
A framework for schema matcher composition

BALAZS VILLANYI, PETER MARTINEK, BELA SZIKORA

Department of Electronics Technology

Budapest University of Technology and Economy

1111 Budapest, Goldmann György tér. 3.,

HUNGARY

martinek@ett.bme.hu

Abstract: - Enterprise schemas tend to be different, which is the key issue when the seamless communication between

systems is of utmost importance. One solution could be the development of standards which then could be enforced,

however, vendors seem to be reluctant to comply with them and communication between existing and legacy systems

still remains unsolved. Other solution could be schema matching, which resolves the matter on data level and the

process do not require vendors to adhere to any kind of predefined schemas. The task is very complex on the other

hand, even for human evaluators. Some of the solutions aired so far are fairly promising, however, their accuracy

varies. Our goal was to find means by which the results could be enhanced. We have been focusing on the development

of solutions which do not change the concept of the algorithms, but fine-tune them so that they achieve higher

accuracy. Our experiments showed that the results of the matchers may vary on a large scale depending on the actual

parameter settings. It has also turned out that the parameters should set for each scenario individually, as the best

results are warranted only this way. In this article, we present a general approach for optimally dissembling existing

solutions, and combining some of the resulting components in a way that the new matcher supersedes the donor ones.

The composition and the optimal parameter setting combined provide a framework, which is capable of an enhanced

performance. Improved accuracy lessens the need for the follow-up human supervision.

Key-Words: - schema matching, optimization, algorithm analysis, performance improvement, framework definition

1 Introduction
System integration is of key importance in nowadays’

enterprise life. Some of the behind lying reasons are the

diversity of applied systems or the defective, sometimes

not even feasible interchangeability of these systems.

The age of these systems also varies on a large scale, so

in order to invoke functions in these systems different

technical requirements should be met. The complexity of

the problem is obvious. It constitutes a distinctive scope

of research and is treated under Enterprise Application

Integration (EAI).

One of the key elements in EAI is the database

integration. This a low level manifestation of the

integration task, where the communication between

systems is carried out on back-end level. In order that

this communication functions correctly, the database

entities should be matched firstly. This is indispensable,

as the essential information represented in both schemas

should be identified to initiate and maintain

communication. The problem is treated not on data

instance level, but on a more abstract one, where the

structure of database is with meta information described.

This information about the structure is stored in schema

description files. Consequently, the main interest

remains in these files, among which the most wide-

spread format and standard is the XML Schema

Definition (XSD). It has also the benefit that schema

definition itself is a valid XML (Extensible Markup

Language) and this is the reason why it is easily handled

with simple XML processors, which makes it from one

side comfortable and may cut down on the runtime costs

at the same time.

The process of extraction of identical entities, their

related information and the subsequent matching of them

is referred to as schema matching. The input of the

process consists of schema definitions. For the task, only

the information gained from these files can be used.

Main matcher types are linguistic, structural and

constraint based ones. Methods which make use of

semantic and syntactic similarity are classified into the

first group, while methods investigating the structure and

inner representation of schemas are classified into the

second. Algorithms in the third group contribute to the

end result with the inspection of constraints in schemas.

This third group is vital as it may be, but is more than

less omitted from algorithms, their role is sometimes

neglected.

The task is fairly complex due to the absolute

freedom of designers in schema creation. Although there

are some standards and even business scope specific

recommendations, the conformity to them remains only

options, no one enforces them. As a result, there is

serious divergence between these schemas. Consider for

example naming conventions, which would not be such a

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1235 Issue 10, Volume 9, October 2010

big issue, if hard to follow abbreviations were not used.

Even if abbreviation resolver is at hand, the task is still

considerably hard. Beyond naming conventions, one

should face some challenge with the different entity

structure and granularity. Among others, this lack of

structure conformity makes the schema matching

eligible as a standalone scope of research and

distinguishes it from other plan semantic based similarity

evaluation method.

There are several solutions, which should cope with

these challenges with good to average performance.

Some approaches excel from the other, but the majority

needs to be further improved on accuracy. The issue is

that their performance is satisfying as it may be, though

not so outstanding that human supervision could be set

aside. In other words an additional human evaluation is

always required, which has considerable impact on the

costs. It results in a huge extra runtime cost (generating

occasionally even longer runtime than that of the

algorithm), on the other hand the general cost of the

human resource should also be taken into account.

Furthermore, this factor is proportional to the schema

size and the targeted accuracy. In the end, significant

superfluous time expense could be generated, which

have to be reduced. The only way to achieve this

objective is the accuracy enhancement of available

techniques, in order that human supervisor not be

necessary. Our focus fell over the enhancement of

algorithms and we also made efforts to remain on a

general level.

So far, we have developed a technique which should

optimally set the parameters of an arbitrary chosen

algorithm for a given scenario. Our approach is two

sided. Ones, the reference solution should be

approximated by the output, while on the other hand the

accuracy measures are maximized by choosing the

adequate parameter set. Both approaches have entailed a

substantial improvement of the accuracy. In the case of

some algorithm though, this improvement did not go

beyond a certain border. At that point, we have realized

that no matter how optimal the parameter set is, the

algorithms bear their own limitations. Nevertheless,

these limitations do not appear in every scenario. It also

means that the right algorithm for a given problem is not

definitely the right one for the other. Although, their

divergence from the average performance is low most of

the time, it is enough to produce situations, where one

algorithm inferior to the other in previous runs suppress

this latter one. Consequently the methods should be

chosen for a given scenario. Strolling beyond that, we

have analyzed the performance of the algorithms in

depth to find those elements, or as we refer to them:

components, which really distinguish themselves from

the other.

Nearly in all related researches, methods have been

analyzed as a “black box”. They performance were

measured under highly optimistic conditions. In the past,

our goal was to compare them fairly and unbiased. Now

we were eager to gain insight in those methods with

intension to obtain the ability to explain their

performance results. Treating the algorithms as black

box did not fit our objectives. We have decomposed

them in to smaller parts, called components. Obtaining

these components was only the first step. Several

unanswered questions have emerged additionally.

Among those were the exhaustiveness of the gained set

and the adequate implementation of the components. By

this latter we understand for example whether usage of

external vocabularies and other sources are really

required. Namely, these latter methods consume huge

runtimes that is why the possibility of their substation

with simpler syntactic based evaluators is much

desirable (of course by keeping the original method

basically).

Having performed some decision support based

performance tests on the identified components, some

new consequences emerged. It turned out, that certain

types of components clearly outperform the other.

Among these, some components did not get the attention

that they deserve. Furthermore, these tests could be

executed only on given scenarios, defining the optimal

composition for the given task. In order to manifest this

optimal composition we have defined a framework.

The paper is divided into sections as follows. In the

next chapter some related works are briefly described.

The subsequent chapters describe the matcher

composition. Chapter three presents the algorithms that

we have used in our researches, while chapter four

enumerates the components elicited from them. Chapter

five contains some considerations regarding the

comparison. In chapter six, we present the consequences

gained from the comparison of components presented in

chapter four. The composed matcher and the results

obtained with it are presented in chapter a seven. A step-

by-step definition of the composition framework is

defined in chapter eight, while chapter nine contains our

future plans.

2 Related works
Several schema matching methods have been

introduced, like [2,3,5,6,8,10,11,13,14,15,16,19].

Among them are really trustworthy ones with quite

convincing performance, but unfortunately some of them

are really inferior to the others.

At first, let us present [2], which incorporates a

unique inner representation method. The vast majority of

schema matchers use graph based inner representation.

Some of them strongly exploit this graph representation

and defines the schema matching process as sequence of

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1236 Issue 10, Volume 9, October 2010

operations and transformations of graphs, just like [11].

Most of the times, this inner representation is the

Document Object Model (DOM) of the XSD, but other

graph based inner representations are not unheard of. It

has the undeniable advantage that it is easy to follow and

humans treat them with comfort. This is not the most

optimal representation, however. The graphs may not

use the memory economically. As a remedy, this

approach uses Pruefer codes as inner representation. The

Label Pruefer Sequence stores linguistic information,

while the Number Pruefer Sequence incorporates

structural information. It has also a unique optimization

consideration, namely compatible elements are collected

as a first step and only after that, the comparison process

is evaluated. This has significant impact on the runtime

needed as it could dramatically reduce the number of

comparisons required, provided only the not eligible

entity pairs are filtered out in the first step. The

construction of the Pruefer sequence does not manifest a

problem, either. It is performed as the post-order

traversing of the schema graph. The structural matching

part is very similar to the one presented in [3]. In our

researches this meticulous approach proved to be very

accurate. On the contrary to what is recommended in [3],

the WordNet vocabulary is not used this time. This fact

should also dramatically reduce the runtime of the

process. This method should manifest in a more runtime

economic alternative to [3].

Authors of [8] propose a framework for schema

matching based on learning methods. Using learning

techniques for schema matching is not a new idea in

itself, but this framework is still a clever one. The

process is divided into two parts. The first is called

offline preparation, while the second is the online

matching phase. In the first phase the most adequate

supervised learner is looked for, which is followed by

the matching of the similar pairs in the second phase.

The system is a somewhat trial and error like procedure

as one does not get any clue, which learner to choose

first. Some recommendations should be provided, which

to choose. This decision should be based on scenario

analysis, which urgency further accentuates the necessity

of our researches. If this directive is provided for the

choice, the framework should significantly improve on

efficiency.

We have introduced in [9] a technique to optimize

the parameter set of the algorithms. The technique is

called calibration and two different approaches are

presented. The first one is to approximate the reference

result with the output with parameter manipulation,

which is called reference approximation. The second one

is a direct approach, where the accuracy measures are

maximized through the parameter setting. We have

concluded that neither of them is better than the other,

the ideal is the one that better serves the actual goal of

matching accuracy. Several experiments with calibration

have been performed and it has turned out that

algorithms do have their limitation. That is why

calibration is highly required in itself as it is, but not

sufficient. A new technique which should recompose

existing schema matchers is sought after. This approach

should result in wider optimization possibilities.

3 Algorithms used
Just like in the case of the definition of the calibration,

we were aimed preserving the general applicability of

the approach. The goal was to develop techniques which

work under various conditions. Algorithms may have

different complexity, component number, parameter

number and even input prerequisites and this framework

should cope with all of them. That does not mean

however that we did not use some specific algorithm in

specification, design, implementation and testing phase,

quite on the contrary. When selecting from the available

methods our right candidates, we especially considered

the diversity of them, in order to have the widest range

of solutions. We have experimented with the optimal

recomposition of three solutions.

One of them is called the NTA [10], which compares

the names, the related terms and the attributes of the

entities in the schema and assesses their relatedness

through scoring based evaluator. The approach traverses

recursively the schema graph, which is defined by the

relations of the entities. Its peculiarity is given by the

attribute comparison, which incorporates recursion. The

technique is surprisingly fast, substantially faster than

the other candidates. It has also achieved good results,

which makes it a powerful candidate.

The second inspected approach is the similarity

flooding [11]. It has earned its candidacy with its

revolutionary idea. The approach is defined on the

presumption that the more similar the entities in the

direct vicinity of the compared entities are, the more

similar the compared entities themselves are. The idea is

simple, but genius. In order to harness this presumption,

the input schemas are transformed into extended

similarity propagation nets. The iterative propagation of

the similarity values is performed along the weighted

edges of this net. The iterative flooding is delimited by a

halting condition, defined as either an iteration number

or as a difference threshold between iterations. The idea

is fascinating, albeit the results sometimes fall behind

that of the other two. It is also runtime efficient.

Unfortunately there are only a small number of

parameters, by which the calibration could be

customized.

Lastly, we have also analyzed the WordNet based

matcher presented in [3]. The specialty of this approach

is definitely the usage of the WordNet dictionary [4],

developed at Princeton University. The dictionary is

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1237 Issue 10, Volume 9, October 2010

itself an extended synonym dictionary which has its own

classification of words. As the dictionary handles only

English words, abbreviation and concatenation must be

resolved before the usage, otherwise failure is

guaranteed. The usage of the dictionary constitutes at

least two drawbacks. The first is the need for

preprocessing (if abbreviation, concatenation etc is

used), while the second is the considerable runtime

surplus. As shown in [2], the vocabulary usage is not

even necessarily needed. On the other hand though, it

seems to be too obvious that semantic comparison has its

advantage over simpler linguistic matchers. That is why

the omission of vocabulary based would have been a

mistake. This approach also has a complex structural

matcher. The evaluation is based on contexts, of which

there are three. The ancestor context encompasses all the

of ancestors up to the root, the child context is defined as

direct descendants of the node, while the leaf context

encompasses all nodes of the sub-graph the root of

which is exactly the node in question. The node

comparison is performed in these contexts with linguistic

and complex path similarity evaluation methods. The

similarity of the contexts is computed based on these

results, which is used to define the node similarity in

turn. The approach is indeed complex and requires

relatively large number of node comparisons. This

manifests a serious growth in the runtime needed as the

node comparisons usually require that the external

vocabulary be invoked. On the other hand, the accuracy

is one of the bests, thus making it eligible candidate.

Referring to what is presented in [2], the vocabulary

based linguistic comparison is not obligatory. We have

decided to analyze the method both with and without

vocabulary invocation.

4 Algorithm components
As earlier mentioned, finding the optimal weighting of

these components is in itself not always sufficient. The

first step towards defining our new framework for

schema matchers’ recomposition is to dissemble existing

ones. The need for this step is a stressing one as

algorithms are analyzed elsewhere as a whole. Our

approach was to identify smallest whole part of the

algorithm which is able to perform a comparison. We

refer to them as components.

Having dissembled all the algorithms presented in

the previous chapter, we have decided that the set should

be augmented. The reason for it is our suspicion that a

little modification to the original component may result

in higher accuracy. Spurred by this idea, we have also

defined new components are not used in any algorithms

though they resemble to existing ones. This processing

of available solutions is an important step. Our

experiment showed that the component set augmentation

could indeed lead to better results.

Components are classified into categories. This

categorization is required as it is obvious that a structural

matcher cannot be compared to a linguistic one as their

analyzing methods are different. We have further refined

the set of linguistic matchers by distinguishing between

simple string comparison methods and vocabulary based

ones. We felt this distinction necessary as the usage of

vocabulary could entail a dramatic enlargement of the

runtime needed. One of our answered questions was

whether the runtime surplus comes along with a higher

accuracy. Based on what was elicited from the three

algorithms and what was added and modified to them,

we have ended with 20 components listed below with

brief descriptions of their evaluation method:

Linguistic matchers:

- NTA linguistic matcher: full point in case of full

match and half in case of substring match. Null point

otherwise.

- Prefix/Suffix based matcher for names: Return the

ratio of the common prefixes and suffixes in the

names and the name word length. In case of full

match this returns 1.

- Prefix/Suffix based matcher for types: similar to the

previous one, only this is evaluated for types.

- Prefix based matcher for names: Return the ratio of

the common prefixes in the names and the name

word length. In case of full match this returns 1.

- Prefix based matcher for types: similar to the

previous one, only this is evaluated for types.

Vocabular matchers:

- WordNet based word matcher for names: The

similarity of labels is assessed with a dictionary

query, which returns the semantic distance between

the labels. In this case the query is executed for

names and names are handled as a single word.

- WordNet based word matcher for types: In this case

the similarity is assessed for types, but they are still

handled as one word.

- WordNet based sentence matcher for names: Names

are divided into single words and similarity is

returned for the sentence.

- WordNet based sentence matcher for types: works

similar to the previous one, only the dictionary query

is performed on types.

- NTA related terms similarity: A scoring approach

which is quite similar to that introduced in linguistic

matchers section. In addition to that, the scoring is

executed on related terms. For every term in the set

the best matching in the other set is sought. After

every term is paired, the similarity value is

proportioned to the cardinality of the joined set.

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1238 Issue 10, Volume 9, October 2010

Structural matchers:

- NTA attribute similarity: the recursive method

traverses the schema graph and uses the similarity

values of the lower levels for a given node

similarity calculation. If similarity value for a given

node pair is not available (e.g. simple and complex

type comparison), the algorithm uses simpler means

to return the similarity

- Flooding similarity: The values returned after the

iterative flooding of the similarities in the extended

similarity propagation graph.

- WordNet based ancestor context similarity:

Ancestor context similarity, where label similarities

are evaluated using WordNet dictionary.

- WordNet based child context similarity: Child

context similarity, where label similarities are

evaluated using WordNet dictionary.

- WordNet based leaf context similarity: Leaf context

similarity, where label similarities are evaluated

using WordNet dictionary.

- String comparison based ancestor context

similarity: Ancestor context similarity, where label

similarities are evaluated using string comparison.

- String comparison based child context similarity:

Child context similarity, where label similarities are

evaluated using string comparison.

- String comparison based leaf context similarity:

Leaf context similarity, where label similarities are

evaluated using string comparison.

- Direct ancestor similarity using WordNet: The

similarity of father nodes was also inspected. In this

case WordNet was applied once again.

- Direct ancestor similarity using string comparison:

Similar to the previous one, the difference shows in

the application of string comparison instead of

WordNet dictionary.

5 Component evaluation
In order to gain a more appropriate algorithm than the

original input set a thorough comparison is required.

Principally no restrictions apply regarding the means by

which this comparison should be executed. However, we

recommend the usage of decision support based

techniques. We principally used techniques like the

decision tree building and the weigh attributing.

Decision trees are particularly appropriate for the

comparison evaluation. They are easy to understand and

to evaluate. A pleasing feature is the tree pruning, which

makes it applicable even by very large component sets.

The number and the place of occurrences of component

nodes deliver the result of the comparison. It is pretty

straightforward and it should perfectly fit this need as we

are only interested in the relative performance of the

components.

Another technique we often used at evaluating the

performance is the attribute weighing. Although no tree

pruning like feature is available, with the help of some

adequate visualization, the result is fairly is easy to

acquire. There is also a lot of alternatives to choose from

based on what requirement the analysis should fulfill.

We have obtained promising results with Gini index and

information gain ratio based weighing. It is worth to try

several techniques and compare their output. In our

experiment, there were occasions where all of them

showed nearly the same result, however not always. In

this latter scenario further analysis should be conducted

which targets the reason of this diversity. Based on the

result, the decision which evaluator to choose can be

done. In a very few occasions, where the discrepancy

between result was not substantial, we used a weighted

average approach rather. That is to say, we took into

account the results of both attribute weighing technique,

but with different weights.

Neural networks also provide a distinguished

alternative in component comparison techniques.

Although they are wide spread and used in several

scenarios, we preferred using the methods listed above.

Experiments showed that they are appropriate for the

component comparison task and their delivered result

allows better evaluation. In the case of the decision trees,

the pruning and relative position of the nodes enables

better the evaluation. The accent falls on the relative

vantage of the components, the comparison should be

done based on thorough considerations. The accuracy

relation of the nodes to each other in the tree is easier to

obtain. Nevertheless, attribute weighing also provides

this indispensable feature. If rendered on diagrams the

evaluator is able to easily comprehend these relations.

This does not mean, however, that the neural networks

should be discarded. They incorporate wonderful

evaluation ability, only the other methods are more apt

for this kind of task.

6 Comparison result
No strict rules apply regarding the optimal number of

comparisons. The result and consequences of the

individual comparisons should be aggregated and if the

further comparisons do not deliver new ones, than the

experiment shall be terminated. Should the experiment

lead to some kind of ambiguity, than the reason must be

uncovered and eventually be resolved. In our research

grave discrepancies did not come forth. This kind of

grave discrepancy would be that one technique

particularly estimates a component particularly valuable,

while the other renders worthless. Normally, this

contradiction shall not happen.

To exemplify the ideas presented so far, we will go

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1239 Issue 10, Volume 9, October 2010

into the details of an experiment we conducted. As first

we built a C4.5 decision tree [1] in order to identify the

most relevant algorithm components. The actual

component set and the node distance from root were

considered as the indicator of relevance.

On the next diagram you will see one of the decision

trees. The diagram shows that related term similarity

are the most important component. This came as a

surprise, but little wonder if one considers that the

related terms were a bit too optimistic chosen. This

result pointed out the necessity for good quality related

terms which so far has been underestimated.

Looking more in depths, one can observe the prime

position of the ancestor context similarity and what is

more the string based one. This means that a good

string based matcher can keep up with a dictionary

based one. This has significant impact on the runtime.

By using the methods presented in the WordNet based

structural matcher [1] with simple string matchers one

easily turns down the runtime outlay.

Fig. 1.

Decision tree of the similarity components

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1240 Issue 10, Volume 9, October 2010

You will also find the NTA attribute and similarity

flooding nodes, nonetheless not the closest vicinity of

the root. This fact can imply they are suppressed by

some of the more trustworthy components.

It has also become fairly obvious that the WordNet

dictionary based similarity component is still a good

choice, but one should opt for the sentence matcher for

names. This result eliminates other WordNet based

techniques as they are not even shown on the graph.

The next technique was to use attribute weighting

and decide on the trustworthiness of each components

based on several indicators.

The first weighting was performed using the

information gain ratio as indicator. This delivered quite

similar results to that of the decision tree. The most

promising component turned out to be the related term

similarity. The prefix/suffix based linguistic matching

came up as second while the WordNet based matching

also prospered. According to our results the ancestor

context similarity using string comparison was the best

among the structural matchers, this gave the most

accurate results. Furthermore, it was also to be observed

that attribute similarity and similarity flooding summed

are weighted nearly the same as the leaf and child

context similarity summed. This latter two are

somewhat underdog to ancestor context similarity and

they carry approximately the same amount of

information.

The conclusions are in concordance with the Gini

index [1] based weighing. The highest weights were

given to the related terms similarity, the WordNet based

sentence matcher for names and the prefix/suffix based

similarity (both for names and types). The Gini index

accentuated the importance of the child context and it

also preferred it to the leaf and the ancestor context.

Regarding the other algorithms the NTA attribute

similarity overtook the similarity flooding by far. String

based techniques were preferred to WordNet based

ones, which is an unexpected outcome, not to mention

runtime benefits.

In every case the linguistic and structural matchers

on the whole were weighted nearly the same. On the

other hand, some components were found to be

completely useless. Among these can be listed the NTA

linguistic matcher or the exclusively prefix based

matching. The WordNet based techniques do not thrive

either if they are not used as sentence matcher. The

reason behind can be the multiword denomination of

the entities, in which case these labels cannot be

interpreted.

Based on the components presented in chapter four

and on the considerations presented in chapter five, we

have obtained the following comparison results:

- The related terms play distinguished role. Based on

the output of all component evaluator technique,

they are the most valuable, provided the entities are

supplied with related terms.

- Synonyms, antonyms, types and paraphrasing terms

of entities are essential in concordance with the

previous point. Unfortunately the sufficient quantity

and quality of related terms is rarely the case. At

best, only description is provided, which is still not a

related terms set.

- The vocabulary based method can be substituted

with an appropriate syntactic based one. This is a

relieving factor as the potential for runtime saving is

immense.

- Context based matching was the best among

structural matching. They clearly surpass other

techniques. Used with non vocabulary based

matching, they are runtime efficient as well.

- Ancestor context based matching excels somewhat

from the other two. Leaf context matching on the

other hand is a slight underdog, while child context

based matching is outshined by attribute matching.

- Attribute matching is in itself hard to define as it

involves the recursive repetition of other techniques.

Consequently, we shall not forget about inspecting

when analyzing its accuracy whether the result

comes from the technique itself or the other

involved in recursive repetition. Our experiment

concluded that the technique is in itself a valuable

one and it is seemingly a more elaborated alternative

to child and leaf context based evaluation.

- Among non vocabulary based linguistic matchers

the prefix/suffix based comparison prevails. It is

small wonder considering that this particular

linguistic matcher is most complex one.

7 Composed matcher
Having performed all the necessary comparisons and

subsequent evaluation of the results, all the necessary

requirements are met to define a new technique which is

foreseeably has more potential than its donor ones.

However, the task does not only consist of the

selection of components, but of the proper parameter

setting as well. For this task can be used the method

called calibration [9]. Experiments proved the key role

of this step. Omitting this final step, the new matcher is

presumably completely useless. Note that our final

results presented in this section are attained with

calibration involved.

We present the composed matcher constructed

according to the conclusions presented in chapter six.

We have also added some self optimization aspects, so

that the algorithm consumes only the runtime absolutely

necessary.

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1241 Issue 10, Volume 9, October 2010

Prefix/suffix based matching is applied as linguistic

matcher. Taking into account the distinguished role of

the related terms comparison and the fact that this set is

not always provided, we have decided to opt for an

automatic choice between available methods. The

composed matcher examines whether the related terms

set is available. Only if this is indeed the case, does it

use the related term comparison; if not, then they invoke

the vocabulary. This choice does not involve any human

intervention and saves runtime automatically. As

structural matcher, we have implemented the recursive

method defined in the attribute matching with context

based evaluation. This solution seemed to be reasonable

according to what is experienced during component

comparison. In conclusion, the approach involves

syntactic, semantic and structural matchers, where the

parameters are set using f-measure maximization.

Several experiments have been conducted both on

test schemas and on real life ones. Our goal was to

obtain the highest f-measure values possible. The table

below summarizes the averages and the divergences of

the attained maximal f-measures in test schemas:

 CM NTA SF WN

Average 1 0,81 0,44 0,72

Divergence 0 0,4 0,26 0,33

Table 1. F-measure average and divergence

The table uses the following abbreviations. CM

denotes the composed matcher, while NTA is the

matcher with the same name[10]. SF marks the

similarity flooding [11] and WN is the WordNet based

matcher [3]. The table shows us that the new matcher

which consists of the most accurate components of the

others performs better the original. This result is

provided as the solution for a scenario where originally

the best accuracy had not been achieved by any input

methods. The components were selected heeding the

comparison results on schemas on which the end result is

measured. On other schemas this values may differ

somewhat, but in those scenarios the construction of the

composed matcher might worse to be reinitiated.

8 The framework
Based on what has been presented so far, the definition

of the framework can be formulated. In this article we

have defined a matcher which serves our goal best. Of

course, the comparison results and the ideally composed

matcher may differ significantly in other experiment

scenarios. The whole process can be divided into

following steps.

1. Initial algorithm set definition: This step involves a

thorough survey among available methods and a

subsequent selection of those, which covers the

widest range of implemented principles. I is the

input algorithm set in the formula below.

 (1)

2. Decomposition: Having chosen the input algorithm

set, they shall be dissembled in order to acquire

components, which can be used as building stones

for the new one. D is the decomposition function in

the formula below.

 (2)

3. Composition set augmentation: Available

components might not be the best. Modified versions

of them may worse to analyze or even the definition

of completely new ones should be considered.

 (3)

4. Component evaluation: Using diverse techniques,

the components have to be compared. This step is

best described as a competition between them, were

the victor is the one, which is the more accurate

while generating only the most necessary runtime

surplus. U is the accuracy function, while C is the

cost function in the second formula below.

 (4)

 (5)

5. Matcher composition: Based on the consequences

gained in the previous step, the components from

which the new matcher is to be built are defined. The

new matcher definition should not be a mechanical

assembly of the optimal components. The

optimization possibilities should be noted and then

should be involved if possible.

6. Matcher calibration: This one last step may be of

the same importance as the previous ones added

together. If parameters are not optimal, the new

matcher may render completely useless.

In other words, the first task should be the thorough

investigation of existing solutions. This step is of key

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1242 Issue 10, Volume 9, October 2010

importance for obvious reasons. While aiming at finding

the best composition of existing methods, the task is

only achievable, if the most potent matchers serve as

input. It is also a good test for new ideas: if they are also

enlisted among the inspected solutions, their true

performance compared to the others may be unveiled.

On the other hand, it is also strongly recommended that

only the best schema matchers should be involved.

Although weaker competitors may not matter, they

unnecessarily complicate the whole task. While

assessing the quality of solutions, a good performance

indicator could be the results attached by authors, the

prior knowledge and experience with similar solutions

or even the perfunctory implementation and test run of

the algorithm, called “shallow test”.

The collection of donor solutions is followed by the

prior analysis and decomposition. A prior analysis is

needed in order that the details about the algorithm

become clear. One reason for this is the need for the

detection of similar and different components. In our

praxis, nearly the same components were identified by

different solutions sometimes. This fact leads to the

conclusion that one of them will not be necessary. Of

course, the components do not have to be the exact

same, the same behind lying concept may justify for the

omission of one of them. No exact rules apply for this

decision, so it can be hard sometimes. This prior

inspection of components also entails the better

understanding of the algorithms; even the set of the most

capable components can be envisioned. Nevertheless,

the main task in the second step is to decompose

existing solutions. Most of the time, this task is pretty

straightforward, although it may become unobvious. The

goal is to find elements or sub-routines, which are part

of the algorithm and can be defined as stand-alone

components. A good example for component could be

the Terms similarity evaluator in the NTA algorithm

[11]. Basically, every time when there are some sorts of

weights involved in the solution, which is the case most

of the time, the components can be defined as the

weighted similarity evaluator. Note that this is the

easiest way the extract components, but more complex

scenarios can also emerge. The objective is to find to

smallest units possible which can be handled separately.

Having said some words about the pre-filtering of

components, it is also crucial to compensate for the loss.

The idea is to define new components based on the

existing ones. Being inspired by concepts, several

unseen approaches may be invented, or a new

component can be defined based on existing ideas.

Sometimes the ideas combined into a new component

have a better performance than each separate. An

example could be the context based matching, where the

vocabulary based elements are substituted for syntactic

based ones. Our experiments clearly showed that the

accuracy do not deteriorate, while the run-time

efficiency improves hugely.

Component evaluation is probably the most

significant part of the recomposition process. As already

detailed in chapter five, we propose several techniques

to make the comparison. The set of technique is

comprehensive, but not exhaustive though. It may be

augmented by arbitrary chosen other methods which

qualify for a complex and relevant evaluation.

Nevertheless, the mentioned comparison techniques

gave us the best results. We concluded that methods

originating from the decision support are the most

trustworthy. The aim at this step is to find means to

compare the components based on their accuracy

produced on the input schemas and create a rank among

them subsequently. In our view, the most unbiased way

to do this is to utilize several techniques and then sum

up the results gained. Undeniable, the most potent

schemas are the ones which were elected as trustworthy

unanimously by the majority of comparing techniques.

Based on the results gained in the previous step,

everything is ready to create an enhanced matcher.

Simply take the components and combine them into an

enhanced matcher. One should only pay attention to the

balance of the types of matcher. This is one the main

reason why a previous category definition of matchers

was needed. If a component clearly excels, then other

component may be weighted less or even omitted,

although this latter case is far from typical. On the other

hand, tend to avoid to usage of more than one technique

from a single category, as they may interfere. For every

test scenario, different results can emerge, so even if

similar results have been produced by components in the

same category, it is highly recommended to refrain from

the collective usage of them. Furthermore, there is no

point in it if a component has high accuracy and is not

superseded by the others. As presented in chapter five,

the components can be combined conditionally. We

combined the WordNet based matcher with the terms

based matcher in this way. Namely, if there is no related

terms set defined, then and only then execute the

WordNet based matching. The behind-lying

consideration is as follows: this latter is always feasible,

although clearly runtime consuming. The former not

only turned out to be the best among syntactic based

techniques, but even runtime efficient. The problem is

that the related term set is not available most of time.

The rest is obvious. As this example shows, the

composition should be made using considerations about

the various scenarios. A clever approach can cut down

immensely on the runtime needed.

As the last and maybe most vital step execute the

calibration proposed in [9]. This may be regarded as the

cutting edge between the useless results and the best

results of the composed matcher. Without this one final

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1243 Issue 10, Volume 9, October 2010

step – the proper parameter setting – the results may

deceive the contemplators, as the matcher may perform

suboptimal. We have also shown that only this way is

the unbiased comparison of matcher possible.

Consequently, all the results presented in chapter seven

are that of calibrated matchers.

9 Conclusion and future works
In this article a new framework for schema matching

composition is presented. The composition process takes

into account several aspects and evaluation results that

are present in schema matching scenarios

simultaneously. This framework provides an approach

which involves many automated steps. Nevertheless,

designers’ consideration shall not be set aside. The

potential of these ideas best harnessed if used as a base,

and should be tweaked with further tricks.

We plan to use this novel approach under various

conditions and see how it behaves if only a small set

training schemas available. We are also curious how

well the conclusions gained at a component evaluation

scenario apply to others. This is of key importance.

Should it turn out that beyond a certain training schema

size we are able draw conclusion in general, our focus

shall fall on the research of these general applicable

composition rules. That would result a general rule set,

which should give directives which component to

compose in order to attain best results on a particular

schema.

References:

[1] J. Abonyi, Adatbányászat a hatékonyság eszköze,

Computer Books, 2006

[2] A. Algergawy, E. Schallehn, G. Saake - Improving

XML schema matching performance using Prüfer

squences, Data & Knowledge Engineering, Vol. 68,

2009, pp. 728-747.

[3] A. Boukottaya, C. Vanoirbeek, Schema Matching for

Transforming Structured Documents, Proceedings of

the 2005 ACM symposium on Document engineering,

2005, pp. 101-110.

[4] Cognitive Science Laboratory, WordNet - a lexical

database for the English language, at

http://wordnet.princeton.edu/

[5] Y. P. Chen, S. Promparmote, F. Maire - MDSM:

Microarray database schema matching using the

Hungarian method, Information Sciences, Vol. 176,

2006, pp. 2771-2790.

[6] T. Erl, Service-oriented architecture: concepts,

technology, and design, R. R. Doneilly, 2005

[7] Hong-Hai Do, Erhard Rahm, Matching large

schemas: Approaches and evaluation, Information

Systems, Vol. 32, Issue 6, 2007, pp. 857-885.

[8] B. Jeong, D. Lee, H. Cho, J. Lee - A novel method

for measuring semantic similarity for XML schema

matching, Expert Systems with Applications, Vol. 34,

Issue 3, 2008, pp. 1651-1658.

[9] P. Martinek, B. Villányi, B. Szikora - Calibration

and Comparison of Schema Matchers, WSEAS

Transactions on Mathematics, Vol. 8, Issue 9, 2009,

pp.489-499.

[10] Martinek P., Szikora B., Computational

Requirement of Schema Matching Algorithms,

WSEAS Transactions on Information Science and

Applications, Vol. 6, Issue 8. 2009, pp. 1412-1422.

[11] P. Martinek,B. Szikora, Detecting semantically

related concepts in a SOA integration scenario,

Periodica Polytechnica, 2008

[12] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity

Flooding: A Versatile Graph Matching Algorithm

and its Application to Schema Matching,

Proceedings of the 18th International Conference on

Data Engineering, 2002, pp. 117-128.

[13] J. Nathan Foster, Michael B. Greenwald,

Christian Kirkegaard, Benjamin C. Pierce, Alan

Schmitt, Exploiting schemas in data synchronization,

Journal of Computer and System Sciences, Volume

73, Issue 4, 2007, pp. 669-689.

[14] H. Nottelmann, U. Straccia - Information

retrieval and machine learning for probabilistic

schema matching, Science Direct Information

Processing and Management, Vol. 43, 2007, pp. 552-

576.

[15] K. Saleem, Z. Bellahsene, E. Hunt - PORSCHE:

Performance ORiented SCHEma mediation,

Information Systems, Vol. 33, 2008, pp. 637-657.

[16] A. Salguero, et. al, Ontology based framework for

data integration, WSEAS Transactions on

Information Science and Applications, Volume 5,

Issue 6, 2008, Pp. 953-962.

[17] Yu J., Zhou G., SG: A structure based Web

Services matching framework, WSEAS Transactions

on Information Science and Applications,

Vol. 4, Issue 4, 2007, Pp. 669-673.

[18] B. Villányi, P. Martinek - Analysing Schema

Matching Solutions, microCAD Conference, 2009,

pp. 127-132.

[19] B. Villányi, P. Martinek – Schema Matchers’

Performance Improvement, 10th International

Symposium of Hungarian Researchers, 2009, pp.

613-624.

[20] Wu X., Feng J., A framework and implementation

of information content reasoning in a database,

WSEAS Transactions on Information Science and

Applications, Vol. 6, Issue 4, 2009, pp. 579-588.

WSEAS TRANSACTIONS on COMPUTERS Balazs Villanyi, Peter Martinek, Bela Szikora

ISSN: 1109-2750 1244 Issue 10, Volume 9, October 2010

