
assumed to be i.i.d. (independent and identically distributed), drawn from an
unknown probability distribution P (x, y). The goal of binary classification is to
”learn” the mapping xi 7→ yi which is consistent with the given examples. Let
{f(x, σ)} be a set of such possible mappings, where σ denotes a set of parameters.
Such a mapping is called a classifier and it is deterministic - for a certain choice
of x and σ it will always give the same output f .

The actual risk, or the expectation of the test error for such a learning
machine is

R(σ) =

∫
1

2
|y − f(x, σ)|dP (x, y).

The quantity 1/2|y − f(x, σ)| is called the loss. Based on a finite number, l, of
observations, we calculate the empirical risk

Remp(σ) =
1

2l

l∑
i=1

|yi − f(xi, σ)|,
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which is a fixed number for a given training set {(xi, yi)} and a certain choice
of parameters σ.

For losses taking values 0 or 1, with probability 1 − η, 0 ≤ η ≤ 1, the two
risks are related in the following manner:

R(σ) ≤ Remp(σ) +

√
h log( 2l

h ) + 1− log(η4 )

l
, (6)

where h is a nonnegative integer which will play a core role in our variable
selection procedure, called the VC dimension. The bound (6) gives an insight in
one very important aspect of generalization theory of statistical learning. The

term

√
hlog( 2l

h )+1−log( η4 )
l , called VC confidence is ”responsible” for the capacity

of the learner, i.e. its ability to classify unseen data without error. The other
right-hand quantity in (6) - the empirical risk, measures the accuracy attained
on the particular training set {(xi, yi)}. What is sought for is a function which
minimizes the bound on the actual risk and thus provides a good balance between
capacity and accuracy - a problem known in the literature as capacity control.

The presented risk bound does not depend on P (x, y) and it can be easily
computed provided the knowledge of h. We introduce what does this param-
eter stand for. Let us consider the set of functions {f(x, σ)} with f(x, σ) ∈
{−1, 1},∀x, σ. In a binary classification task there are 2l possible ways of label-
ing a set of l points. If for each labeling there can be found a member of {f(σ)}
which correctly assigns these labels, we say that the given set of points is shat-
tered by the given set of functions. The VC dimension is a property of such a
family of functions, which is defined as the maximum number of training points
that can be shattered by that family. Although in general difficult to compute
directly, an upper bound for the VC-dimension can be computed depending on
the weight vector w and on properties of the data. In the SVMlight implementa-
tion, which we have used for our experiments in Section 8.4, the VC dimension
is estimated based on the radius of the support vectors [10].

Now, let us return to binary classification. Consider the input space
X ⊆ Rn and the output domain Y = {−1, 1} with a training set S =
{(x1, y1), ..., (xl, yl)} ∈ (X,Y )l. SVM is a linear real function f : X → R with

f(x) = 〈w·x〉+ b,

where σ = (w, b) ∈ Rn × R. The separating hyperplane in the input space X
is defined by the set {x|f(x) = 0}. The decision rule assigns an input vector x
positive if and only if f(x) ≥ 0 and negative - otherwise. (The inclusion of 0 in
the first case and not in the second is conventional.)

We are looking for the best decision function f(x) which separates the input
space and maximizes the distance between the positive and negative examples
closest to the hyperplane. The parameters of the desired function are found by
solving the following quadratic optimization problem:

min
w∈Rn,b∈R

1

2
‖w‖2
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under the linear constraints

∀i = 1, ..., l, yi(〈w,xi)〉+ b) ≥ 1.

When data are not linearly separable in the input space, they are mapped
into a (possibly higher dimensional) space, called feature space where a linear
boundary between both classes can be found. The mapping is done implicitly by
the help of a kernel function which acts as a dot product in the feature space.

When solving the above optimization problem, the weight vector w can be
expressed as a linear combination of the input vectors. It turns out that only
certain examples have a weight different from 0. These vectors are called support
vectors for they define the separating hyperplane and can be considered the
examples closest to it.

6.2 VC-dimension-Based Variable Selection

SVM-based variable selection has already been studied in the past couple of
years. Guyon et al. proposed the SVM-RFE algorithm [8] for selecting genes
which are relevant for cancer classification. The removal criterion for a given
variable is minimizing the variation of the weight vector ‖ w ‖2, i.e. its sensitivity
with respect to a variable. Rakotomamonjy et al. carried out experiments for
pedestrian recognition by the help of a variable selection procedure for SVMs
based on the sensitivity of the margin according to a variable [14]. A method
based on finding the variables which minimize bounds on the leave-one-out error
for classification was introduced by Weston et al. [17]. Bi et al. developed the
VS-SSVM variable selection method for regression tasks applied to molecules
bio-activity prediction problems [2].

The variable selection criterion that we propose is based on the sensitivity
of the VC dimension of the SVM classifiers with respect to a single variable or
a block of variables. As we have seen in the previous subsection, for different
values of the VC dimension h, different values of the VC confidence (describing
the capacity of the classifier) will be computed and thus different bounds on the
actual risk (6), where from the generalization power of the classifier will change.
Our main heuristics can be formulated as ”a less informative variable is one,
which the VC confidence of the classifier is less sensitive to”.

For computational reasons the evaluation function of our variable selection
procedure will be formulated in terms of VC dimension directly, instead of
in terms of the VC confidence. This is plausible since the VC confidence is
monotonous in h. Thus, the i-th variable is evaluated by

evali = h(H)− h(H(i)), i = 1, ..., n, (7)

where h(H) is the VC dimension of a set of SVM hypotheses H constructed over
the entire data set and h(H(i)) is the same quantity computed after the removal
of the i-th variable (whose pertinence is to be evaluated) from the data set.

Tests of the performance of suggested variable evaluation criterion are pre-
sented in [16].
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7 A Similarity-Based Matching Procedure

Fig. 1 shows two ontologies that intend to organize news articles in different
structurally related topics. This example will help us introduce (in the current
section) and evaluate (in the following section) a recursive ontology matching
procedure. We abstract from the concept names being similar, for they are not
taken into consideration in the concept similarity measurement. We have pop-
ulated the concepts of the ontologies with documents taken from the 20 News-
groups1 dataset in a way that any two document sets across both ontologies are
largely non intersecting.

Fig. 1. Two news ontologies.

One could construct an ontology matching procedure based on a concept
similarity measure by producing a set of N 1-to-M similarity assertions for an
ontology with N and an ontology with M concepts. However, it is likely that
such an initiative turns out to be rather costly, in spite of it being semantically
unjustified, for in this case structure is not taken into account.

We suggest that the concept similarity measure should be applied recursively
on the sets of concepts found on corresponding levels of the two ontologies, de-
scending down the hierarchies. In a properly designed ontology, the classes on a
single level (also referred to as unilevel classes) are internally homogeneous and
externally heterogeneous. The search of potentially similar concepts is optimized
by taking the concepts intra-ontology relations into account. The proposed re-
cursive procedure stems from a simple rule: concept similarity is tested only for
those cross-ontology concepts, whose parents have already been judged similar.

Considering the ontologies in Fig. 1, we start by mapping the set of con-
cepts {Computers(1), Religion(1), Politics(1), Recreation(1)} against the set
{Computers(2), Religion(2), Science(2), Recreation(2), Electronics(2)}. Let the
mappings identified by the help of the similarity measure be {Computers(1)
→ Computers(2)}, {Religion(1) → Religion(2)}, and {Recreation(1) → Recre-
ation(2)}. We proceed to map the sets of the children of each pair of concepts
mapped in the first step (the children of the two Computer-classes and the
children of the two Recreation-classes). The procedure stops when reaching the
leaves of the trees.

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
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procedure Map(Set1, O1, Set2, O2)
// Returns a set of mappings for the concepts of Set1 and Set2,
// and for their descendants in O1 and O2

begin
if Set1 = ∅ or Set2 = ∅ then return ∅
Σ = {} // Initialize the set of mappings
for A ∈ Set1 do // Find matches

for B ∈ Set2 do
if sim(A,B) ≥ threshold then

Σ := Σ + {(A,B)}
break// ... to enforce injectivity of mapping

if Σ 6= ∅ then // Add mappings for descendants
Mappings = Σ
for (A,B) ∈ Σ do // Recursions

Mappings = Mappings ∪ Map(children[A], children[B])

return Mappings

// Sigma is empty: Skip one level or more in O2

Σ1=Map(Set1, children[Set2])
if Σ1 6= ∅ then return Σ1

// None of the concepts in Set1 could be mapped: skip this level of O1

return Map(children[Set1], Set2)
end

procedure Main(O1, O2)
begin

// Find potential anchors and compute mappings for their descendants:
for A in O1 using breadth-first-search do

for B in O2 using breadth-first-search do
if sim(A,B) ≥ threshold then

return {(A,B)}∪ Map(children[A], O1, children[B], O2)

return ∅
end

Algorithm 1: An algorithm for matching ontologies O1 and O2.

If our source ontologies are more complex than the ones considered above
and are of different granularities, we have to ensure that at each step we are
matching corresponding levels. To these ends, we suggest to set a threshold of
the measured concept similarity: if the values found are under that threshold,
the levels do not correspond and we should descend on the following level of
O2. A pseudo-code of the procedure is given in Algorithm 1, which also allows
skipping of levels for the first ontology and additionally employs an anchoring
technique. The procedure can be adapted for ontologies that contain other than
strictly hierarchical relations in addition to a well-defined hierarchical backbone
(see definition 1 and the comments thereafter) by matching the hierarchical
backbones prior to the remaining concepts.
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Table 1. Matching the news ontologies: simproto

Concept Names Comp(2) Religion(2) Science(2) Recr(2) Electr(2)

Computers(1) 0.924 0.188 0.457 0 .514 0 .6

Religion(1) 0.175 0.972 0.154 0.201 0.191

Politics(1) 0.414 0.246 0.441 0 .522 0.47
Recreation(1) 0 .539 0.218 0.369 0.843 0 .586

8 Experiments

In the following, we present experimental results obtained for the news ontologies
in Fig. 1. We will start with the methods presented in Section 4, including
the cosine similarity for class prototypes, simproto(A,B) defined in equation 1,
the Jaccard similarities simjaccard, defined below and the methods derived from
clustering, simmin, simmax, and simavg. For these methods, we will only present
the results for the top-level categories of the news ontologies shown in Figure 1.
For the similarity measure based on the VC-dimension, we additionally evaluate
the application of the recursive matching procedure (see Section 7).

In the test ontologies, leaf nodes were assigned about 500 documents on the
related topic. Parent nodes were assigned the union of the documents assigned
to their children plus some additional documents on their topic, in order to
account for documents annotated directly by the parent concept. Each top-level
has between 1900 and 2500 instances. Each instance is described by 329 features
corresponding to a selection of the words occurring in the original news articles.
Note that we reduced the initial number of terms substantially by removing
stop words, applying stemming, and deleting high and low frequency words. The
results are presented in the form of similarity matrices, where underlined entries
mark the pairs of concepts that are supposed to be mapped onto each other,
like Computers(1) and Computers(2). Numbers in italics mark values above the
threshold of 0.5. If Alg. 1 establishes a mapping for a pair of classes that are not
supposed to be mapped, the mapping might be considered as incorrect.

8.1 Prototype Method

The prototype method 1 based on the Caiman idea simply consists in first
computing the class (concept) means in the usual manner, and then applying
the instance based similarity measure to it. Since all vectors have non-negative
feature values, the similarity lies always between 0 and 1.

The similarities for the concepts in the two news ontologies can be found
in Table 1. It can be determined that the prototype approach is able to detect
similar pairs of concepts. However, it fails to properly detect dissimilar pairs,
provided a natural threshold of 0.5 (see e.g. the pair Politics(1)/Recreation(2)).
This makes it difficult to use this measure for the recursive matching procedure,
which relies on being able to make such decisions. We assume that the relatively
high similarity values for dissimilar concept pairs result from the averaging pro-
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Table 2. Matching the news ontologies: simjaccard

Concept Names Comp(2) Religion(2) Science(2) Recr(2) Electr(2)

Computers(1) 0.597 0.03 0.14 0.02 0.16

Religion(1) 0.0 0.99 0.0 0.0 0.0
Politics(1) 0.008 0.003 0.12 0.02 0.005
Recreation(1) 0.02 0.04 0.007 0.86 0.06

cess that is used for computing the means: compared to the more “extremal”
vectors in each class, the means tend to be more similar.

8.2 Jaccard Similarity-Based Method

For completeness of our proof of concept, we tested the similarities of the first
levels of the two news ontologies by the help of one of the most popular measures
found in the extensional OM literature, the Jaccard similarity which is in the
core of the Glue matcher, given by

simjaccard(A,B) =
P (A ∩B)

P (A ∪B)
. (8)

The quantities P (A ∩ B) and P (A ∪ B) were estimated by learning an SVM
on the instances of O1 and testing it on the instances of O2 and vice versa, as
explained in [4]. The concept similarities are found in Table 2. The results by
using the corrected Jaccard coefficient, suggested by [9], were similar to the ones
presented here. Below, these results will be compared with the results achieved
with the proposed approaches.

8.3 Comparing the Sets of Support Vectors (SSV)

In the following, we present the results for comparing the sets of support vectors.
The similarities for the sets are based on minimizing, maximizing, and averaging
the similarities of pairs of instances for the two sets to be compared. The results
can be found in Table 3.

The similarity values of simmin are relatively low for all considered concept
pairs and it also fails to correctly map Recreation(1) to Recreation(2). simmax

shows the opposite effect and judges the similarity of all concept pairs as rela-
tively high. For instance, the similarity value of Recreation(2) and Politics(1) is
equal to 0.886 and thus much higher than the natural threshold of 0.5. simavg

also attains relatively low values for all concept pairs, but in contrast to simmin

it can at least determine the most similar concepts for each concept correctly.
Our conclusion is that all three measures present problems when being used in
the matching procedure, since they require the user to choose a suitable thresh-
old different from 0.5 for discriminating between similar and dissimilar concept
pairs. Note that we also applied all three similarity measures to the full instance
sets instead of the sets of support vectors. The findings were quite similar, but
computation times were much higher.



Mining Concept Similarities for Heterogeneous Ontologies 13

Table 3. Matching the news-ontologies: simmin, simmax, and simavg

Concept Names Comp(2) Religion(2) Science(2) Recr(2) Electr(2)

Computers(1) 0.00269 1.97 · 10−9 3.03 · 10−9 6.99 · 10−9 4.76 · 10−9

Religion(1) 8.27 · 10−9 0.0181 1.29 · 10−6 4.46 · 10−9 4.44 · 10−9

Politics(1) 7.33 · 10−9 1.93 · 10−9 8.23 · 10−9 4.35 · 10−9 7.02 · 10−9

Recreation(1) 5.98 · 10−9 2.82 · 10−9 5.37 · 10−9 5.49 · 10−9 4.46 · 10−9

Computers(1) 0.889 0 .503 0 .713 0 .892 0 .917
Religion(1) 0 .604 0.874 0 .543 0 .679 0.629

Politics(1) 0 .867 0 .568 0 .839 0 .886 0.885
Recreation(1) 0 .921 0 .536 0 .746 1 0 .919

Computers(1) 0.0175 0.008 0.0122 0.0138 0.0148
Religion(1) 0.00808 0.0216 0.00848 0.00907 0.0086
Politics(1) 0.013 0.0109 0.0133 0.0147 0.0137
Recreation(1) 0.0164 0.00962 0.0133 0.0198 0.0165

Table 4. Matching the news ontologies by selecting variables with MI

Concept Names Computers(2) Religion(2) Science(2) Recr(2) Electr(2)

Computers(1) 0.548 −0.405 0.119 0.146 0.464

Religion(1) −0.242 0.659 −0.105 −0.201 −0.271
Politics(1) −0.105 0.019 0.276 0.138 −0.015
Recreation(1) 0.318 −0.301 0.001 0.528 0.356

8.4 Similarity Based on VC Dimension (VC-VS)

We present an evaluation of the instance-based matching procedure suggested
in Section 7 as well as of the finding that the VC dimension of SVMs can pro-
vide a criterion for selecting variables in a classification task. As a measure of
similarity we have used Pearson’s measure of correlation (wherefrom the nega-
tive numbers), given in (5). The measure indicates high similarity for positive
values and low similarity for non-positive values. The results achieved by using
the novel SVM-based variable selection technique (Table 5) proved to be better
than those achieved by a standard point-wise mutual information-based criterion
(Table 4). The results presented below come from using the former method.

After the root nodes of O1 and O2 have been matched, we proceeded to
match the sets of their direct descendants. The results are shown in the upper
similarity matrix on Table 5. Our similarity criterion identified successfully the
three pairs of similar concepts (the Computers, the Religion, and the Recreation
pairs). Following the matching procedure, as a second step we matched the sets
of the descendants of the concepts that were found to be similar in the first step.
The obtained similarity values for the children of the computer- and recreation-
classes are shown in Table 6. Finally, in order to show the effect of not respecting
the rule of hierarchical matching, we have matched the first level of O2 with the
descendants of the computer class in O1. The obtained similarity values are
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Table 5. Matching the news-ontologies by selecting variables with VC-SVM: first levels
vs. mixed levels

Concept Names Comp(2) Religion(2) Science(2) Recr(2) Elec(2)

Computers(1) 0.78 0.08 0.04 0.40 0.06

Religion(1) 0.07 0.94 0.02 0.10 0.01

Politics(1) 0.08 0.12 0.08 0.14 0.01
Recreation(1) 0.29 0.09 0.06 0.60 0.06

Graphics(1) 0.30 -0.01 -0.1 -0.01 -0.002
HW:PC(1) 0.18 -0.03 -0.01 -0.02 -0.03
HW:Mac(1) 0.03 -0.02 -0.01 -0.02 -0.09

Table 6. Similarities of the descendants of the computer- and the recreation-classes

Concept Names Graphics(2) HW-Mac(2) HW-PC(2)

Graphics(1) 0.954 -0.475 -0.219

HW-Mac(1) -0.266 0.501 -0.073
HW-PC(1) -0.577 0.304 0.556

Concept Names Autos(2) Motorcycles(2) Baseball Hockey

Autos(1) 0.978 0.478 0.117 0.095

Motorcycles(1) 0.560 0.989 0.121 0.452
Sports 0.452 0.491 0.754 0.698

shown in the lower matrix in Table 5: although the potentially similar classes
are accorded higher similarity values, the similarity coefficients are much lower
than in the previous cases and much closer to the values for the dissimilar classes.

The similarity values are computed on the sets of input variables which,
in case of text, correspond to actual words. Thus, the most important words
that discriminate between a pair of similar concepts and the rest of the pairs
of concepts can be readily made available in contrast to related methods (e.g.
Caiman or Glue). For example, our selection procedure found out that among
the most important tokens that characterize the concept Computers are comp,
chip, graphic, card, devic, file. In contrast, the features with highest scores for
Religion were christ, church, faith, bibl, jesu, for Politics – polit, govern, legal,
talk and for Recreation – motorcycl, auto, speed and engin. This information is
useful to verify the quality and coherence of the matching results.

9 Conclusion

The paper focuses on extension-grounded approaches to identify cross-ontology
concept similarities by applying machine learning techniques for classification.
Four similarity criteria have been tested on two source ontologies populated
with textual instances: one based on comparing the support vectors learned per
concept (SSV), one based on variable selection with VC-dimension (VC-VS), the
Jaccard similarity used in the Glue tool and one, prototype method based on
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the Caiman system. A matching procedure, using one of the proposed measures
has been described and evaluated.

Our results showed that the VC-VS method outperforms the other considered
measures, yielding a clearcut difference between the similarity values obtained for
pairs of similar and pairs of dissimilar concepts. The method shows to respond
properly to a natural similarity threshold of 0.5 on a 0-1 scale. Although the
results achieved with the Jaccard similarity are competitive, the VC-VS approach
makes a step further in terms of similarity verification, since the discriminant
features (words) for each class are readily made available. The SSV technique,
although inferior to VC-VS, tends to outperform the prototype method, provided
an appropriate choice of similarity threshold from the user.
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