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Abstract— The paper presents a novel instance-based apmechanisms are used to find variables (terms from the
proach to aligning concepts taken from two heterogeneou$F/IDF vector dimensions), which are most characteristic
ontologies populated with text documents. We introduce #or a given concept and play the most important role for
concept similarity measure based on the size of the inteiseparating its instances from the rest of the instances of
section of the sets of variables which are most important fothe same ontology. The proposed measure of similarity is
the class separation of the instances in both input ontelegi based on comparing the most important variables for two
We suggest a VC dimension variable selection criteriorconcepts taken from different ontologies. The choice of a
elaborated for Support Vector Machines (SVMs), which isvariable selection procedure within this setting is left to
novel in the SVMs literature. The study contains resultgshe user. However, we propose a novel selection criterion
from experiments on real-world text data, where variablesslaborated for Support Vector Machines (SVMs), arguing
are selected using a discriminant analysis framework andhat it potentially outperforms standard selection teghes.
standard feature selection techniques for text categtidtma The viability of the proposed concept similarity measure
is demonstrated by experiments carried out by the help of
discriminant analysis (DA) and standard selection tealsq
. for text categorization.
1. Introduction The paper is structured as it follows. The next two sections

Instance-based or extensional ontology mapping comdescribe our ontology mapping scenario and review related
prises a set of theoretical approaches and tools for meivork. We introduce variable selection and the resulting-con
suring the semantic proximity of two ontologies based orfept similarity measure in Section 4. Section 5 presents an
their extensions - the instances that populate their cascep overview of the SVM classifier, reviews existing SVM-based
Typically, a set theoretic approach to modeling concepts i¥ariable selection procedures and closes with a desanipfio
adopted: the relatedness of a pair of concepts is an outcortiége theoretical and practical grounds of the proposed SVM-
of a properly chosen measure of similarity, usually based oRased selection method. Finally, an experimental evalnati
estimations of the intersections of two sets of instances. Of the suggested similarity measure is included in Section 6

There exists already a list of similarity measures to choose
from together with mapping systems which employ them2. Qntol ogy M apping and Concept Simi-
Among the most popular choices is the Jaccard Coefficier]tarit
[4], as well as a couple of standard statistical measureshwhi y
have been already applied for extracting semantics out of |n our study we focus on hierarchical, tree-like ontologies
natural texts based on term co-occurrence, such as mutUgésigned to categorize text documents (web pages) with
information, log-likelihood and others [22]. For an ovewi  respect to their conterftsWe define a hierarchical ontology
of instance-based mapping in terms of measures, thresholds a5 a finite set of concepE, and a set of hyponomic
and type of concept instantiatibwe refer to the empirical (i s_a) relations holding between these concepts. We use
study carried out by Isaac et al. [8]. The overall topic ofthe documents assigned to a given concept as instances of
ontology matching is covered in the book of the same namghat concept.
by Euzenat and Shvaiko [5]. The mapping problem in our setting consists in identify-
_In the current paper we propose a novel measure Qhg semantic similarities between two heterogeneous input
instance-based concept similarity using variable selBcti gnojogies, each equipped with a set of instances popglatin
for class discrimination. The instances in our study argpejr concepts. The proposed approach serves to align pairs
natural text documents assigned to the nodes of each OBt gistinct ontology concepts by their degree of semantic

tology and coded as TF/IDF vectors [9]. Variable selection, oximity, measured on the basis of their extensions by the

, o . . help of machine learning techniques.
lwith respect to whether or not inheritance via subsumtion amon P 9 q

concepts is taken into account in defining concepts instaate one

distinguishes between hierarchical and non-hierarchicgthntiation. The 2The strictly hierarchical structure of the ontology is nelevant to the
former presupposes that concepts inherit the instancegbffitedecessors performance of the proposed measure. It is however importaanfoverall
in the hierarchy, the latter does not. matching approach developed by the same authors [18].



We proceed to introduce the data sets on which thef ontologies. The algorithm starts by selecting a set ofspai
machine learners will be applied. Let us consider twoof similar concepts from both ontologies - the so called
ontologiesO; andO- together with their corresponding sets "Anchors" - usually identified through lexical matching.€rh
of documentsD; = {d}, ..., d;, }andD; = {d3,...,d2, },  procedure further builds on the idea that if there have been
where each document is represented asnatimensional found two pairs of similar concepts and there exists a path
TF/IDF vecto? andm, andms are integers. The documents connecting the concepts in each of the two ontologies, it
in both setsD; and D, are based on the same set ofis very likely that the entities found on those paths are
attributes which can be assumed without loss of generalityalso similar.Mitra and Wiederhold13] introduced formally

Let A be a concept from ontology; . We define a training the ontology-composition algebra within theN@N tool
data setS4 = {(d},y")}, whered} € R, i = 1,...,m; for ontology articulation. The authors argued against the
andy? are labels taking values1 when the corresponding need and possibility of constructing and maintaining a glob
documentd} is assigned tod and —1 otherwise. The labels consistent ontology, instead they suggested mechanisms fo
separate the documents in ontola@y into such that belong locally merging parts of ontologies for the purposes of a
to the concept A (positive instances) and such that do nadiven application.

(negative instances). A procedure combining instance-based and structural sim-

The same representation and training data set can blarity measures was introduced in [18] by the authors of the
acquired analogously for any given concept in both inputurrent paper.
ontologiesO; andO,. The similarity between two concepts  We sum up the advantages and differences of our approach
A and B which belong to two different ontology will be compared to the ones discussed above. The fact that the
assessed by the help of their corresponding datasétand  approach is entirely accomplished at the test phasfe

SEB. the learning task is a serious advantage of the method
compared to state-of-the-art approaches (e.g. [4]). Itrash
3. Related Work to most instance-based mapping techniques, the presented

approach does not rely on instance sets intersection. tn fac
it works with document sets that might be different for both

ontologies (as seen in the preliminary experiments) which
makes the expensive step of extracting instances for the
S&Surce ontologies from text (as done in [17]) unnecessary.
rSThe relevant variables are determined for each ontology
alhdependently, and the matching itself is an inexpensive

We review a couple of related approaches. F@ARGE,
based on Formal Concept Analysis was propose8toynme
and Madche[17]. The approach relies on the assumption
that two ontologies use the same instances taken from a
of text documents relevant to both of them. It provides it
own mechanisms of extracting instances from text corpo

answering a basic critique that source ontologies are eiglik computation. Finally, the method is stable in multi-lingfis

to share the same sets of instances. The approach appl'gl%/ironments since documents from both ontologies need

natural language processing and FCA to derive a concep]tot be in the same natural language. It suffices that the

lattice which is further transformed into a merged OntOIOgydocuments TF/IDF vectors are translated into a single targe

A couple of state-of-the-art solutions are based on M3ranguage and not even all their features, but only the ssect
chine learning techniques. The instance-based ontology ma nes

per GLUE, introduced byDoan and co-workers, utilizes
machine learning techniques for deriving semi-autombyica _—— . . .
assertions on the concepts’ similarity [4Jacher and Groh 4. Concept Similar Ity via Variable Selec-
[10] contributed to the instance-based research by their sytion

tem CAIMAN which was created to facilitate the retrieval and
publishing of documents among communities. An interestinq1
recent approach proposed Wyang and colleagues [20]
consists in replacing the mapping problem by a classifinatio
one by introducing aimilarity spacein which every point

Variable or feature selectionis a core problem in a
umber of real life statistical analysis problems, pattidy
classification tasks. The result of a variable selectiorc@ro
dure is a list of the input variables, ordered by importance

represents a pair of matched concepts. Assigning to Corret(:grmformatlvenes)sfor the output variables (in classification

; . o _these are the class labels in a training dataset), accowalimg
and incorrect matches respectively positive and negative . L :

. o . “Certain evaluation criterion. On the one hand, this procedu
labels allows for the automatic classification of new pairg
of concepts as either similar or dissimilar.

We will cite two contributions relying on structure-based
techniques. The ACHOR-PROMPT algorithm developed by
Noyand CO”eagues [14] uses a standard graph representat'omAn automatic classification task is typically accomplishedvio main

steps:test (or training) phasewhen available data is "learned" by the
SAlternative representations, such as raw counts of terrareeaces and  machine algorithm andlassification phasahen the learned rule is applied
term frequencies, have been used in the experimental stuatiesell. on unseen instances.

eads to reducing the dimension of the input space ensuring
better computational efficiency and improving generaliza-
tion. On the other hand, in various domains of application,



such as text categorization, process control, gene satecti In otnology O1

and other, it is important to find out more about the input _ Instances _

. . . .. belonging to concept A not belonging to concept A
- output relation in a given data set by pointing out the | l
input variables, which most strongly affect the responge T O ©
focus in our study falls on the latter application of var@bl
selection. In that scenario, for a given data set of the type l

5S4 variable selection would indicate which of the TF/IDF @_‘ —————— ‘
vector dimensions are most important for the separation of SVM I

the documents into such that belong to the concépnd
such that do not.

For an overview of general variable selection applications
and existing theoretical approaches we refer to the study of
Guyon and Elisseeff [6]. Variable selection methods fot-tex Fig. 1: Variable selection for a concept A in ontology.
learning have been discussed and evaluated in [12]. SVM-
based methods, which are directly relevant to our approach,

We are coming to the core of the paper: how can a varipf an approach which computes the statistical correlation
able selection procedure be applied to discovedngcept petween an attribute and the corresponding binary output

similarities We take as an input two concepts € Co,  estimated over the training data in order to get the desired
and B € Co, together with their corresponding datasetssign information.

sS4 = {(d},yM}, i = 1,..,my and SB = {(d3,y7)},

j = 1,..,my as introduced in Section 2. Our goal is to 5 \/C-dimension-based Variable Selec-
identify the degree of similarity between these two congept | .

We carry out a variable selection procedure on each of thtal on for SVMs

sets and order the variables by their importance for thesclas The similarity measure (1) makes use of a variable selec-
separation. Let tion procedure of some kind. In this section we introduce
a novel selection criterion based on variations of the VC
dimension of a support vector machine classifier. We start
and by a brief overview of the learning technique.

‘ List of Selected Variables ‘ |Var1, ..., Varn ‘

| Set of Top k Variables | LA =[Vary, .., Vary

LA = {Var, ), Var, ), ..., Var, ) }

LB = {V; Vi Y , .
{Vars), Vais2), -, Vatsm) } 5.1 Overview of Support Vector Machines
be the ordered lists of variables for conceptsand B, The Support Vector Machines are supervised learning
respectively, where andJ are two permutations on the sets c|assification techniques introduced in the mid 1990s by
of variable indexes. We take from each of the lists a subset C\f’apnik and coworkers [19]. For reasons of space, we cannot
the topk elements, Vihefé < n s to be set by the user and gjye detailed account of all aspects of SVMs, which combine
deflneBthe subsetd;’ = {Var,(i,), Vals(i,), - Valo(i)}  results from several mathematical fields. Instead, we will
and Ly = {Vars(,), Varsy,), .-, Vals,) }, 4.7 € (L,n)  provide enough knowledge about the method in order to
(Figure 1). The similarity of conceptsl and B is given  ynderstand the ideas behind SVM-based variable selection

as LA LE] approaches developed in the past decade, as well as to be
sim(A,B) = —k "k (1) able to introduce our method. For a thorough overview of
k SVMs we refer to the book by Cristianini et al. [3].
with sim(A, B) € (0,1). Let us consider the following binary classification lay-
out. Assume we haveé observationsx; € R" and their
The concept or its complement? associated "truth’y; € {—1,1}. Data are assumed to be

Due to the nature of the introduced concept similarityi.i.d. (independent and identically distributed), drawonf
criterion, there appears a certain ambiguity in the finakn unknown probability distributior?(x,y). The goal of
similarity judgment. If a subset of variables is importaot f binary classification is to "learn" the mappigg — y; which
the separation of a given data set into clasBeand B so is  is consistent with the given examples. Lgf(x,a)} be a
the same subset when we swap the two labels. The end resaéit of such possible mappings, wheredenotes a set of
is that whenever our similarity measusém(A, B) yields  parameters. Such a mapping is called a classifier and it is
1 or a number close to 1 the following disjunction holds:deterministic - for a certain choice afand« it will always
"conceptA is similar to concepB" or "conceptA is similar  give the same outpuft.
to conceptB" (the second possible disjunction, namely " The actual risk, or the expectation of the test error for
similar to B" or "A similar to B" is complementary to the such a learning machine is



. S = ((x1,91), (x2,92), .., (x1,m)) € (X,Y)". SVM is a
Rla) = / Sy~ o, a)ldP(x,y). linear real functionf : X — R with

f(x) = (w-x) +,
The quantityl /2|y — f(x, «)| is calledthe loss Based on

L - - herea = (w,b) € R™ x R. The separating hyperplane in
finit ber of observations, lculat al \Whe 0) R
EriiS:(m e number of observations, we calculate énepiric the input spaceX is defined by the sefx|f(x) = 0}. The

decision rule assigns an input vectomositive if and only
. if f(x) > 0 and negative - otherwise. (The inclusion of 0 in
Remp(a) = 1 Z lyi — f(x4, )], the first case and not in the second is conventional.)
2l We are looking for the best decision functigifx) which
o ) ) o separates the input space and maximizes the distance be-
which is a fixed number for a given training set;, y;} and  yeen the positive and negative examples closest to the
a certain choice of parameters hyperplane. The parameters of the desired function aredfoun

For losses taking values 0 or 1, with probability- 7,  py solving the following quadratic optimization problem:
0 <n <1, the two risks are related in the following manner:

1
21 n %1”1% JR§”W
hlog(5) +1 —log(3) weR™ be

R(@) < Remp(e) + \/ l @ Under the linear constraints

I?

whereh is a nonnegative integer which will play a core role Vi=1,..,n, yi((w,x;)) +b) > 1.
in our variable selection procedure, called Y@ dimension
The bound (2) gives an insight on one very important aspe%
of generalization theory of statistical learning. The term
hlog(%)+1—log(%)
l

When data are not linearly separable in the input space,
ey are mapped into a (possibly higher dimensional) space,
called feature spacevhere a linear boundary between both

, calledVC confidences "responsible” classes can be found. The mapping is done implicitly by

for the capacityof the learner, i.e. its ability to learn unseen the help of a kernel function which plays the role of a dot
data without error. The other right-hand quantity in (2) -product in the feature space.

the empirical risk, measures ttaecuracy attained on the _ ] ) o
particular training set{x;,y;}. What is sought for is a 5.2 A VC-dimension-based Selection Criterion

function which minimizes the bound on the actual risk and The SVMs have many attractive sides - their performance
thus provides a good balance between capacity and accuragyes not depend on the distribution of the data (safe thgt the
- a problem known in the literature @spacity control are i.i.d.), it does not demand a linear input-output refati
The presented risk bound does not dependRix,y)  and they are easy to implement. At least theoretically, the
and it can be easily computed provided the knowledge ofjeneralization properties of SVMs do not dependent on
h. We introduce what does this parameter stand for. Lethe size of the input space which makes variable selection
us consider the set of functiodsf(x, o)} with f(x,«) € little prominent for learning with SVMs. However, the liste
{—1,1},Vx, . In a binary classification task there a2 properties turn them into a good candidate for a variable
possible ways of labeling a setiypoints. If for each labeling  selection tool to be used self-dependently. In addition to
there can be found a member ¢f(a)} which correctly  that, some authors have shown that even though theorgticall
assigns these labels, we say that the given set of points ifhnecessary, variable selection improves SVM learning in
shatteredby the given set of functions. The VC dimension is practice [15].
a property of such a family of functions, which is defined as SVM-based variable selection has already been studied
the maximum number of training points that can be shatteregh the past couple of years. In 2000 Guyenal. proposed
by that family. the SVM-RFE algorithm [7] for selecting genes which are
We come back to binary classification with support vectorrelevant for cancer classification. The removal criterion f
machines. SVMs are based on a family of linear functions given variable is minimizing the variation of the weight
{f(x, @)} mapping elements from the input space to a binarwector || w ||, i.e. its sensitivity with respect to a variable.
output, as introduced so far withh being the parameters Rakotomamonjyet al. (2004) carried out experiments for
of the linear functionf(x). The classification decision is pedestrian recognition by the help of a variable selection
according to the sign of the linear function at the point to beprocedure for SVMs based on the sensitivity of the margin
mapped. Geometrically, it can be thought of as a hyperplanaccording to a variable. The guiding idea of their approach
separating the space of the inputs in two halves in a wais: "A variable which is little informative and thus little
that the margin between the two classes is maximized. important for the decision function, is a variable to which
More formally, let us consider the input spagde C R™  the margin2/| w || is little sensitive.'[15], [16]. A method
and the output domait” = {—1,1} with a training set based on finding the variables which minimize bounds on
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Data:

VCdim <= 15.178417

VCdim <= 1383.9332

have been selected randomly. The corresponding estinsation
of the VC dimensiop at each training phase have been
measured and then compared to the estimated VC dimension

Data(01-04). WCdim <= 17.519558 VCdim <= 1383.8331 . . .

[Data(05-08):  VCdim <= 27.201857 _ VCdlim <= 1383.2368] of the whole data set (with all 23 variables included).
Data(09-12):  VCdim<=17.714419  VCdim <= 1383 5678 i i i
Data(i16)  Vodim <= 16381693 Vo <o 1385 9425 'I_'he values of the ob_served V_C dimensions are given on
Data(17-20):  VGdim <= 16881794  VCdim <= 1383.9564 figure 2 where the variables which have been excluded from
Data(21-23):  VCdim <= 11.398824 VCdim <= 1383.5026

the data on each step are in brackets. After applying the
. : : , ) » anking criterion introduced in (3) we concluded that the
Fig. 2: Van_ous Ve _dlmensmns estimated over a part't'one({nost important variables are contained in the block (05-08)
data set with two different kernels. A similar selection procedure has been carried afterwards
by consequently removing each of the four variables of that
the leave-one-ouerror for classification was introduced by block in order to find out the most significant one(s) among
Westonet al. in 2000 [21]. Biet al. (2003) developed the them. The achieved results were in correspondence with the
VS-SSVM variable selection method for regression taskédtuitive guesses of the process control engineers.
applied to molecules bio-activity prediction problems.[2] .
The variable selection criterion that we propose is base@- EXpe”mentS
on the sensitivity of the VC dimension of the SVM classifiers While in the process of implementing the SVM approach,
with respect to a single variable or a block of variables.in order to demonstrate the viability of the proposed vdeiab
As we have seen in Section 2, for different values of theselection-based concept similarity measure (1), we ahrrie
VC dimensionh, different values of the VC confidence out experiments by the help of a couple of standard variable
(describing the capacity of the classifier) will be computedselection techniques.
and thus different bounds on the actual risk (2), where from Experiment 1.

the generalization power of the classifier will change. Our e started by testing the variables importance by carrying
main heuristics can be formulated &3 less informative out a discriminant ana|yses (DA) DA is a basic data anal-
variable is one, which the VC confidence of the classifie;sis method which reveals important structural informatio
is less sensitive to" contained in the data. It is based on constructing principle
For computational reasons the evaluation function of ougxes, which capture the separation of the classes by mini-
variable selection procedure will be formulated in termsmizing their in-class variation and maximizing the distesic
of VC dimension directly, instead of in terms of the VC petween their means. The resulting principle (discrimipan
confidence. This is plausible since the VC confidence igxes are linear combinations of the input variables, where
monotonous iMk. Thus, thei-th variable is evaluated by the variables with greatest weights for the construction of
eval; = |h(H) — h(H(i))|, i=1,..n, 3) a g_iven axis are m.ost important for the cl_ass separation
projected on this axis. Therefore, DA analysis can serve as
whereh(H) is the VC dimension of a set of SVM hypothe- a variable selection tool in class discrimination problems
sesH constructed over the entire data set ané (V) is the We used data from the publicly available "20 News-
same quantity computed after the removal ofititie variable  groups" dataset [1] which is a collection of approximately
in the data set (this is the variable whose pertinence is to bg0 000 news articles, partitioned evenly across 20 differe
evaluated). topics. We started with the topics "Autos" and "Religion"
We have run experiments in support of the presentednd split the documents in "Autos" in two Aut osl
evaluation function in the domain of advanced procesgind Aut os2, producing sets of instances of two similar
control. We made observations over production items goingseudo concepts. The documentsRel i gi on were used
through a manufacturing line. A set of variables is assigneds instances from a third (dissimilar) concept. Our goal
to each item during the production process - measuremenigas to show that the features which are important for the
taken at different points of the process. At the end of the lin separation oAut os1 andRel i gi on are the same as those
a certain part of the products have been classified as "defeGmportant for the separation ofut 0s2 and Rel i gi on.
(failed to meet the quality requirements) and the rest - agve carried out a DA on the data set consisting of the three
"good". The task was to identify which are those variablesategories of TF/IDF documents, introduced so far. Figure 3
the variation of which has caused that some of the itemghows the results of the analysis on the first two discrintinan
failed to turn out "good". We trained a SVM over the dataagxes. (The labels on the plot are as it follows: (1) for
consisting of input observations and a final binary outpuiaut os1, (2) for Aut os2 and (-1) forRel i gi on.) The
("defect" or "good"). The dataset considered here conefsts
23 real variables observed over more than 1000 examp|es_5ln general, it is difficult to compute the VC-dimension di_rgptbut ‘
. . in the case of SVMs, we can compute an upper bound for it depgndi
The training process was repeated 6 times, consequen

_ A ) the resulting weight vector and on properties of the gidata. In the
removing a block of 4 or 3 variables at a time. The blocksexperiments, we used that upper bound.



e e 5 R Autol vs. Rell+Poll Autol vs. Rel2+Pol2 Rel2 vs. Auto2+Pol2 Pol2 vs. Aufol+Rel2
Colared according to classes in M + -1 1 2 1 2 1 2 T 2

W1 VIP] [ 1 WMLVIP[5] WTVIPH] W1VIP[]

2 M 12,0871 2 13,5142 16,401 13,7799

0 .. 8,50679| 3 8, 64681 16,3152 12,9308
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.«"."KE 5,47135| 5 5, 54044 16,2867 2,877

Ao e * 8,46965| B §,53651 15,9402 7,82062
20 . " ] 8,41407( 7 &,52678 15,7792 7,81634

& a0 8,36099| 8 8,27857 12,8257 7,80659
7 8,34646( 9 8,07467 11,7615 7,63906
o . 8,00555( 10 7,94405 10,307 7,38678
8,00247| 11 7, 71282 10,127 6,50381

e 7,74572 12 7, 66364 8,89759 6,09668
0 7,72475( 13 7,05158 8,5031 5,94339
L 572202 ( 14 6, 6756 5,27832 5,7131
@ - 5,59383[ 15 5, 14793 7,44476 5, 6608
50 45 40 35 =30 25 E) 15 -0 Ed o 5 10 15 20 5,3653 (16 5,89779 6,85242 5,64234

trn 5,18424| 17 E,39264 6,73377 5,62866

®ZX[1] = D,00467531 RZX[Z] = 0,00531392 Ellipse: Hotelling T2 (0,35 4,83134| 18 5,23951 6,57272 5,59935
4,81526( 19 522241 6,51098 5,53548

6,35466
6,31536
6,15808
6,05312

5,50192
5,38238
5,33161
5,04141

4,69753[ 20 4,58835
4, 64516 | 21 4,41872
4,59538| 22 4, 40863
4,58654] 23 4,34491

Fig. 3: A DA projection of the population of documents from
three classes onto the first two discriminant axes.

_Fig. 4: The top 23 characteristic variables for four consept
two Autos classes appear very close to one another, sharifg'sour different DAs.

a big overlap and clearly separated from the Religion class.
This observation shows that DA is not able to discriminate
properly between the two Auto classes, but separates thethe basis of the contribution of a single variable to the
well from the Religion class, i.e. the same separationrigite construction of the discriminant axes.) The result is that t
hold for the classesut os1 and Rel i gi on as for the lists of variables separating the classes in analyses (DA1)
classesAut 0s2 andRel i gi on. and (DA2) are very similar, almost identical, where as
Experiment 2. the variables separating the dissimilar concepts in aaalys
To reinforce this finding, we took a third class from (DA3) and _(DA4) differ from the lists obtained in the first
the 20 Newsgroups - “"Politics” and split its instancestWoO analysis. (We note that they do share a small overlap,
in two, producing two similar concepts out of it. The for the concepts are not totally dissimilar, but rather.) By
same was done with the instances in Religion. We mim&pplying our variable-selection-based measure .of_smy]ar
icked two ontologies, each containing three conceptsV€ conclude that the concepiit os1 from O, is similar to
O, = {Autos1,Religionl,Politicsl} and Oy = the (_:on_cepAut 0s2 fr(_)m_Og and dissimilar t_o th_e qongepts
{Aut 0s2,Rel i gi on2,Pol i ti cs2}. Let us recall our Religion2 andPolitics2 from O, which is in line
main argumentation: for separating similar classes we neeffith the semantical nature of the selected classes.
similar attributes, while for separating dissimilar cless
we need a dissimilar set of attributes. Our goal was to
evaluate the similarity of conceptut os1 and Aut 0s2
and the dissimilarity of conceptsut os1 andPol it cs2

Table 1: Performance using Mutual Information

Concept Names HW:Mixed Autos Religion2  Politics2

andAut os1 andRel i gi on2 by applying the measure (1). HW:PC 0,033 0 0 0
To that end, we carried out a DA and selected the important
variables for the class separation in four analyses: HW:Mac 0,067 0 0 0

(DA1) Aut os1 vs. (Rel i gionl +Politicsl) - find
the important variables that separaigt os1 from all other

concepts inOy; o o _ Politics1 0 0 0 03
(DA2) Aut 0s2 vs. (Rel i gi on2 + Pol i tics2) - find
the important variables that separdtgt os2 from all other

Religionl 0 0 0,3 0

concepts inDo; Experiment 3.

(DA3) Religion2 vs. (Autos2 + Politics2) - Finally, we have carried an additional study by the
find the important variables that separdel i gi on2 (a help of three other standard variable selection tech-
dissimilar concept) from all other concepts@n; nigues: Mutual Information, Chi-square statistics and

(DA4) Politics2 vs. Autos2 + Religion2) - Document Frequency Thresholding. The three methods
find the important variables that separdel i ti cs2 (a are described in [22], for space limitations we will
dissimilar concept) from all other conceptsan; not discuss them here. By using the "20 Newsgroups"

Figure 4 shows the lists of the top 23 most importantdataset again we mimicked the following two ontolo-
variables for the class separation in the four different DAgies (the abbreviation "HW" stands for "Hardware"):
analyses. (VIP stands for a score coefficient calculated o®; = {HW PC HW Mac,Rel i gi on1,Politicsl} and



Table 2: Performance usinghi? procedure instead of the proposed one, as this is seen
from our experiments. However, a task of future work is

Concept Names ~ HW:Mixed ~ Autos  Religion2  Politics2 implementing the SVM-based approach, since working with
SVMs has many benefits, which have been pointed out in
HW:PC 0,700 0,433 0,400 0,367 .
Section 5.2.
HW:Mac 0,500 0,467 0,433 0,367
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