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ABSTRACT
With the rapid growth in the number of online Web ser-
vices, the problem of service adaptation has received signif-
icant attention. In matching and adaptation, the functional
description of services including interface and data as well
as behavioral descriptions are important. Existing work on
matching and adaptation focuses only on one aspect.

In this paper, we present a semi-automated matching ap-
proach that considers both service descriptions. We in-
troduce two protocol-aware service interface matching al-
gorithms, i.e. depth-based interface matching and iterative
reference-based interface matching. These algorithms refine
the results of interface matching by incorporating the order-
ing constraints imposed by business protocol definitions on
service operations. We have implemented a prototype and
performed experiments using the specification of synthetic
and real-world Web services. Experiments show that the
proposed approaches lead to a significant improvement in
the quality of matching between services.

Categories and Subject Descriptors
D.2.12 [Software]: Software Engineering—Interoperability ;
H.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Design, Experimentation

Keywords
Web Services, Adaptation, Business Process

1. INTRODUCTION
The number of Web services available on the Internet is

growing very fast, some of which are functionally equiva-
lent. Functionally equivalent services should be interchange-
able [15]. However, such services are often offered using dif-
ferent interface and business protocol specifications. Service
interface defines the set of operations that the service pro-
vides along with message formats and data types. Business
protocol specifies the order in which operations of a service

∗Most of the work was done when the author was at the
University of New South Wales, Australia

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

can be invoked [2]. These differences exist despite having
standard languages (e.g., WSDL and BPEL) to describe
services specifications. Indeed, these languages only pro-
vide generic constructs, and using them to define function-
ally equivalent services by independent teams results in po-
tentially different specifications (may exhibit interface- and
protocol-level mismatches) [10, 27].

The problem of Web service matching and adaptation has
received significant attention recently [5, 3, 31, 17, 14, 23, 8,
23, 35]. Some approaches (e.g., [3, 14, 23]) identify possible
classes of mismatches between service interfaces and proto-
cols and suggest operators or templates for adapter develop-
ers to resolve mismatches in each class. Existing automated
approaches for service matching and adaptation focus either
on the interface-level (e.g., [36, 38, 13, 31]) or the protocol-
level (e.g., [3, 8, 37, 28]).

We argue that when matching service specifications, inter-
face and business protocols should not be treated indepen-
dently. Matching protocol specifications in isolation ignores
mismatches at the interface level. And correct matchings at
the interface level could be specified more effectively consid-
ering the ordering constraints that business protocol defini-
tions impose. For example, Figure 1 shows the operation and
protocol definition of two real-world services XWebCheck-
out and Google Checkout APIs. Considering only the in-
terface information, in a compatibility checking scenario [6,
2], message AddOrderRequest matches higher to New-Order-
Notification in Google checkout APIs compared to Place-
Order message. Adding the protocol definition information
(here mainly the directions of messages –incoming/outgoing–
shown by “+”/“-”), the outgoing message AddOrderRequest
can only match with incoming Place-Order (remember the
compatibility scenario) but not New-Order-Notification which
is an outgoing message. As additional evidence, these two
messages are in the same depth from the start state of the
protocol encoded in state machines.

Taking into account the protocol information makes the
service interface matching more precise, productive and effi-
cient. This is due to the elimination of a significant number
of false positives compared to when using only XML-based
interface information. High false positive ratio is a common
issue in XML schema matching [4]. Identifying false posi-
tives is a labor-intensive and time-consuming task for users.

As another issue, automated methods for service interface
matching (including our previous work [28]) consider one-
to-one matching of messages. A common class of matching
between interfaces is one-to-many matches (also called mes-
sage merge/split mismatch) where one message in an inter-
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Figure 1: The operations and the corresponding
protocols of CO Client (XWebCheckout) and Google
checkout APIs for placing an order.

face is matched to more than one in the other [3, 14]. In this
paper, we present a new method for semi-automatic identi-
fication of the message merge/split class of interface-level
mismatches. We also propose a protocol-aware approach for
Web service interface matching. Specifically, we introduce
the following methods:

• Message merge/split mismatch identification. When
matching two service interfaces, this method identifies
if a given message in one interface is matching (parts
of) more than one message in the other WSDL in-
terface. This method extends the static approach for
interface matching in our previous work [28] by lever-
aging XML schema matching algorithms [32, 11, 12].
The innovation is in identifying candidates for message
merge/split in the two interfaces.

• Depth-based interface matching. This method extends
the static approach by incorporating the depth (the
number of steps from the initial state of the protocol)
in which each message is defined in the business pro-
tocol. This is heuristic-based and the intuition behind
it is that messages with the same or close depths in
the business protocols may have a higher chance of
matching. The method reinforces the similarity score
of messages appearing in the same (or similar) depth
in the business protocol.

• Iterative reference-based interface matching. This method
incorporates the knowledge of previous matchings to
reinforce or penalize the score of not-yet matched (can-
didate) message pairs. It is iterative, and in each itera-
tion a pair of messages is selected as the best candidate
match. This pair is referred to as a reference pair for
the next iteration. Based on knowledge of the reference
pair, we update the similarity scores of other candidate
matching message pairs. Updating the scores (penal-
izing or reinforcing) is performed considering the rel-
ative position of a matching candidate compared to
the reference pair in the business protocol. The re-
inforcement process propagates the similarity score of
the reference pair into those of their neighboring can-
didate match that are not in conflict with the reference
pair, and penalizes the similarity scores of a message
pair that could lead to deadlock in service interactions
(is in conflict).

We have experimentally evaluated these methods using
specifications of a number of real-world and synthetic Web
services. The result of the interface-only matching approach
reveals that a major issue is false positives. Reducing the
false positive rates is important as the highlighted match-
ings need to be considered by adapter developers one-by-one.
Our protocol-aware interface matching approach proves ef-
fective in reducing the rate of false positives significantly and
therefore leads to a considerable increase in the quality of
matching between service interfaces.

Note that in this paper we focus on matching service inter-
faces and protocols. For methods related to interface map-
ping and service adapter development refer to [28, 39]. We
have also discussed the feasibility of adapter development for
given service specifications and adapter development in [23].

The paper is structured as follows. In Section 2, we present
background definitions and problem statement. Section 3 in-
troduces the method for identification of message merge/split
mismatches. Section 4 presents our protocol-aware interface
matching algorithms. In Section 5, we describe implementa-
tion and experimental results. Section 6 discusses the related
work, and we conclude and present future work in Section 7.

2. DEFINITIONS AND PROBLEM
STATEMENT

2.1 Motivating Example
We present a real-world example1, which is also used as a

running example to illustrate the proposed approach. Let us
consider an adaptation task for services in the management
of shopping carts. XWebCheckOut2 and Google Checkout3

are commercial checkout services. The two services offer
similar functionalities, but through different interfaces and
protocols. They provide facilities for sellers to manage the
orders that they receive on their own websites. The only
major difference between these two services is that Google
Checkout also provides an administration website for buy-
ers (people who do shopping on sellers’ websites). Buyers
register their details with Google and manage their orders
through that website. In XWebCheckout, sellers provide
administration support for buyers in sellers’ websites. Some
APIs are provided by XWebCheckout to facilitate this task,
for which there is no counterpart in Google APIs.

XWebCheckout and Google Checkout services provide sim-
ilar APIs for order creation and management, payment pro-
cessing, and order cancellation. However, there are differ-
ences in the interface definitions (message names, number,
and types) and how each service expects to exchange mes-
sages to fulfill a functionality. For example, Figure 1 shows
the protocols of the two services for placing an order. One of
the main issues to be addressed for the purpose of adapter
development is finding the matching between the interfaces
of the two Web services, e.g., to find out that AddOrder-
Request is the corresponding message to Place-Order in Fig-
ure 1. For this purpose, considering only the XML schema
definitions of these two services is not enough, as in this
case AddOrderRequest would be a better match for New-
Order-Notification. Indeed, we need to consider the opera-

1We use the same example as of [28] to preserve the consis-
tency of the overall approach
2http://www.xwebservices.com/Web Services/XWebCheckOut/
3http://code.google.com/apis/checkout/
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tion definition information in the WSDL documents as well
as constraints defined on operation invocation (and direc-
tions) at the protocol level.

2.2 Background and Definitions
We first revisit the definition of the most common mis-

match classes at the service interface level [3]. Let us denote
by SP the service provider and SC the service clients to
be adapted: (i) message signature: message m in SP (cor-
responding to the request of a certain functionality4) has
a different name and/or data types in the interface of SC;
(ii) message split/merge: Message m in SP corresponds to
(can be invoked by combining) messages m1, m2, ..., mn in
SC, or vice versa;(iii) missing/extra messages: One or more
messages in SP do not have any correspondence in SC, or
vice versa.

To make the paper self-contained, we give the definition of
the interface and interface mappings first presented in [28].
The definition of interface I of a Web service S, denoted by
Is, is a simple formalization of WSDL:

Definition 2.1 (Web service interface). A Web service in-
terface Is is a triplet P = (D, M, O), where D is the set
of (XML) data types of the service, O is the set of opera-
tions supported by the service, and M is the set of messages
exchanged as part of operation invocations, in which

• a message m has i parts (i ≥ 1), represented as m =<
d1, d2, ..., di >, m ∈M, dj ∈ D, 1 ≤ j ≤ i

• o = 〈mreq, mres, mf 〉, that is, o ∈ O is an operation
associated to at least a request message mreq or to a
response message mres (or both) and optionally a fault
message mf .

For simplicity we write m ∈ Is equivalent to m ∈Ms. We
define the mapping between two Web service interfaces Ic

and Is as follows:

Definition 2.2 (Interface Mapping). Given interfaces Is =
(Ds, Ms, Os) of service Ss and Ic = (Dc, Mc, Oc) of service
Sc, an interface mapping IM<s,c> from Is to Ic is a set of
functions such that: m← func(X), m ∈Ms and where the
input X is either a set of messages {m′|m′ ∈ Mc} or a set
of constant values.

The interface mapping IM<s,c> may contain more than
one mapping function for a given message m ∈ Is, or may
not contain any function for another message m′ ∈ Is. This
definition allows for specifying one to one (1− 1) mappings
(to model message signature mismatch) and one to many
(1−n) mappings (modeling message split/merge mismatch).

We use Ps and Pc to denote the protocol definitions of
provider Ss and a client service Sc, respectively. We adopt
finite state machines (FSM) as the modeling formalism for
business protocols [2].

2.3 Problem Statement
The problem we tackle in this paper can be stated as that

of providing semi-automated support for identifying match-
ings between service interfaces for the purpose of adapter
development starting from service interfaces, Is and Ic, and
protocol definitions, Ps and Pc of services S and C. The

4Receiving (sending) a message corresponds to invoking an
operation (its reply, respectively).

main challenges of tackling this problem include providing
efficient and effective protocol-aware approaches for match-
ing of Web service interfaces, and identification of correspon-
dences and mismatches at the interface level. We define the
problem as follows:

Problem 2.1 (Service Interface Matching). Interface match-
ing for Is to Ic refers to identifying the correspondences be-
tween messages in Is and Ic, i.e., the set X ∈ Mc of pa-
rameters of the function func(X) for generating m ∈Ms in
function m← func(X), and vice versa for Ic to Is.

Note that during the interface mapping, the body of the
interface mapping functions m← func(X) are implemented.
The identification of the set X, i.e., interface matching, is
the most important step in specifying func(X). In the fol-
lowing, we present novel methods for finding the set of pa-
rameters for func(X).

3. STATIC INTERFACE MATCHING: MES-
SAGE MERGE/SPLIT IDENTIFICATION

WSDL interface definitions are XML documents, and the
type of data exchanged by messages are defined using XML
schema. We presented a method for 1 − 1 matching of
(WSDL) service interfaces in [28] by leveraging XML schema
matching algorithms [32, 33]. This approach considers the
structure of WSDL documents, i.e. the operations and their
input/output definitions as well as XML schema definitions.
It extracts the schema definition for each input/output mes-
sage. Then, it matches the XML schema of pair-wise mes-
sages in two interfaces and generates a similarity score be-
tween messages. In addition to the XML schema of mes-
sages, we take into account message names, and whether a
message is input or output of an operation as it reduces the
number of required pair-wise message matchings.

In this paper, we propose a new method for the identifi-
cation of mismatches of type split/merge (1 − n). In 1 − n
matching, some schema elements of a message m ∈ Is(Ic)
are matched with elements m′ ∈ Ic(Is) and some other ele-
ments of m are matched with some elements in m′′ ∈ Ic(Is),
etc. Messages m′ and m′′ are called component messages
of m denoted by m′ . m and m′′ . m. In general, we may
have many-to-many (p − q) matching in which elements of
p messages in one interface are matched with the elements
of q messages in the other interface. Here, we focus on the
identification of component messages of a given message for
message split/merge mismatch class, i.e., 1− n matching.

Algorithm 1 shows the proposed method. Given interfaces
Is and Ic, we look for any messages m1, m2, ..., mn ∈ Is such
that m1, m2, ..., mn . m′, m′ ∈ Ic (or reversely from Ic in
Is). Let m1 ∈ Is be a candidate message that we want to
see whether m1 . m2 ∈ Ic. We apply two heuristic crite-
ria to find component messages. The first criterion makes
sure that the similarity score of m1 and m2 (denoted as
S(m1, m2)) is above a threshold t1 so that there is a like-
lihood of matching between two messages. The threshold
t1 is specified according to the matching algorithm that is
used in experiments (see Section 5.2). The second criterion
makes sure that a significant number of elements in m2 (a
default heuristic is more than half, but is configurable) are
matched with those of m1. If there are more than two mes-
sages that are identified as components of m1, then it is told
that there is a mismatch of type split/merge. Note that the
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parameter Algo in similarity score S(m1, m2, Algo) specifies
the schema matching algorithm used in 1− 1 matching (see
Section 5.2 for discussion of options).

Algorithm 1 Split/Merge Mismatch Identification

Require: WSDL interface Is, WSDL interface Ic

Ensure: ComponentList comList
1: comList← ∅
2: for each message m1 ∈ I1 do
3: comList(m1)← ∅
4: for each message m2 ∈ I2 do
5: if S(m1, m2, Algo)>t1&&

num(MatchingElement(m1, m2))/num(Elements(m2))>c1
then

6: Elements(m1)←
Elements(m1) - MatchingElement(m1, m2)

7: comList(m1)← comList(m1) ∪ {m2}
8: end if
9: end for

10: if getSize(comList(m1)) ≥ 2 then
11: comList← comList ∪ {(m1, comList(m1))}
12: end if
13: end for

Note that we consider matching of service messages in
a pair-wise manner. The granularity of matching message
parts is specified by XML schema matching algorithms.

4. PROTOCOL-AWARE INTERFACE
MATCHING

The protocol-aware approach incorporates protocol level
information into the interface matching process. We intro-
duce the following two methods:

• Depth-based approach for improving the static matching-
based similarity score for messages with a same/close
depth (the distance of the transition labeled with the
message from the initial state) in a protocol, and

• Iterative reference-based approach for propagating the
similarity score of messages into those of their neigh-
bor messages in the protocols, and also using already
matched message pairs as references to reinforce or
penalize the similarity scores of messages before and
after this pair of messages in the protocol. It builds on
the depth-based method by also considering the depth
information in computing the similarity score, and ex-
tends the depth-based method in how scores are com-
puted.

4.1 Depth-based approach

The intuition behind the depth-based approach is that
messages with similar depths in the two protocols Pc and Ps

are more likely to match. This heuristic holds when there
are no interface-level mismatches between protocols and the
two business protocols are compatible (see [2, 6] for protocol
compatibility discussion). We expect this heuristic to hold
to a large degree when the protocols belong to function-
ally compatible services, for which adapter development is
a viable solution compared to developing a new client from
scratch (see service adaptation feasibility discussion in [23]).

As an example, Figure 2 shows simplified protocols of
CO Client and Google Checkout APIs. Messages AddOrder
and PlaceOrder which are in the same depth of 1 are more

s0

s1

s3

s4

s5

-Place-Order

+New-Order-Notification

-Charge-Order

-Deliver-Order

s2

-Cancel-Order

s’0

s’1

s’3

s’5

+AddOrder

+ProcessPayment

+ShipOrder

s’2

+DeleteOrder
+UpdateOrder

1+

1.5+

2+

3+

2+

1-

1+

2-

3-

2-

s5

CO_Client Google Checkout APIs

Figure 2: The simplified protocol specifications of
CO Client and Google checkout APIs associated with
respective depth numbering

likely to be a correct match. It is useful to consider the
direction of messages, i.e., incoming (+) or outgoing (-) in
identification of depth, as well.

A protocol may have loops, i.e., transitions recurring back
to states closer to the initial state. To avoid going into infi-
nite loops for identifying the depth of a message associated
to such transitions, we propose to first normalize the proto-
col into a protocol tree in which only self-loops are allowed.
The normalization process involves traversing each transi-
tion and checking whether the outgoing transitions for the
target state of the current transitions are already labeled
with a smaller depth number. If any of the outgoing transi-
tions matched this criterion, then the normalization process
does not continue this path of the protocol. Then, the depth
of a message is specified by the number of transitions to be
traversed from the initial state s0 to the message m in this
tree-like representation of the protocol.

In this process, messages of each direction are numbered
separately. For instance, the message -Place-Order gets the
number 1− and the message +New-Order-Notification the
number 1+. These numbers are relative but do not corre-
spond to the exact depth of a message from the initial state.
In case of self-loop in P (e.g., see message +UpdateOrder in
Figure 2), we associate the number 1.5+ to show that it is
a self-loop (but not the depth of 2).

Given the depth of messages in the protocol, we update
the 1−1 similarity scores of messages in two interfaces. This
process improves the score of each matching considering the
depth information as follows. Let m1 ∈ I1 and m2 ∈ I2, and
S(m1, m2) be the similarity score of messages m1 and m2

5.
The improvement weight for the score in the depth-based
approach is shown in Equation 1.

scale←
maxdepth− |depth(m1)− depth(m2)|

maxdepth
. (1)

The new score S′(m1, m2) is computed as

S′(m1, m2) = S(m1, m2)× scale. (2)

This ensures that messages with closer depth will be scaled
higher in comparison with messages that are further apart
from each other. Note that maxdepth is a constant that
defines the maximum depth obtainable in the protocol for
each direction. This approach enhances the accuracy of the
matching compared to the static approach, as verified by
experiments (see Section 5.2).

5Note that I1 = Is(Ic) and I2 = Ic(Is)
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4.2 Iterative reference-based approach

The iterative reference-based approach improves the depth-
based approach in two ways: (i) considering additional pro-
tocol information including the path in which messages are
located in the protocol tree, as well as previous matchings
for identifying the similarity, and (ii) relaxing the implicit
assumption in the depth-based approach, i.e., that of the
similarity of the structure of protocol trees for function-
ally equivalent services at a global level. The relaxation
is achieved by by allowing the initial matching of message
pairs at any levels of the protocol trees.

This method is iterative and in each iteration a pair of
messages is selected as the best candidate match. Assuming
it is a correct match (a user could be involved to verify the
correctness of the match), this pair is selected as a reference
used to update the similarity scores of other yet un-matched
message pairs. The other scores are either reinforced or pe-
nalized.

As a pre-processing step, each protocol tree is decomposed
into distinct paths. The best candidate pair of messages is
considered a reference matching pair (or reference pair for
short) in the same path-pair (see strategies for selecting the
references later). For instance, Figure 3(a) shows two paths
from protocols Ps and Pc, respectively. If message pair −c
and +c′ are the best candidate match, we select them as a
reference pair. A reference pair could be used to reinforce
or penalize the other matching candidates in the same path-
pair. The reference-based method refines the 1− 1 message
similarity scores by taking into account the following:

• Depth-based score improvement. Similar to depth-based,
messages with similar depth in the two protocols P1

and P2 are considered more likely to match (see Sec-
tion 4.1).

• Propagation of similarities to neighbors of a matching
message pair. If −c ∈ I1 and +c′ ∈ I2 are selected
as a reference pair, then their neighbor message be-
fore (after) the reference point are more likely to have
a matching to others before (after) +c (respectively,
−c′) in those paths. For instance, if c and c′ repre-
sent the matching invoice messages, then it is likely
the messages before these messages, which are about
quote and ordering, and also messages that are after
these in the protocols, e.g., about payment and ship-
ping, are more likely to match with each other, respec-
tively. The reinforcement is done using a rate that
controls the rate at which the reinforcement decays
depending on how far the matching messages are from
the reference message pair.

• Penalizing conflicting matching candidates crossing ref-
erence pairs. Given reference pair +c ∈ I1 and −c′ ∈
I2 the candidate matching pair −f ∈ I1 and +j′ ∈
I2 (shown as crossing the solid reference line in Fig-
ure 3(b)) is called a conflicting match. This is because
−f (an outgoing message) with a bigger depth than
+j′ (an incoming message) leads to a deadlock6 in the
interaction of two services in case this matching is al-
lowed. Therefore, the similarity score of a conflicting
matching pair is penalized.

6services are mutually waiting indefinitely to receive mes-
sages from each other
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Figure 3: Two paths in protocols Ps and Ps. The
reference pair is shown with a solid line.

Propagation of similarity scores to neighbors. The
propagation of similarities to neighbors of a reference pair is
achieved through reinforcing the similarity scores of pairs
that are not in conflict with the reference pair. In Fig-
ure 3(a), the matching of +b and −b′, as well as +d and
−′d are reinforced. However, the similarity scores of b and
d′ and b′ and d are not reinforced as their matching lines (if
drawn) cross the reference line. This is logical as Ps expects
to receive b before it sends c. On the other hand, considering
the matching between b′ and d, Pc sends b′ before waiting
for c′, and Ps is waiting to receive d after sending c. There
are no conflicts between the exchange of these messages and
so these two can be a possible match. However, we do not
reinforce or penalize its similarity score.

Penalizing scores of conflicting matching pairs. As
mentioned above, a conflicting matching pair should be pe-
nalized to avoid potential deadlocks in service interactions
according to the protocols. A conflicting matching is identi-
fied among all candidate matching pairs whose line crosses
the reference line by the condition that the message with
the “+” sign (say m1) is before the reference message mref1

(with “-” sign”) in the path and the message with the “-”
sign (say m2) is after the reference message mref2 (with “+”
sign) in the path.

For example, in Figure 3(b) the matching of +j′ and −f
(shown with a dashed line) satisfies this condition and there-
fore is penalized. Note that not all crossing matching candi-
dates are penalized. For instance, in Figure 3(c) the match-
ing candidate pair +t′ and −v are not penalized although
+t′ is in a smaller depth compared to −v. This is because of
the direction of −c in the protocol path Ps. Indeed, this case
identifies mismatch of type unspecified reception, which can
be handled as a sub-class of ordering mismatch patterns (a
protocol-level mismatch) in the adapter [3, 28]. Similarly,
the similarity score of −e with +x′ in Figure 3(c) is not pe-
nalized. In general, if we have crossing matches for which
the message with “-” sign is above the reference message pair
and “+” is below the reference message, it is not penalized
(as an adapter can receive the message with “-” sign and
store it in the adapter for future use).

The success of this approach is directly related to the se-
lection of reference pairs, and whether they are correct. We
discuss this aspect next.

Reference message selection. We introduce two meth-
ods for the selection of a reference pair: (i) Automated ref-
erence selection: In each iteration the pair with the highest
1−1 similarity score between the two interfaces is selected as
the reference and the similarity scores of others are updated,
and (ii) User-driven reference selection: In each iteration,
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the best candidate matching pair is selected and presented to
the user for his/her feedback on the correctness of the match
as well as reference selection. Based on the user feedback,
the similarity scores are updated and the next reference is
selected. In the automated reference-selection the success of
this approach depends on the quality of the matching algo-
rithm. The user-driven reference selection greatly improves
the accuracy and effectiveness of matchings (see Section 5.2).

Algorithm 2 Iterative Reference-based Interface Matching

Require: mList1, mList2
Ensure: mrList
1: mrList← depth-basedMatching(mList1, mList2)
2: mp← selectReferencePoint(mList1, mList2, mrList)
3: while mp 6= ∅ do
4: mref1 ← mp.m1, mref2 ← mp.m2

5: for each m1 ∈ mList1 do
6: for each m2 ∈ mList2 do
7: mr ← getMatchResult(m1, m2, mrList)
8: diff ← max(abs(mref1.depth-

m1.depth),abs(mref2.depth- m2.depth))
9: rate← 1 + (maxdepth− diff)/maxdepth

10: if [(m1, m2) cross (mref1, mref2)] and conflict
then

11: mr.score← mr.score× 1/scale
12: else if m1 (m2) neighbor of mref1(mref1) then
13: mr.score← mr.score× rate
14: end if
15: end for
16: end for
17: mp← selectReferencePoint(I1, I2, mrList)
18: end while

Algorithm 2 summarizes the iterative reference-based ap-
proach. The short forms of mList refer to list of messages
(e.g., mList1 refers to the list of messages in I1), mrList
refers to match result list, mp stands for message pair, and
mr stands for match result. In this algorithm, static match
scores are computed and reinforced using depth-based ap-
proach (line 1). Then, a reference pair is specified using one
of the approaches explained above (line 2). Next, the scores
for message pairs leading to deadlock are penalized by mul-
tiplying the similarity score by the inverse of scale (line 11),
which is computed according to Equation 1. If the pair of
messages are neighbors of reference pairs, their score is re-
inforced proportionally to the difference of their depth with
those of messages in the reference pair (line 13). This is done
by multiplying their similarity score by the reinforcement
rate (computed in line 9). Afterwards, the algorithm looks
for the next reference pair, if any. The algorithm terminates
when there are no further reference pairs to be selected.

5. IMPLEMENTATION AND EXPERIMENTS

5.1 Implementation and Dataset
Implementation. The approaches presented in this pa-

per have been implemented in Java 5.0 using Eclipse 3.2
as the programming IDE. The static interface matching ap-
proach in the interface matching component is implemented
on top of the OntoBuilder7 library of ontology matching al-
gorithms [29, 12, 18]. OntoBuilder is an automatic schema
matching tool based on ontological constructs. An ontology
consists of terms which are linked together with a parent

7http://iew3.technion.ac.il/OntoBuilder/

or child relationship. OntoBuilder provides Java APIs that
allow programmatic access to its capabilities.

We have extracted individual messages of WSDL docu-
ments along with their XML schema and built new schemas
to include WSDL contextual information as described in
Section 3. We then convert these schemas into ontologies
in OntoBuilder and match them using various built-in on-
tology matching algorithms, e.g., term-based, graph-based,
precedence, similarity flooding algorithm, and a combined
algorithm using all these algorithms at the same time. In
1 − n interface matching we use the result of XML schema
matching from OntoBuilder. We have also compared our
algorithms with the approach that uses only schema match-
ing algorithms (in our implementation from OntoBuilder)
for service interface matching (reported below).

Dataset. We have evaluated the proposed methods in
both synthetic and real-world scenarios. The WSDL doc-
uments used for the evaluation in the real-world scenar-
ios are obtained from real world web services in two cat-
egories: purchase order and shopping card management ser-
vices (Google Checkout8, XWebCheckout V29, Moon Pur-
chase Order Management Service10, Amazon Web Service11

and Amazon E-commerce Service12), and payment services
(PayPal Web Service13, PaymentExpress Web Service14, Ama-
zon Flexible Payments Service15).

Some of the WSDL documents have also been modified
by adding operations and messages in order to evaluate the
approach with protocols with various degrees of complex-
ity. The business protocols are constructed using the infor-
mation from documentation and implementation guides for
those real world web services. They represent various scenar-
ios such as ones with simple protocols having a few messages
(each 3-5 messages with large schemas), complex protocols
involving many messages (each up to 15 messages with large
schemas), protocols with self-loops, protocols with loops back
to states closer to the initial states of protocols and protocols
with multiple paths.

The synthetic service specifications are created by manip-
ulating the real-world service specifications to validate the
effectiveness of protocol-aware approaches in scenarios not
covered by real-world examples. In particular, we validate
the effectiveness and usage of protocol-aware approaches in
cases that 1 − 1 matching (syntactical) results are correct
(where only protocol-level mismatches are present). We have
used a desktop P4 Intel CPU 2.8GHz with 4 GB of RAM to
conduct the experiments.

5.2 Experiments

5.2.1 Evaluation criteria
We use the following criteria to evaluate the efficiency and

the accuracy of the proposed approaches with each other and
existing work. For the evaluation of accuracy, we use the
well-known measures of precision and recall [34]. Precision

8http://code.google.com/apis/checkout
9http://www.xwebservices.com/Web Services/XWebCheckOut

10http://sws-challenge.org/services/OMService?wsdl
11http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
12http://webservices.amazon.com/AWSECommerceService
13http://www.paypal.com/wsdl/PayPalSvc.wsdl
14https://www.paymentexpress.com/WS/PXWS.asmx?WSDL
15https://fps.amazonaws.com/doc/2007-01-
08/AmazonFPS.wsdl
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measures the quality of the matching results, and is defined
by the ratio of the correct matches, in terms of message pairs
in the two interfaces, to the total number of matches found.
Recall measures coverage of the matching results, and is
defined by the ratio of the correct message pairs matched
to the total number of all correct matches of message pairs
that should be found. These two definitions are summarized
in Equation 3 and Equation 4:

Precision =
number of correct message pairs matched

total number of message pairs matched
(3)

Recall =
number of correct message pairs matched

total number of correct message pairs in the two interfaces
(4)

For an approach to be effective, it should achieve a high
precision and high recall. However, in reality these two met-
rics tend to be inversely related [34]. This means that the
improvements in precision come at a cost of reduction in re-
call, and vice versa. For identifying the set of correct match-
ing between message pairs of two given interfaces, we rely
on the judgment of human users. To evaluate the efficiency
of the matching approaches, we measure and compare the
time needed to perform the matching of WSDL documents
using different approaches.

5.2.2 Evaluation Results in Real-world Scenarios
In the evaluation, we refer to the protocol-aware inter-

face matching approach as reference-based, the depth-based
approach as depth-based and the static 1− 1 matching algo-
rithm as static. We also compare this result with those of
only using a schema (ontology) matching algorithm (without
including WSDL context information such as operations)
but only matching the whole XML schema of two services
at once. We refer to this approach as schema-based. We
first provide the comparison of the above approaches in one
representative scenario and then analyze results in others.

Google Checkout and XWebCheckout V2. Figure 4
shows the result of applying these algorithms averaged on
three versions of Google Checkout and XWebCheckout V2
specifications having simple protocols to a complex one that
includes 9 additional operations, taken from other similar
services, regarding the purchase order management. The
static schema matching approach, reported here, uses the
combined schema matching algorithm in OntoBuilder (with
default settings) applying term, graph and precedence ev-
idences for ontology matching. The chart shows the re-
sults for thresholds from 0.1 to 0.6 with an interval of 0.1.
The threshold is applied on the similarity scores, obtained
from the schema matching approach in the static approach,
and also improved scores in the proposed protocol-aware ap-
proaches. It is used to decide if a pair of messages match.

As can be see from the charts in Figure 4, the general trend
of the precision chart is that the precision starts increasing
for threshold 0.1 to 0.4. The precision of the schema based
approach is computed using the whole schema of the two ser-
vices in matching. The precisions for the schema-based and
static approaches start declining from the threshold 0.4, and
for others from 0.5. On the other hand, the general trend
of the recall is consistent and decreasing as the threshold
increases. Note that, in general, the precision and recall of
static matching are low. This is due to the heterogeneity
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Figure 4: The evaluation of the proposed approaches
on Google Checkout and XWebCheckout V2

of the details of XML schemas defined by Google Checkout
APIs and XWebCheckout.

The charts show that using the static approach to divide
the schemas of services into those of messages leads to al-
ways achieving a better precision and recall compared to
the schema-based approach. The precision of the static ap-
proach is increasing for thresholds 0.1 to 0.4, and its recall is
constantly decreasing for this range of threshold, but always
demonstrates a superior performance compared to schema-
based approach. In addition, the depth-based approach im-
proves the results of static approach for all thresholds as it
boosts the similarity scores for the ones that are more likely
to match. Finally, the reference-based approach achieves
a better precision than others due to disallowing deadlock
cases, and it achieves a superior recall due to the propaga-
tion of similarities to the neighbors thus allowing matching
message pairs, which are correct, to achieve higher scores. In
general, for the higher thresholds (up to 0.4), the precision
increases as the number of matching pairs that are returned
also decreases, among which the correct ones are present.
In this evaluation, each reference pair is verified by the user
meaning that the highest matching pair are suggested to
the user as the reference consecutively until a correct pair is
selected, then the propagation of similarities is performed.

The un-expected decline in the precision of the static ap-
proach after the threshold of 0.4 is because the similar-
ity score values for many correct matches fall below this
threshold value. Similarly, the overall precision for other ap-
proaches also decreases for thresholds higher than 0.5. This
is not expected, as we expect the precision to increase as the
threshold increases. The reduction in the precision in this
case is due to the fact that the highest scored matching ob-
tained from the static approach are not the correct ones.
Hence, when the threshold increases the correct matches
are removed from the set of resultant matching. However,
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Table 1: The average execution time of different ap-
proaches using OntoBuilder for matching schemas of
services

Approach Time
Schema-based 17 min 34 sec
Static 40.5 sec
Depth-based 42.2 sec
Reference-based 45.7 sec

as we see the depth-based approach, and also the iterative
reference-based approach, play the role of improving the
scores for the correct matching pairs to keep them in the
set of resultant matchings for threshold values of 0.4 and
above.

Threshold selection. Note that the selection of threshold
depends on the algorithm and the tool used for matching of
schemas, and also the schema of the services to be matched.
There has been some work in the area of schema matching to
find parameters of matching algorithms based on the prob-
lem at hand (e.g., see [24]). As can be seen from the results,
selecting a threshold closer to the lower end of the spec-
trum may result in lower precision, but, it achieves a higher
recall. It has been reported in [20] that in information re-
trieval tasks users would tolerate a decrease in the precision
if it can bring about a comparable increase in recall. This
observation should be used in selecting the threshold.

Efficiency. Evaluation of the efficiency of the approach
shows that applying the proposed static interface matching
significantly reduces the time needed to match the schemas
of the interfaces of two services (See Table 1). While match-
ing the whole schema of Google Checkout and XWebCheck-
out using OntoBuilder takes more than 17 minutes for On-
toBuilder, the static approach takes 40.5 seconds, the depth-
based approach 42.2 seconds and finally reference-based ap-
proach (when all steps are performed automated) takes on
average 45.7 seconds. The remarkable improvement in the
time stems from two factors: the small size of fragments of
schema, corresponding to those of messages, and matching
not all pairs of messages but some of them.

Results on other datasets. We have performed ex-
periments using the specifications of other Web services,
i.e., among payment Web services (PayPal and PaymentEx-
press, AmazonFPS and PayPal), purchase order and shop-
ping card management Web services (Google Checkout and
Moon’s purchase order management service, Amazon Web
service and Amazon E-commerce service). Here, we discuss
our observations and lessons learned from these experiments.

The total time taken for the execution of the static and
also protocol-aware approaches for interface matching is sig-
nificantly less than that of using the schema-based approach
on the whole WSDL schema definitions of services, confirm-
ing the observation that can be made in Table 1.

The proposed approaches improve the accuracy compared
to the schema-based approach. On average, the reference-
based approach, based on results obtained on real-world
datasets, demonstrates superior performance in comparison
with the depth-based and static approaches, and all per-
formed better than applying the schema-based approaches.
The results of the iterative reference-based approach are su-
perior when there are conflicting mismatches (leading to
deadlock) defined in the protocols. In other cases, it per-
forms slightly better than depth-based approaches due to

the propagation of scores to the neighbor messages in the
protocol but often the results are comparable.

As for the recall results, a consistent decreasing trend is
observed for all three approaches as the threshold value in-
creases, as expected. The protocol-aware approaches demon-
strate a higher recall, on average, compared with the static
and also schema-based approaches. In summary, compar-
ing the results from the protocol-aware approaches with the
static approach also reveals that as protocols become more
complex the benefits of using protocol-aware approaches are
more significant.

Refined reference-based approach. We performed ex-
periments to select the reference pair automatically by tak-
ing the matching pair with the highest score. In most cases,
the pair with the highest score, especially in the first itera-
tion, does not represent a correct match. This negatively af-
fects the precision and recall of the iterative reference-based
approach. In these cases, we have performed experiments
with a variation of the reference-based approach, in which it
does not penalize the matching leading to deadlock, since we
are not sure if the selected matching is correct. Comparing
this approach with static and depth-based approach reveals
that it improves the recall but achieves a precision slightly
lower than depth-based approach. This is because a higher
number of message pairs are returned, and some of them are
not correct.

5.2.3 Evaluation in synthetic scenarios
The aim of the synthetic scenarios is to evaluate the ef-

fectiveness of the protocol-aware interface matching when
the matching between interfaces is correct according to the
information at the interface level. We report on using two
pairs of synthetic order management protocols to evaluate
the approach. In particular, the first scenario is represented
by a pair of protocols that involve matching pairs leading to
deadlock cases, similar to cases presented in Figure 3. The
precision of the static algorithm in this case is 83%. Apply-
ing the depth-based approach does not change the precision.
This is because the depth-based approach only enhances
the similarity scores of messages at same level. However,
the iterative reference-based approach achieves a precision
of 100%. This is because it does not allow matching leading
to deadlock cases.

The second scenario consists of a pair of protocols involv-
ing a deadlock case and also a message matching in a path
of protocol matching two messages in two different paths,
only one of them correct. In this case, the precision of the
static and depth-based approaches is 86%. This is improved
to 93% for the iterative reference-based addressing the dead-
lock case. However, the iterative reference-based approach
is not sufficient in finding the matchings to different paths
showing the need for complete protocol-interaction simula-
tion, a complementary approach that was proposed in our
previous work [28] for identifying protocol-level mismatches.

6. RELATED WORK
The problem of adapting interaction models in software

has been studied in different contexts, and more notably
in the area of software components integration (e.g., [39,
7, 22]) and also recently in Web services [3, 17, 14, 23, 8,
35]. In the following, we discuss the related work in three
categories, i.e., interface matching, behavioral matching as
well as diagram matching.
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Interface matching. At the interface level there are four
main classes of approaches in the prior art. The approaches
in the first class focus on finding the similarities between a
given function (operation) signature to others in a reposi-
tory of software components [40, 41] or Web services [13,
36] specifications. In [40] authors propose a method to com-
pare the signature of software components and identify their
matching (and identifying a measure of similarities) consid-
ering the parameter name, parameter type, parameter or-
der, etc. This corresponds to 1−1 matching in our work. In
addition, service interfaces (described in WSDL and XML
schema) are more expressive than software signatures. In
finding similar services to a given query or operation from a
service repository (e.g., [13, 36]), the objective is not to find
the exact matching between schema elements of messages
but to find a measure of their similarity typically based on
information retrieval techniques. In addition, their meth-
ods rely on learning and statistical analysis (e.g., clustering)
of existing service interface specifications. In contrast, the
aim in our work is to find exact matching of a given pair of
service specifications (WSDL).

The second class of prior art proposes approaches for adapt-
ing a service WSDL interface to incompatible clients, e.g.,
[17, 31]. In [31] authors assume that interfaces of all services
that provide a similar functionality are derived from a com-
mon base interface using a number of derivation operators
that allow for adding or removing parameters to operations.
However, the operation names and other aspects of the ser-
vice interface remain the same. In [17], the author proposes
defining service views on top of WSDL interfaces by altering
WSDL interfaces to enable interactions with incompatible
services. However, no automatic support for the generation
of views is proposed. We focus on semi-automatic protocol-
aware interface matching for service adaptation.

As the third class there are ontology-based approaches for
service interface matching (e.g., [1, 30, 18]). These works
correspond to 1− 1 matching in our approach. In addition,
they do not consider protocol constraints. We also build
on top of the ontology matching approach offered by the
OntoBuilder tool [29, 18, 12] to perform 1 − 1 matching of
messages in the interfaces of Web services.

Finally, as the last class, commercial products, e.g., IBM
WebSphere Integration Developer16, BEA WebLogic Inte-
gration 17 or Microsoft Biztalk18 also have integrated exist-
ing methods for schema matching. Hence, they share the
same limitations of schema matching approaches compared
to the approaches presented in this paper for service speci-
fications matching.

Behavioral and diagram matching. There are many
approaches for behavioral matching of software components
(e.g., [7, 21, 41, 9, 16]) or services (e.g., [37, 2, 6]). They
are focused on matching business process and protocol spec-
ifications in the absence of interface mismatches. Our pre-
vious work [28] is the only one that reports matching ser-
vice interface as well as service protocol specification. How-
ever, service interfaces are matched using a static approach
(1 − 1). Tan et al. [35] present a protocol-level mediation
method and assume that the interface-level mismatches are
identified and given by the developer. In this paper, we are

16http://www.ibm.com/software/integration/wid
17http://www.oracle.com/bea/index.html
18http://www.microsoft.com/biztalk

considering matching of interfaces in the context of service
adaptation, rather than trying to find a measure of similar-
ity of one protocol with others in a repository, which is the
focus of another complementary line of research (e.g. [19]).

The approach presented in this paper builds on and ex-
tends our previous work in [3, 28]. In particular, in [28], we
presented a method to identify one-to-one matching of ser-
vice messages at the interface level, and one-to-many match-
ing is only sketched. In this paper, we proposed a new
method for identifying one-to-many (merge/split) mismatches.
More importantly, we presented a protocol-aware approach
for Web service interface matching, which is complementary
to our previous work on bi-simulation of interaction of busi-
ness protocols for service adaptation [28].

There is another class of related work for matching soft-
ware architectural diagrams as well as software behavior
models (e.g., [25, 26]). These works are focused on find-
ing similarities between diagrams. In this paper, we fo-
cus on matching the XML-based interfaces of Web services
(considering protocol constraints), which are much more ex-
pressive than labels on diagram transitions. The approach
presented in this paper may be useful in finding more com-
plex relationships between diagrams as well (e.g., method for
split/merge mismatch identification). However, some other
aspects and methods such as deadlock case elimination may
not be needed in the context of diagram matching.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have investigated the problem of iden-

tification of mismatches between interfaces of Web services.
The innovative contributions of the proposed approaches lie
in providing a method for identification of the split/merge
class of interface mismatches and a semi-automated, protocol-
aware approach for identification of interface-level mismatches
that result in identifying parameters of mapping functions
that resolve those mismatches. We used and extended ap-
proaches in schema (ontology) matching for static matching
of service interfaces to identify split/merge mismatches. In
addition, we have proposed depth-based and also iterative
reference-based approaches that incorporate the protocol in-
formation during the interface matching.

We have implemented the approach in a prototype tool
and performed extensive experiments using both synthetic
and real-world service interface and business protocol spec-
ifications. The result shows that these approaches consider-
ably improve the effectiveness and the accuracy of matching
results. The work presented in this paper complements our
previous work and we believe that together they play a sig-
nificant role in reducing the efforts for adapter development
in Web services.

As future directions in this area we are considering extend-
ing the matching algorithms to identify other classes of mis-
matches between services interfaces. We are also considering
incorporating interface and protocol matching approaches in
the composition of Web services as current approaches of-
ten do not consider heterogeneities of service specifications
while composing services.
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