
Enabling Product Comparisons on Unstructured
Information Using Ontology Matching

Maximilian Walther, Niels Jäckel, Daniel Schuster, and Alexander Schill

Technische Universität Dresden, Faculty of Computer Science, Institute of Systems
Architecture, Helmholtzstr. 10, 01062 Dresden, Germany,

maximilian.walther@tu-dresden.de

Abstract. Information extraction approaches are heavily used to gather
product information on the Web, especially focusing on technical product
specifications. If requesting different sources for retrieving such specifi-
cations, the outcome is of varying formats (different languages, units,
etc.). The problem of how to bring such information sets into a unique,
interchangeable format is not considered in many extraction systems.
We develop a generic process for semantically integrating heterogeneous
product specifications with the help of a product information ontology.
The approach is based on a number of measures for detecting the right
product attributes in the ontology to be matched with the extracted
specifications and finally normalizing the specifications’ values (e.g., con-
cerning units). The feasibility of our approach is proven in a federated
product search prototype called Fedseeko.

Key words: information extraction, federated search, ontology match-
ing, product information management

1 Introduction

Today’s World Wide Web offers a wide amount of product information with
disparate structure and location which is not easy-to-handle for the average
online consumer anymore. This led to a need for platforms offering effective
product comparisons. In many cases, the product information maintained on
such platforms is still acquired by hand. Figure 1 shows examples of technical
specifications lists for two digital cameras dc1 and dc2 being represented in
different producer-dependent manners. For being able to compare both products
on a dedicated platform, an employee has to extract those specifications, match
them with a corresponding product model and normalize included values.

Hence, many approaches for automating the product information collection
on the Web have been developed which mostly focus on extracting product infor-
mation from unstructured or semi-structured sources like the producer websites
shown in the figure. The part of integrating extraction targets with a central
knowledge model is not considered in many cases. However, this step is impor-
tant since it makes products comparable. This applies especially to electronic
products where technical product specifications allow effective comparisons and
strongly affect a potential consumer in choosing a particular product.



2 Maximilian Walther et al.

Fig. 1. Example for varying product specification formats of two digital cameras.

We develop a generic approach for integrating technical product specifica-
tions with a given product information ontology. Our contributions consist of an
appropriate process for extracting, classifying, matching and normalizing prod-
uct specifications using a central knowledge model and a number of domain-
specific measures required for the product specification matching process. In the
following, the topic of ontology matching will be emphasized.

2 Ontology Matching

Although product information is generally not available in the form of an ontol-
ogy online, each web source’s product information has a distinct structure de-
scribed by some internal schema. Thus, it is reasonable to assume that extracted
specifications are implicitely modeled by an ontology, shifting our problem to the
area of ontology matching. Ontology Matching [1] describes the process of finding
correlations (Ontology Alignment) between entities of different ontologies that
can be used for transforming one ontology into another (Ontology Mapping).
Ontology matching is closely related to schema matching. The characteristic se-
quence for matching schemas consists of the actual matching step, an aggregation
and a selection step. Newer systems[2] diversify this sequence for offering more
flexibility.

State of the art matching systems usually apply several elementary match-
ers for finding an alignment. Considering their matching granularity, they can
generally be divided into element-level and structure-level matchers. A more de-
tailed matcher categorization is given in [3]. Depending on whether the system
executes its matchers sequentially or in parallel, the overall matcher is called
hybrid or composite, respectively. When talking about extracted product speci-
fications, structural information is not available, thus reducing the set of elemen-
tary matchers to the element-level ones. For compensating this major drawback,
as many characteristics of product specifications as possible have to be identi-
fied to be exploited by adequate element-level matchers. The fact that not only
the specifications’ schema (tbox), but also corresponding instances (abox) are
extracted, is helpful in this case.



Product Comparisons through Ontology Matching 3

2.1 Element-Level Matchers

The most basic element-level matcher type is the one of string-based matchers.
Such matchers only compare given strings, e.g., by calculating the Levenshtein
distance. COMA[4], a composite schema matcher that allows the combination
of different matching algorithms, includes four such matchers. Cupid[5] uses
two different string-based matchers for detecting prefixes and suffixes in its first
operation step. String-based matchers are used in nearly every matching system.

Language-based matchers use NLP techniques for identifying individual
words or phrases or execute a morphological analysis on given strings. In S-
Match[6] such matchers are used for detecting the meaning of given concepts.

The third type are matchers using linguistic resources such as WordNet, e.g.,
for retrieving synonyms of given schema strings. OWL Lite Aligner[7] (OLA) uses
WordNet while systems like Naive Ontology Mapping[8] (NOM) and its successor
Quick Ontology Mapping[9] (QOM) apply application-specific vocabularies. If
the vocabulary used in a schema is not too particular for a special domain, such
matchers can be quite powerful.

Constraint-based matchers have the ability to detect similar datatypes or
multiplicities. E.g., such a matcher could figure out that a datatype day and
workingday are quite similar. Similarity Flooding[10] is a hybrid schema match-
ing system and uses constraint-based matchers while doing fix-point computa-
tions on the graph representations of its input schemas.

The last element-level matcher type being interesting for this work is the one
of alignment reusing. Such matchers try to find alignments between the input
schemas and other schemas. If for example both input schemas would already
have been matched with a third schema and the resulting alignments are known
to the matcher, a transitive mapping approach would support the matching
process. COMA was the first system to offer alignment reuse.

Although the matchers presented here are taken from a survey[3] of schema-
based matching approaches, they may as well be applied to instance data. Thus,
each similarity measure presented later-on will reference one of these matcher
types. In the following, systems directly working on instance data are described.

2.2 Instance Matching

Instance matching has been adopted in a set of different approaches. ASID[11] is
a relational database schema mapper. It divides its matchers in strong and weak
matchers while the weak matchers exploit available instance data that is to be
cleaned in advance. Automatch[12] is solely based on instance data of different
schemas. The instance data is compared with a unique internal schema using
techniques of the machine learning domain. GLUE[13] is a system for semi-
automatic taxonomy and ontology matching. The first of two basic learning
strategies is the content learner that captures word counts of instance data.

These systems are designed quite generically for being able to match a lot
of different schemas. Their approaches can be adapted to better fit our product
specifications domain.



4 Maximilian Walther et al.

3 Semantic Integration of Product Specifications

The objective of our system is to create integrated sets of product specifications
originally gathered on the Web for being able to compare products efficiently.
The overall process is presented in Figure 2.

Fig. 2. Overall extraction and matching process.

As can be seen, the first step consists in extracting the set of raw technical
specifications Sr(x) (e.g., ”Number of effective pixels*1: 12.2 megapixels” for dc1
in Figure 1) of a product x (in this case, our dc1) from a dedicated web page
(e.g., a page on dc1’s producer website). This step as well as the automated lo-
cating of such web pages has already been described in [14]. Since the product’s
category might be unknown, the second step consists in classifying the product
to be located in a product category c ∈ C (e.g., ”Digital Cameras”) from an
ontology o. This step is essential since the matching algorithm needs to know
which properties of o can potentially be matched with Sr(x). The basic approach
of how to classify products has already been described in [15]. We developed a
number of refinements for this technique. However, since it is not the main focus
of this paper, it will only be taken into account for the evaluation section. In the
main step, the extracted specifications can be matched with c’s set of abstract
product specifications (e.g., ”Image Resolution”). For disambiguation reasons,
the abstract product specifications of o will be called the set of properties P in
the following. The output of the matching step consists of a set of specifications
Sm(x, c) (e.g., ”Image Resolution = 12.3 MP”) being matched with and normal-
ized by c. Finally, since each product specifications source uses its own style to
represent specification values, a normalization of specification values is required.

Before examining the matching step in detail, the central concepts of our
matching ontology are to be presented since they will be used throughout the
whole process.

3.1 Domain Model

The ontology o represents the target schema for matching extracted product
specifications Sr(x) and was modeled in OWL. Only the tbox of o is of interest.



Product Comparisons through Ontology Matching 5

Generally, an ontology tbox for the product domain would contain a taxon-
omy of product types, relations between those types and corresponding product
attributes. However, since we introduced the concept of a property in our match-
ing process, we created a tbox meta-model being located above the normal tbox
model that allows the description of product property attributes, such as the
property’s structure, type, etc. The meta-model is presented in Figure 3.

Fig. 3. Domain meta-model for the matching process.

As shown by the figure, the meta-model mainly consists of the mentioned
categories C, corresponding properties P , a set of units U and a description of
each unit’s domain. The lower tbox model contains categories such as ”Digital
Cameras”, properties such as ”Image Resolution” or ”Image Sizes”, and units
including ”Metre”, etc. The relations between those concepts can be seen in the
figure as well. Additionally, each property has three different attributes, namely,
a structure, a type and a collection of keywords. These attributes as well as the
property’s unit will be important for the matching process to be presented later
on. An additional product conversion attribute is provided that describes how a
property can be split up into basic properties or combined to a complex property
using a property converter (a dedicated code snippet for executing the conversion
process). These two classes are important for the normalization process.

The described meta-model as well as concrete categories and properties for
those categories were modeled in OWL and build the tbox of o. For each category,
up to 40 properties have been added. Figure 4 shows the specification set of dc1
after being matched with and normalized by our ontology.

Fig. 4. Examples of matched product specifications for dc1 in Figure 1.



6 Maximilian Walther et al.

3.2 Product Specification Normalization

If an alignment between an extracted specification sr and a property p has been
detected, the correct key of sr is the one of p. However, if the extracted speci-
fication has a complex structure, such as a list, a vector, or a range, contained
values are not easily comparable. Thus, the complex specification is split into
several elementary and comparable specifications. Furthermore, the contained
values are cleaned by removing HTML snippets, deleting nonrelevant informa-
tion (e.g., information in brackets), distilling numeric values or changing boolean
values to ”true” and ”false”, respectively. Furthermore, found units are changed
to the current specification’s standard unit followed by a recalculation of the
associated numeric value (Figure 5).

4 Similarity Measures

In the following, we develop a composite matcher that uses a set of element-level
matchers specifically designed for the product domain. During the adoption of
those matchers, various thresholds are employed to only select the most robust
alignments. Finally, the resulting elementary alignments are aggregated.

We identified five characteristics of technical product specifications that may
be used as indications for the matching process. One of them is the specification’s
key. The other characteristics focus on the specification’s value and include the
value’s structure, the value’s type, the value’s unit and a collection of keywords
potentially contained in the value. The following formula shows how to aggregate
the different similarities to create a consolidated similarity value.

ΦSspec(sr, p) = Θτspec

(
ΦSkey(sr, p) + ΦSstruct(sr, p) + ΦStype(sr, p)

+ ΦSunit(sr, p) + ΦSkeyword(sr, p)
) (1)

A function Θτspec is used to define a threshold. Each of the different similarity
functions is to be implemented in its own elementary matcher and will be defined
below.

Key Similarity. The key similarity ΦSkey(sr, p) is to be calculated through a
string comparison. The most basic way to compare a specification key and a
property key is to check whether both keys are identical. A value of 1 is used
as similarity value in that case. If key(sr) is contained in key(p) or vice-versa,
the similarity is the ratio of both values multiplied with a weight between zero
and one. Additionally, in the latter case, a threshold function sets the similarity
to zero if the contained string is too short. If the keys are not identical and no
key contains the other, the Levenshtein distance (normalized by the length of
the longer key) is used. Again a weight and a threshold function decide about
the overall value. Finally, if neither of both similarities is above zero, alignments



Product Comparisons through Ontology Matching 7

from previous matching tasks are examined for detecting potential transitive
mappings. The resulting matcher is therefore string-based and alignment reusing.

For the specifications of dc1 in Figure 1, the similarity of ”Picture sizes” and
the property name ”Image Sizes” from our example tbox in Figure 4 could be
detected with the Levenshtein function.

Structure Similarity. The first of four value similarity measures is the struc-
ture similarity. The structure of a product specification’s value can assume four
shapes, namely, range, vector, list and scalar. For being able to calculate the
structural similarity of a product specification sr and a property p from the on-
tology o, an extraction function E : val(sr), pat 7→ val(s′r), val(s

′
r) ⊆ val(sr) is

needed that searches for patterns of all the mentioned shapes in a given spec-
ification value and extracts each part complying with such a pattern. Then,
the length of the extracted pattern match is normalized by the complete value
length.

The final similarity measure ΦSstruct(sr, p) for the value’s structure is the
maximum of all four values multiplied with the structure’s weight. If neither a
range, nor a vector or list could be detected, the algorithm assumes to have found
a scalar value. Since scalar values are quite meaningless, the similarity is set to
zero in such cases. In Figure 1, a list could be detected when examining ”Storage
Media” or ”Picture Sizes” from dc1. This would give a hint that ”Storage Media”
is the complex version of different properties including ”Supports SD card”. This
complex property is not shown in the example tbox. A matcher implementing
this similarity measure would belong to the contraint-based class.

Type Similarity. The type similarity ΦStype(sr, p) is the second value similar-
ity measure and detects the datatype in a product specification’s value. Thus,
it is also part of a constraint-based matcher. We identified four types, namely,
boolean, float, integer and string. The calculation is similar to the structure sim-
ilarity measure. Again, by the use of an extraction function, datatype patterns
are searched in the specification value. The highest extraction value is multiplied
with the found datatype’s weight. Since a string type is not that significant, its
detection leads to a similarity of zero. Coming back to our example specifications
in Figure 1, several datatypes could be detected such as a float value in ”Number
of effective pixels*1” or some integer values in ”Picture sizes”.

Unit Similarity. The unit similarity ΦSunit(sr, p) is also based on an extraction
function that uses patterns for identifying units in given specification values.
Since some units are more specific for a potential matching property, the result
of the extraction function is multiplied with the found unit’s specificity and a
corresponding weight. A unit’s specificity depends on how many properties in o
use this property for their values. The more properties use a particular property,
the less specific the unit is for each of these properties.

Product specifications value units may vary even if they belong to the same
property (e.g., metres, centimetres, feet). Thus, a unit model has to be included
in the product information ontology (Figure 5). The relations between units of



8 Maximilian Walther et al.

the same domain allow a wider search for unit patterns. The formula’s similarity
measure is based on the best extraction result for all units related to the checked
property while derived units are multiplied with a different weight. The unit
similarity matcher belongs to the class of linguistic resources matchers.

Fig. 5. Relations between length units.

Our running example includes ”megapixels” in ”Number of effective pixels*1”
or ”MB” in ”Storage Media”. These are hints for potentially matching properties.

Keyword Similarity. The last similarity we defined for matching prod-
uct specifications with properties from an ontology is the keyword similarity
ΦSkeyword(sr, p), also belonging to the class of linguistic resources matchers. For
each keyword defined for a corresponding property p, a pattern matching func-
tion calculates a relative pattern matching value. The keyword similarity is the
sum of all keyword matches. The dc2’s attribute ”Supported Memory Cards” in
Figure 1 includes keywords such as ”SD” or ”SDHC”.

Having combined the different matchers for calculating the overall similarity
value of a defined property p and an extracted specification sr as shown above,
an alignment Sm(x, c) can be constructed taking the stable marriages problem
into account. The normalization is the final step in our process chain.

5 Evaluation

We evaluated our matching process concerning seven different product categories
from the electronics domain in a prototype called Fedseeko. First, a test set of
products was used to determine the weights and thresholds of our algorithm em-
pirically. Afterwards, 131 products equally distributed over all categories were
gathered by a product crawler randomly selecting products from the Amazon
portfolio and assembled manually to create a gold standard. Only product spec-
ifications being modeled as properties in our ontology o were taken into account.
Then, our system tried to automatically execute the necessary matching tasks.
Figure 6 shows the precision and recall values for product classification and prop-
erty matching independently. The figure reveals that with our chosen thresholds
the system did not always classify the given products (71.8%), but indeed for
those 71.8% of the product set always chose the correct product category. The
overall property matching gained quite similar values. Lower thresholds might
have improved the recall for both the classification of products as well as the
matching of extracted specifications at the expense of a worse precision.



Product Comparisons through Ontology Matching 9

Fig. 6. Evaluation of precision and recall for classification and matching.

Figure 7 displays the F-measure. Additionally, the quality of product speci-
fication normalization is displayed. The overall F-measure values account 83.6%
for the classification and matching, 92% for the normalization and 64.3% for the
overall process. This value falls out of alignment since the normalization step
dependends on a successful execution of all previous steps.

Fig. 7. Evaluation of F-measure values for the whole process.

The developed approach was mainly employed for creating specification sets
of electronic end-consumer products since for those products specifications can
generally be found online. From the chosen categories, mobile phones and USB
sticks showed the worst results. This is mainly due to the incomplete sets
P (”MobilePhones”) and P (”USBSticks”) which impair the quality of our clas-
sification process. Missing keywords and units of existing properties have a neg-
ative impact on the specification matching itself. Thus, a deliberately modeled,
fully-fledged ontology would already improve the evaluation results significantly.



10 Maximilian Walther et al.

6 Conclusions

In our paper, we presented an approach for matching and normalizing technical
product specifications. The capital contribution of our work is a collection of sim-
ilarity measures for detecting alignments. These measures are important since
they help to compensate the missing hierarchy in technical product specifica-
tions. The evaluation proved the suitability of our approach. However, automat-
ing the calculation of employed weights and thresholds would certainly improve
the flexibility of our system as well as overall results. A feasible approach would
be the adoption of semi-supervised or unsupervised learning techniques. In ad-
dition, language-based matchers using NLP and a dynamic adaptation of the
matching process could further enhance the evaluation results.

References

1. Euzenat, J., Shvaiko, P.: Ontology matching. 1 edn. Springer (2007)
2. Peukert, E., Berthold, H., Rahm, E.: Rewrite techniques for performance opti-

mization of schema matching processes. In: Proceedings of the 13th EDBT, ACM
(2010) 453–464

3. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
on Data Semantics 4 (2005) 146–171

4. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th VLDB, VLDB Endowment (2002) 610–621

5. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In:
Proceedings of the 27th VLDB, Morgan Kaufmann Publishers Inc. (2001) 49–58

6. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an imple-
mentation of semantic matching. In: Proceedings of the 1st ESWS. (2004) 61–75

7. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In:
Proceedings of the 16th ECAI, IOS Press (2004) 333–337

8. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In Bussler, C.,
Davies, J., Fensel, D., Studer, R., eds.: The Semantic Web: Research and Applica-
tions. Volume 3053 of LNCS. Springer (2004) 76–91

9. Ehrig, M., Staab, S.: Qom: Quick ontology mapping. In: Proceedings of the 3rd
ISWC, Springer (2004) 683–697

10. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proceedings of
the 18th ICDE. (2002) 117–128

11. Bozovic, N., Vassalos, V.: Two-phase schema matching in real world relational
databases. In: Proceedings of the ICDE Workshops. (2008) 290–296

12. Berlin, J., Motro, A.: Database schema matching using machine learning with
feature selection. In: Proceedings of the 14th CAiSE, Springer (2002) 452–466

13. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to
match ontologies on the semantic web. The VLDB Journal 12(4) (2003) 303–319

14. Walther, M., Hähne, L., Schuster, D., Schill, A.: Locating and extracting product
specifications from producer websites. In: Proceedings of the 12th ICEIS, INSTICC
(2010)

15. Walther, M., Schuster, D., Juchheim, T., Schill, A.: Category-based ranking of
federated product offers. In: Proceedings of the 8th WWW/Internet, IADIS Press
(2009)


