
Variable Selection as an Instance-based Ontology Mapping Strategy

Konstantin Todorov1, Peter Geibel2
1IKW, Universtity of Osnabrück, Albrechstr. 28, 49076 Osnabrück, Germany

2TU Berlin, Fakultät IV, Franklinstr. 28/29, 10587 Berlin, Germany

Abstract— The paper presents a novel instance-based ap-
proach to aligning concepts taken from two heterogeneous
ontologies populated with text documents. We introduce a
concept similarity measure based on the size of the inter-
section of the sets of variables which are most important for
the class separation of the instances in both input ontologies.
We suggest a VC dimension variable selection criterion
elaborated for Support Vector Machines (SVMs), which is
novel in the SVMs literature. The study contains results
from experiments on real-world text data, where variables
are selected using a discriminant analysis framework and
standard feature selection techniques for text categorization.

1. Introduction
Instance-based or extensional ontology mapping com-

prises a set of theoretical approaches and tools for mea-
suring the semantic proximity of two ontologies based on
their extensions - the instances that populate their concepts.
Typically, a set theoretic approach to modeling concepts is
adopted: the relatedness of a pair of concepts is an outcome
of a properly chosen measure of similarity, usually based on
estimations of the intersections of two sets of instances.

There exists already a list of similarity measures to choose
from together with mapping systems which employ them.
Among the most popular choices is the Jaccard coefficient
[4], as well as a couple of standard statistical measures which
have been already applied for extracting semantics out of
natural texts based on term co-occurrence, such as mutual
information, log-likelihood and others [22]. For an overview
of instance-based mapping in terms of measures, thresholds
and type of concept instantiation1 we refer to the empirical
study carried out by Isaac et al. [8]. The overall topic of
ontology matching is covered in the book of the same name
by Euzenat and Shvaiko [5].

In the current paper we propose a novel measure of
instance-based concept similarity using variable selection
for class discrimination. The instances in our study are
natural text documents assigned to the nodes of each on-
tology and coded as TF/IDF vectors [9]. Variable selection

1With respect to whether or not inheritance via subsumtion among
concepts is taken into account in defining concepts instance-sets, one
distinguishes between hierarchical and non-hierarchicalinstantiation. The
former presupposes that concepts inherit the instances of their predecessors
in the hierarchy, the latter does not.

mechanisms are used to find variables (terms from the
TF/IDF vector dimensions), which are most characteristic
for a given concept and play the most important role for
separating its instances from the rest of the instances of
the same ontology. The proposed measure of similarity is
based on comparing the most important variables for two
concepts taken from different ontologies. The choice of a
variable selection procedure within this setting is left to
the user. However, we propose a novel selection criterion
elaborated for Support Vector Machines (SVMs), arguing
that it potentially outperforms standard selection techniques.
The viability of the proposed concept similarity measure
is demonstrated by experiments carried out by the help of
discriminant analysis (DA) and standard selection techniques
for text categorization.

The paper is structured as it follows. The next two sections
describe our ontology mapping scenario and review related
work. We introduce variable selection and the resulting con-
cept similarity measure in Section 4. Section 5 presents an
overview of the SVM classifier, reviews existing SVM-based
variable selection procedures and closes with a description of
the theoretical and practical grounds of the proposed SVM-
based selection method. Finally, an experimental evaluation
of the suggested similarity measure is included in Section 6.

2. Ontology Mapping and Concept Simi-
larity

In our study we focus on hierarchical, tree-like ontologies,
designed to categorize text documents (web pages) with
respect to their contents2. We define a hierarchical ontology
O as a finite set of conceptsCO and a set of hyponomic
(is_a) relations holding between these concepts. We use
the documents assigned to a given concept as instances of
that concept.

The mapping problem in our setting consists in identify-
ing semantic similarities between two heterogeneous input
ontologies, each equipped with a set of instances populating
their concepts. The proposed approach serves to align pairs
of distinct ontology concepts by their degree of semantic
proximity, measured on the basis of their extensions by the
help of machine learning techniques.

2The strictly hierarchical structure of the ontology is not relevant to the
performance of the proposed measure. It is however important for an overall
matching approach developed by the same authors [18].



We proceed to introduce the data sets on which the
machine learners will be applied. Let us consider two
ontologiesO1 andO2 together with their corresponding sets
of documentsD1 = {d1

1, ...,d
1
m1

} andD2 = {d2
1, ...,d

2
m2

},
where each document is represented as ann-dimensional
TF/IDF vector3 andm1 andm2 are integers. The documents
in both setsD1 and D2 are based on the same set of
attributes which can be assumed without loss of generality.

Let A be a concept from ontologyO1. We define a training
data setSA = {(d1

i , y
A
i )}, whered

1
i ∈ R

n, i = 1, ...,m1

andyA
i are labels taking values+1 when the corresponding

documentd1
i is assigned toA and−1 otherwise. The labels

separate the documents in ontologyO1 into such that belong
to the concept A (positive instances) and such that do not
(negative instances).

The same representation and training data set can be
acquired analogously for any given concept in both input
ontologiesO1 andO2. The similarity between two concepts
A and B which belong to two different ontology will be
assessed by the help of their corresponding datasetsSA and
SB .

3. Related Work
We review a couple of related approaches. FCA-MERGE,

based on Formal Concept Analysis was proposed byStumme
and Mädche[17]. The approach relies on the assumption
that two ontologies use the same instances taken from a set
of text documents relevant to both of them. It provides its
own mechanisms of extracting instances from text corpora,
answering a basic critique that source ontologies are unlikely
to share the same sets of instances. The approach applies
natural language processing and FCA to derive a concept
lattice which is further transformed into a merged ontology.

A couple of state-of-the-art solutions are based on ma-
chine learning techniques. The instance-based ontology map-
per GLUE, introduced byDoan and co-workers, utilizes
machine learning techniques for deriving semi-automatically
assertions on the concepts’ similarity [4].Lacher and Groh
[10] contributed to the instance-based research by their sys-
tem CAIMAN which was created to facilitate the retrieval and
publishing of documents among communities. An interesting
recent approach proposed byWang and colleagues [20]
consists in replacing the mapping problem by a classification
one by introducing asimilarity spacein which every point
represents a pair of matched concepts. Assigning to correct
and incorrect matches respectively positive and negative
labels allows for the automatic classification of new pairs
of concepts as either similar or dissimilar.

We will cite two contributions relying on structure-based
techniques. The ANCHOR-PROMPT algorithm developed by
Noyand colleagues [14] uses a standard graph representation

3Alternative representations, such as raw counts of term occurrences and
term frequencies, have been used in the experimental studies, as well.

of ontologies. The algorithm starts by selecting a set of pairs
of similar concepts from both ontologies - the so called
"Anchors" - usually identified through lexical matching. The
procedure further builds on the idea that if there have been
found two pairs of similar concepts and there exists a path
connecting the concepts in each of the two ontologies, it
is very likely that the entities found on those paths are
also similar.Mitra and Wiederhold[13] introduced formally
the ontology-composition algebra within the ONION tool
for ontology articulation. The authors argued against the
need and possibility of constructing and maintaining a global
consistent ontology, instead they suggested mechanisms for
locally merging parts of ontologies for the purposes of a
given application.

A procedure combining instance-based and structural sim-
ilarity measures was introduced in [18] by the authors of the
current paper.

We sum up the advantages and differences of our approach
compared to the ones discussed above. The fact that the
approach is entirely accomplished at the test phase4 of
the learning task is a serious advantage of the method
compared to state-of-the-art approaches (e.g. [4]). In contrast
to most instance-based mapping techniques, the presented
approach does not rely on instance sets intersection. In fact,
it works with document sets that might be different for both
ontologies (as seen in the preliminary experiments) which
makes the expensive step of extracting instances for the
source ontologies from text (as done in [17]) unnecessary.
The relevant variables are determined for each ontology
independently, and the matching itself is an inexpensive
computation. Finally, the method is stable in multi-linguistic
environments since documents from both ontologies need
not be in the same natural language. It suffices that the
documents TF/IDF vectors are translated into a single target
language and not even all their features, but only the selected
ones.

4. Concept Similarity via Variable Selec-
tion

Variable, or feature selectionis a core problem in a
number of real life statistical analysis problems, particularly
classification tasks. The result of a variable selection proce-
dure is a list of the input variables, ordered by importance
(or informativeness) for the output variables (in classification
these are the class labels in a training dataset), accordingto a
certain evaluation criterion. On the one hand, this procedure
leads to reducing the dimension of the input space ensuring
better computational efficiency and improving generaliza-
tion. On the other hand, in various domains of application,

4An automatic classification task is typically accomplished intwo main
steps: test (or training) phase, when available data is "learned" by the
machine algorithm andclassification phasewhen the learned rule is applied
on unseen instances.



such as text categorization, process control, gene selection
and other, it is important to find out more about the input
- output relation in a given data set by pointing out the
input variables, which most strongly affect the response. The
focus in our study falls on the latter application of variable
selection. In that scenario, for a given data set of the type
SA variable selection would indicate which of the TF/IDF
vector dimensions are most important for the separation of
the documents into such that belong to the conceptA and
such that do not.

For an overview of general variable selection applications
and existing theoretical approaches we refer to the study of
Guyon and Elisseeff [6]. Variable selection methods for text-
learning have been discussed and evaluated in [12]. SVM-
based methods, which are directly relevant to our approach,
are discussed separately in Section 5.2 of this paper.

We are coming to the core of the paper: how can a vari-
able selection procedure be applied to discoveringconcept
similarities. We take as an input two conceptsA ∈ CO1

and B ∈ CO2
together with their corresponding datasets

SA = {(d1
i , y

A
i )}, i = 1, ...,m1 and SB = {(d2

j , y
B
j )},

j = 1, ...,m2 as introduced in Section 2. Our goal is to
identify the degree of similarity between these two concepts.
We carry out a variable selection procedure on each of the
sets and order the variables by their importance for the class
separation. Let

LA = {Varσ(1), Varσ(2), ..., Varσ(n)}

and
LB = {Varδ(1), Varδ(2), ..., Varδ(n)}

be the ordered lists of variables for conceptsA and B,
respectively, whereσ andδ are two permutations on the sets
of variable indexes. We take from each of the lists a subset of
the topk elements, wherek < n is to be set by the user and
define the subsetsLA

k = {Varσ(i1), Varσ(i2), ..., Varσ(ik)}
and LB

k = {Varδ(j1), Varδ(j2), ..., Varδ(jk)}, i, j ∈ (1, n)
(Figure 1). The similarity of conceptsA and B is given
as

sim(A,B) =
|LA

k ∩ LB
k |

k
, (1)

with sim(A,B) ∈ (0, 1).

The concept or its complement?
Due to the nature of the introduced concept similarity

criterion, there appears a certain ambiguity in the final
similarity judgment. If a subset of variables is important for
the separation of a given data set into classesB andB so is
the same subset when we swap the two labels. The end result
is that whenever our similarity measuresim(A,B) yields
1 or a number close to 1 the following disjunction holds:
"conceptA is similar to conceptB" or "conceptA is similar
to conceptB" (the second possible disjunction, namely "A
similar to B" or "A similar to B" is complementary to the

Fig. 1: Variable selection for a concept A in ontologyO1.

first one). We suggest to address this problem by the help
of an approach which computes the statistical correlation
between an attribute and the corresponding binary output
estimated over the training data in order to get the desired
sign information.

5. VC-dimension-based Variable Selec-
tion for SVMs

The similarity measure (1) makes use of a variable selec-
tion procedure of some kind. In this section we introduce
a novel selection criterion based on variations of the VC
dimension of a support vector machine classifier. We start
by a brief overview of the learning technique.

5.1 Overview of Support Vector Machines
The Support Vector Machines are supervised learning

classification techniques introduced in the mid 1990s by
Vapnik and coworkers [19]. For reasons of space, we cannot
give detailed account of all aspects of SVMs, which combine
results from several mathematical fields. Instead, we will
provide enough knowledge about the method in order to
understand the ideas behind SVM-based variable selection
approaches developed in the past decade, as well as to be
able to introduce our method. For a thorough overview of
SVMs we refer to the book by Cristianini et al. [3].

Let us consider the following binary classification lay-
out. Assume we havel observationsxi ∈ R

n and their
associated "truth"yi ∈ {−1, 1}. Data are assumed to be
i.i.d. (independent and identically distributed), drawn from
an unknown probability distributionP (x, y). The goal of
binary classification is to "learn" the mappingxi → yi which
is consistent with the given examples. Let{f(x, α)} be a
set of such possible mappings, whereα denotes a set of
parameters. Such a mapping is called a classifier and it is
deterministic - for a certain choice ofx andα it will always
give the same outputf .

The actual risk, or the expectation of the test error for
such a learning machine is



R(α) =

∫

1

2
|y − f(x, α)|dP (x, y).

The quantity1/2|y−f(x, α)| is calledthe loss. Based on
a finite number of observations, we calculate theempirical
risk

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi, α)|,

which is a fixed number for a given training set{xi, yi} and
a certain choice of parametersα.

For losses taking values 0 or 1, with probability1 − η,
0 ≤ η ≤ 1, the two risks are related in the following manner:

R(α) ≤ Remp(α) +

√

h log(2l
h

) + 1 − log(η
4 )

l
, (2)

whereh is a nonnegative integer which will play a core role
in our variable selection procedure, called theVC dimension.
The bound (2) gives an insight on one very important aspect
of generalization theory of statistical learning. The term
√

hlog( 2l
h

)+1−log( η
4
)

l
, called VC confidenceis "responsible"

for thecapacityof the learner, i.e. its ability to learn unseen
data without error. The other right-hand quantity in (2) -
the empirical risk, measures theaccuracyattained on the
particular training set{xi, yi}. What is sought for is a
function which minimizes the bound on the actual risk and
thus provides a good balance between capacity and accuracy
- a problem known in the literature ascapacity control.

The presented risk bound does not depend onP (x, y)
and it can be easily computed provided the knowledge of
h. We introduce what does this parameter stand for. Let
us consider the set of functions{f(x, α)} with f(x, α) ∈
{−1, 1},∀x, α. In a binary classification task there are2l

possible ways of labeling a set ofl points. If for each labeling
there can be found a member of{f(α)} which correctly
assigns these labels, we say that the given set of points is
shatteredby the given set of functions. The VC dimension is
a property of such a family of functions, which is defined as
the maximum number of training points that can be shattered
by that family.

We come back to binary classification with support vector
machines. SVMs are based on a family of linear functions
{f(x, α)} mapping elements from the input space to a binary
output, as introduced so far withα being the parameters
of the linear functionf(x). The classification decision is
according to the sign of the linear function at the point to be
mapped. Geometrically, it can be thought of as a hyperplane
separating the space of the inputs in two halves in a way
that the margin between the two classes is maximized.

More formally, let us consider the input spaceX ⊆ R
n

and the output domainY = {−1, 1} with a training set

S = ((x1, y1), (x2, y2), ..., (xl, yl)) ∈ (X,Y )l. SVM is a
linear real functionf : X → R with

f(x) = 〈w·x〉 + b,

whereα = (w, b) ∈ R
n × R. The separating hyperplane in

the input spaceX is defined by the set{x|f(x) = 0}. The
decision rule assigns an input vectorx positive if and only
if f(x) ≥ 0 and negative - otherwise. (The inclusion of 0 in
the first case and not in the second is conventional.)

We are looking for the best decision functionf(x) which
separates the input space and maximizes the distance be-
tween the positive and negative examples closest to the
hyperplane. The parameters of the desired function are found
by solving the following quadratic optimization problem:

min
w∈Rn,b∈R

1

2
‖w‖2

under the linear constraints

∀i = 1, ..., n, yi(〈w,xi)〉 + b) ≥ 1.

When data are not linearly separable in the input space,
they are mapped into a (possibly higher dimensional) space,
called feature spacewhere a linear boundary between both
classes can be found. The mapping is done implicitly by
the help of a kernel function which plays the role of a dot
product in the feature space.

5.2 A VC-dimension-based Selection Criterion
The SVMs have many attractive sides - their performance

does not depend on the distribution of the data (safe that they
are i.i.d.), it does not demand a linear input-output relation
and they are easy to implement. At least theoretically, the
generalization properties of SVMs do not dependent on
the size of the input space which makes variable selection
little prominent for learning with SVMs. However, the listed
properties turn them into a good candidate for a variable
selection tool to be used self-dependently. In addition to
that, some authors have shown that even though theoretically
unnecessary, variable selection improves SVM learning in
practice [15].

SVM-based variable selection has already been studied
in the past couple of years. In 2000 Guyonet al. proposed
the SVM-RFE algorithm [7] for selecting genes which are
relevant for cancer classification. The removal criterion for
a given variable is minimizing the variation of the weight
vector‖ w ‖

2, i.e. its sensitivity with respect to a variable.
Rakotomamonjyet al. (2004) carried out experiments for
pedestrian recognition by the help of a variable selection
procedure for SVMs based on the sensitivity of the margin
according to a variable. The guiding idea of their approach
is: "A variable which is little informative and thus little
important for the decision function, is a variable to which
the margin2/‖ w ‖ is little sensitive."[15], [16]. A method
based on finding the variables which minimize bounds on



Fig. 2: Various VC dimensions estimated over a partitioned
data set with two different kernels.

the leave-one-outerror for classification was introduced by
Westonet al. in 2000 [21]. Bi et al. (2003) developed the
VS-SSVM variable selection method for regression tasks
applied to molecules bio-activity prediction problems [2].

The variable selection criterion that we propose is based
on the sensitivity of the VC dimension of the SVM classifiers
with respect to a single variable or a block of variables.
As we have seen in Section 2, for different values of the
VC dimensionh, different values of the VC confidence
(describing the capacity of the classifier) will be computed
and thus different bounds on the actual risk (2), where from
the generalization power of the classifier will change. Our
main heuristics can be formulated as"a less informative
variable is one, which the VC confidence of the classifier
is less sensitive to".

For computational reasons the evaluation function of our
variable selection procedure will be formulated in terms
of VC dimension directly, instead of in terms of the VC
confidence. This is plausible since the VC confidence is
monotonous inh. Thus, thei-th variable is evaluated by

evali = |h(H) − h(H(i))|, i = 1, ...n, (3)

whereh(H) is the VC dimension of a set of SVM hypothe-
sesH constructed over the entire data set andh(H(i)) is the
same quantity computed after the removal of thei-th variable
in the data set (this is the variable whose pertinence is to be
evaluated).

We have run experiments in support of the presented
evaluation function in the domain of advanced process
control. We made observations over production items going
through a manufacturing line. A set of variables is assigned
to each item during the production process - measurements
taken at different points of the process. At the end of the line
a certain part of the products have been classified as "defect"
(failed to meet the quality requirements) and the rest - as
"good". The task was to identify which are those variables
the variation of which has caused that some of the items
failed to turn out "good". We trained a SVM over the data
consisting of input observations and a final binary output
("defect" or "good"). The dataset considered here consistsof
23 real variables observed over more than 1000 examples.
The training process was repeated 6 times, consequently
removing a block of 4 or 3 variables at a time. The blocks

have been selected randomly. The corresponding estimations
of the VC dimension5 at each training phase have been
measured and then compared to the estimated VC dimension
of the whole data set (with all 23 variables included).
The values of the observed VC dimensions are given on
figure 2 where the variables which have been excluded from
the data on each step are in brackets. After applying the
ranking criterion introduced in (3) we concluded that the
most important variables are contained in the block (05-08).
A similar selection procedure has been carried afterwards
by consequently removing each of the four variables of that
block in order to find out the most significant one(s) among
them. The achieved results were in correspondence with the
intuitive guesses of the process control engineers.

6. Experiments
While in the process of implementing the SVM approach,

in order to demonstrate the viability of the proposed variable-
selection-based concept similarity measure (1), we carried
out experiments by the help of a couple of standard variable
selection techniques.

Experiment 1.
We started by testing the variables importance by carrying

out a discriminant analyses (DA). DA is a basic data anal-
ysis method which reveals important structural information
contained in the data. It is based on constructing principle
axes, which capture the separation of the classes by mini-
mizing their in-class variation and maximizing the distances
between their means. The resulting principle (discriminant)
axes are linear combinations of the input variables, where
the variables with greatest weights for the construction of
a given axis are most important for the class separation
projected on this axis. Therefore, DA analysis can serve as
a variable selection tool in class discrimination problems.

We used data from the publicly available "20 News-
groups" dataset [1] which is a collection of approximately
20,000 news articles, partitioned evenly across 20 different
topics. We started with the topics "Autos" and "Religion"
and split the documents in "Autos" in two -Autos1
and Autos2, producing sets of instances of two similar
pseudo concepts. The documents inReligion were used
as instances from a third (dissimilar) concept. Our goal
was to show that the features which are important for the
separation ofAutos1 andReligion are the same as those
important for the separation ofAutos2 and Religion.
We carried out a DA on the data set consisting of the three
categories of TF/IDF documents, introduced so far. Figure 3
shows the results of the analysis on the first two discriminant
axes. (The labels on the plot are as it follows: (1) for
Autos1, (2) for Autos2 and (-1) forReligion.) The

5In general, it is difficult to compute the VC-dimension directly, but
in the case of SVMs, we can compute an upper bound for it depending
on the resulting weight vector and on properties of the givendata. In the
experiments, we used that upper bound.



Fig. 3: A DA projection of the population of documents from
three classes onto the first two discriminant axes.

two Autos classes appear very close to one another, sharing
a big overlap and clearly separated from the Religion class.
This observation shows that DA is not able to discriminate
properly between the two Auto classes, but separates them
well from the Religion class, i.e. the same separation criteria
hold for the classesAutos1 and Religion as for the
classesAutos2 andReligion.

Experiment 2.
To reinforce this finding, we took a third class from

the 20 Newsgroups - "Politics" and split its instances
in two, producing two similar concepts out of it. The
same was done with the instances in Religion. We mim-
icked two ontologies, each containing three concepts:
O1 = {Autos1,Religion1,Politics1} and O2 =
{Autos2,Religion2,Politics2}. Let us recall our
main argumentation: for separating similar classes we need
similar attributes, while for separating dissimilar classes
we need a dissimilar set of attributes. Our goal was to
evaluate the similarity of conceptsAutos1 and Autos2
and the dissimilarity of conceptsAutos1 andPolitcs2
andAutos1 andReligion2 by applying the measure (1).
To that end, we carried out a DA and selected the important
variables for the class separation in four analyses:

(DA1) Autos1 vs. (Religion1 + Politics1) - find
the important variables that separateAutos1 from all other
concepts inO1;

(DA2) Autos2 vs. (Religion2 + Politics2) - find
the important variables that separateAutos2 from all other
concepts inO2;

(DA3) Religion2 vs. (Autos2 + Politics2) -
find the important variables that separateReligion2 (a
dissimilar concept) from all other concepts inO2;

(DA4) Politics2 vs. (Autos2 + Religion2) -
find the important variables that separatePolitics2 (a
dissimilar concept) from all other concepts inO2;

Figure 4 shows the lists of the top 23 most important
variables for the class separation in the four different DA
analyses. (VIP stands for a score coefficient calculated on

Fig. 4: The top 23 characteristic variables for four concepts
in four different DAs.

the basis of the contribution of a single variable to the
construction of the discriminant axes.) The result is that the
lists of variables separating the classes in analyses (DA1)
and (DA2) are very similar, almost identical, where as
the variables separating the dissimilar concepts in analyses
(DA3) and (DA4) differ from the lists obtained in the first
two analysis. (We note that they do share a small overlap,
for the concepts are not totally dissimilar, but rather.) By
applying our variable-selection-based measure of similarity,
we conclude that the conceptAutos1 from O1 is similar to
the conceptAutos2 from O2 and dissimilar to the concepts
Religion2 and Politics2 from O2 which is in line
with the semantical nature of the selected classes.

Table 1: Performance using Mutual Information

Concept Names HW:Mixed Autos Religion2 Politics2

HW:PC 0,033 0 0 0

HW:Mac 0,067 0 0 0

Religion1 0 0 0,3 0

Politics1 0 0 0 0,3

Experiment 3.
Finally, we have carried an additional study by the

help of three other standard variable selection tech-
niques: Mutual Information, Chi-square statistics and
Document Frequency Thresholding. The three methods
are described in [22], for space limitations we will
not discuss them here. By using the "20 Newsgroups"
dataset again we mimicked the following two ontolo-
gies (the abbreviation "HW" stands for "Hardware"):
O1 = {HW:PC,HW:Mac,Religion1,Politics1} and



Table 2: Performance usingChi2

Concept Names HW:Mixed Autos Religion2 Politics2

HW:PC 0,700 0,433 0,400 0,367

HW:Mac 0,500 0,467 0,433 0,367

Religion1 0,400 0,400 0,700 0,300

Politics1 0,333 0,367 0,333 0,633

Table 3: Performance using DF Thresholding

Concept Names HW:Mixed Autos Religion2 Politics2

HW:PC 0,722 0,556 0,440 0,485

HW:Mac 0,726 0,545 0,437 0,489

Religion1 0,431 0,444 0,753 0,541

Politics1 0,479 0,526 0,550 0,772

O2 = {HW:Mixed,Autos,Religion2,Politics2}.
We have chosen the concepts and the documents for our
task in such a manner that there are pairs of concepts which
are clearly similar (e.g.Religion1 and Religion2)
and pairs of concepts which are clearly dissimilar (e.g.
Religion1 andAutos). In addition, there is one concept
from O2 which is in a way the union of two concepts of
O1 (the conceptsHW:Mixed and the conceptsHW:PC and
HW:Mac). Each of the classes contains approximately 500
distinct documents on the corresponding topic, none of the
classes contains documents that are contained in another
class. The results of applying the similarity measure (1) are
shown on Tables 1, 2 and 3 in three similarity matrices (one
for each variable selection technique applied). The results
clearly show that in all three cases a greater similarity
is attributed to the concept pairs which are heuristically
expected to be more similar, as compared to the expectedly
dissimilar concepts.

7. Conclusion and Future Work
The paper presents an instance-based approach to aligning

concepts taken from two heterogeneous ontologies populated
with documents. It introduces a concept similarity measure
based on the class separation information in both input on-
tologies provided by selecting most important variables. We
propose a VC-dimension-based variable selection procedure
for SVMs in order to extract the desired information from
the instances populating the two input ontologies.

The introduced similarity measure can be successfully
applied by the help of any appropriate variable selection

procedure instead of the proposed one, as this is seen
from our experiments. However, a task of future work is
implementing the SVM-based approach, since working with
SVMs has many benefits, which have been pointed out in
Section 5.2.
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