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Abstract. Finding mappings between compatible ontologies is an important but
difficult open problem. Instance-based methods for solving this problem have the
advantage of focusing on the most active parts of the ontologies and reflect con-
cept semantics as they are actually being used. However such methods have not at
present been widely investigated in ontology mapping, compared to linguistic and
structural techniques. Furthermore, previous instance-based mapping techniques
were only applicable to cases where a substantial set of instances was available
that was doubly annotated with both vocabularies. In this paper we approach the
mapping problem as a classification problem based on the similarity between in-
stances of concepts. This has the advantage that no doubly annotated instances
are required, so that the method can be applied to any two corpora annotated with
their own vocabularies. We evaluate the resulting classifiers on two real-world use
cases, one with homogeneous and one with heterogeneous instances. The results
illustrate the efficiency and generality of this method.

1 Introduction

Motivation. The problem of semantic heterogeneity and the resulting problems of in-
teroperability and information integration have been studied for over 40 years now. It is
at present an important hurdle to the realisation of the Semantic Web. Solving match-
ing problems is one step to the solution of the interoperability problem. To address it,
the Database and Semantic Web communities have invested significant efforts over the
past few years [1,2,3]. More directly, the current work was motivated by our work in
the Cultural Heritage domain, in which we address interoperability problems within the
Dutch National Library, and across collections with the Dutch Institute for Sound and
Vision.

Previous work. A common way of judging whether two concepts from different on-
tologies are semantically linked is to observe their extensional information [4,5], that
is, the instance data they classify. The idea behind such instance-based matching tech-
niques is that similarity between the extensions of two concepts reflects the semantic
similarity of these concepts. A first and straightforward way is to measure the common
extension of the concepts — the set of objects that are simultaneously classified by
both concepts [6,7]. This method has a number of important benefits. Contrarily to lex-
ical methods, it does not depend on the concept labels, which is particularly important
when the ontologies or thesauri where written in a multi-lingual setting. Moreover, as
opposed to structure-based methods, it does not depend on a rich ontology structure;
this is important in the case of thesauri, which often have a very weak, and sometimes
even almost flat structure.
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However, measuring the common extension of concepts requires the existence of suf-
ficient amounts of shared instances, something which is often not the case. Furthermore,
it only uses part of the available information, i.e., ignores similarity between instances
that have not been doubly annotated. Similarity on the instance-level is often ignored.
In this paper we apply a more general similarity-based extension comparison, deriving
concept mappings from similarity of their instances.

Method. In this paper we formulate matching problems as classification problems and
develop a machine learning technique to learn the relationship between the similarity
of instances and the validity of mappings between concepts. In many application con-
texts, information exists about the instances that are annotated. It is therefore possible
to compute a measure of similarity between the instances. The main idea of our method
is to use this similarity between instances to determine similarity (mappings) between
concepts. Unlike previous methods, our method does not rely on the presence of doubly
annotated instances.

We extend our previous work [7] in several ways: we apply a more fine-grained
measure of instance-similarity by taking the meta-data description of instances into
account. This allows us to go even further in two steps: firstly, to apply our method to
collections for which no joint instances exist, and secondly, to collections in which the
instances are described in different ways (heterogeneous collections).

Research questions. The above described method is based on a number of implicit
assumptions, and the purpose of this paper is to evaluate their influence on the quality
of the resulting mappings. The most important research questions are:

1. RQ1: Are the benefits from feature-similarity of instances in extensional map-
ping significant when compared to existing methods, such as based on simple co-
occurrence information?

More specifically:

2. RQ2 Joint instances: Can our approach be applied to corpora for which there are
no doubly annotated instances, i.e. for which there are no joint instances.

3. RQ3 Heterogeneous collections: Can our approach be applied to corpora in which
instances are described in a heterogeneous way? To answer this question we have
to answer a more technical question:

– RQ3.1 Feature selection: Can we maintain high mapping quality when fea-
tures are selected (semi)-automatically?

– RQ3.2 Training data: can we maintain high mapping quality when there is
no initial training set available in the first place?

and finally, from a domain perspective:

4. RQ4 Feature weightings: Can we make qualitative use of the learned model,
more concretely the weightings of importance of similarities?
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Experiments. To answer the above research questions we evaluate our method in the
context of two real-world cases: (1) collections of books which have been annotated
with two thesauri that are to be matched and (2) a collection of books and a “multi-
media” collection, both of which have been annotated with their own thesauri, between
which the mapping will improve the interoperability across collections.

The first application scenario stems from the Dutch National Library (Koninklijke
Bibliotheek, or KB) which requires mappings between two thesauri both used to anno-
tate two homogeneous book collections. The second scenario is related to supporting
integrated online access of parts of the collections of the Dutch institute of Sound and
Vision (Beeld en Geluid, or BG) and the KB, i.e., a mapping between two thesauri, each
used for describing a heterogeneous collection.

Findings. We show that our method is effective to map both thesauri which are used for
homogeneous and thesauri used for heterogeneous collections. It improves significantly
over the simple lexical and co-occurrence based method and over one state-of-the-art
tool. Moreover, it also works with a disjoint instance space, when no common instances
exist. We demonstrate how to use our method when initially no training data is avail-
able, i.e., when there are no pairs of concepts for which we know that they should be
mapped. This makes this methods generalisable to many other applications. A qualita-
tive analysis on the learning results shows this method can also contribute to achieve a
metadata-level interoperability.

Relevance for the Semantic Web. The paper is relevant for the Semantic Web in two
aspects: first, as an application of Semantic Web technology (of course, all data and
ontologies are represented in SW standards (RDF(S) and SKOS). Secondly, we con-
tribute to the problem of ontology mappings, as our methods can be extended to any
ontology mapping problem where information about concepts can be expressed as sets
of similarity features.

What to expect from this paper. Beside contributing a novel formulation of the mapping
problem and the definition of a mapping method, instance-similarity mapping, we
provide a thorough empirical evaluation showing that our proposed method improves
on the state of the art, even when no initial training data is available, and investigate
how it can be generalised when no joint instances are available and the collections are
heterogeneous. Finally, as a nice by-product, our method can be used for meta-data
schema mapping.

Section 2 introduces our application context and matching problem statement. Sec-
tion 3 presents the mapping method employed. In Section 4 we describe our experimen-
tal setup to validate our research questions before concluding.

2 Application Problems

Our research has been motivated by practical problems in the Cultural Heritage domain,
an interoperability problem within Dutch National Library (KB), and the problem of
unified access to two heterogeneous collections, one from the KB, one from the BG,
Dutch archive for Sound and Vision.
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2.1 Homogeneous Collections with Multiple Thesauri

Our first task is to match the GTT and Brinkman thesauri, which contain 35K and 5K
concepts respectively. The average concept depths are 0.689606 and 1.03272 respec-
tively.1 These two thesauri are individually used to annotate two book collections in
KB. Both thesauri have similar coverage but differ in granularity.

In order to improve the interoperability between these two collections, for example,
using GTT concepts to search books annotated only with Brinkman concepts, we need
to find mappings between these two thesauri. Among nearly 1M books whose subjects
are annotated by concepts from these two thesauri, 307K books are annotated with GTT
concepts only, 490K with Brinkman concepts only and 222K with both. The instances in
both collections are books annotated with the same metadata structure, more specially,
using an extension of the Dublin Core metadata standard.2

2.2 Heterogeneous Collections with Multiple Thesauri

Our second task is to match the two thesauri (Brinkman and GTT) from the KB to the
thesaurus GTAA, which contains 160K concepts and has an average concept depth of
1.30817. The GTAA thesaurus is used to annotate the multimedia collection in the BG.
The BG serves as the archive of the Dutch national broadcasting corporations, radio and
television programmes that have been broadcast come into the archive continuously.
Besides over 700,000 hours of material, the BG also houses 2,000,000 still images and
the largest music library of the Netherlands. For our experiments, we used nearly 60K
instances from this archive. Each object in the BG collection is annotated by several
concepts from the GTAA thesaurus.

Mapping GTAA to one or both of the KB thesauri is very interesting from a Cultural
Heritage perspective. For example, one could be interested to search for some broad-
casts from the BG about the author of the book he is reading in the KB. Different from
the KB case, now the instance meta-data differs significantly.

In both cases, objects (books or multimedia objects) which are annotated by a the-
saurus concept are considered as the instances of this concepts. In the next section, we
will introduce in details the instance-similarity based mapping technique.

3 Mapping Method: Classification Based on Instance Similarity

Our concept mapping method is based on the similarity between instances, and auto-
matic classification based on some training or seeding mappings. More concretely, we
apply the following steps:

1. ontology concepts are represented as feature vectors (mostly information about
instances, e.g. the content of their meta-data fields), as shown in Figure 1.

2. similarity between two concepts is represented as a vector of similarities between
these features.

1 Nearly 20K GTT concepts have no parents.
2 http://dublincore.org/documents/dces/

http://dublincore.org/documents/dces/
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3. a classifier learns the relation between instance similarity and concept mappings
based on some training data. This classifier then estimates the probability whether
an unseen pair of concepts should be mapped or not.

The trained classifier can then be used to determine whether new pairs of concepts
should be mapped or not. Let us discuss each of the steps in a bit more detail.

3.1 Representing Concepts as Feature Vectors

It is common to most ontology mapping approaches that properties of concepts are
collected, and compared in order to calculate a similarity score between pairs of con-
cepts. In our use-cases, the most prominent knowledge about our concepts are from the
books and multimedia objects annotated with the concepts. In [7] we showed already
that the information about co-occurrence of instances can provide good mappings. In
this paper, we extend this approach by including further information into the mappings
process, in our case the metadata about the book and multimedia objects. This has the
advantage that we can ignore whether the books are dually annotated, because similarity
between the meta-data of the instances also reflects the relatedness of their annotation
concepts.

We take the KB case as an example. As Figure 1 shows, books are normally de-
scribed by their title, creator, publisher, etc. These features together represent an indi-
vidual book instance. For each concept, all its instances are grouped into an integrated
representation of the concept, feature by feature. For example, all titles of these books
are put together as a “bag of words.” Term frequencies are measured within these bags.
Thus, a concept is represented by a set of high-dimensional vectors of term frequencies,
one per feature of the instances, which we consider as the features of the concept. When
the instances share the same features, the similarity between the corresponding concepts
is calculated with respect to each feature, using the cosine similarity between the term
frequency vectors of corresponding features. This is the “homogeneous collection” case
that we mentioned in our introduction.

Notice that, although in our case the whole corpus is in Dutch, these similarity fea-
tures can be chosen to be language-independent, e.g. ISBN numbers, proper names of
creators or actors, publishers, dates, etc. This method is therefore usable in a multi-
language context.

When no straightforward relationship exists between the metadata of instances, as
is the case with heterogeneous collections, we compute the similarity between all pairs
of the metadata fields and evaluate which of those are informative; see Section 4.2 for
more details. In the end we obtain set of similarity measures, encoded in one vector
per pair of concepts, which reflects the similarity of their instances. The classifier deals
with this vector only, and sees it as the feature vector of the pair of concepts.

In fact, the feature vector needs not be limited to the instance similarity used here.
It is trivial to extend it with the lexical similarity between the concept labels or with
structure-based measures of similarity. The classifier would then learn to weigh those
appropriately, creating a powerful, integrated solution. However, these measures are not
always available, e.g. in a multilingual setting or when dealing with ontologies of little
structure. We do not include such features in this paper and focus on instance-based
features only.
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Fig. 1. Feature extraction for a single concept pair. Term frequencies are calculated from the com-
bined features of the instances of the concepts. The cosine distances of these frequency vectors
are used as the features of the pair. See text for details.

3.2 Representing Similarity of Concepts

The similarity between a pair i of concepts is measured and represented by a vector
x(i), where each element j of x(i), denoted x(i)

j , represents the similarity between the
features j of the concepts. These similarity vectors can be treated as points in a space.
In this “similarity space” of concept pairs, each dimension corresponds to the similarity
between features of the concepts. As we know, some points (i.e., some pairs of concepts)
correspond to real mappings but some are not. Our hypothesis is that the label of a
point — which represents whether the pair is a positive mapping or negative one — is
correlated with the position of this point in this space.

Given some known mappings, e.g. from a manual selection by experts, our goal is to
learn this correlation. Therefore the mapping problem is transformed into a classifica-
tion problem. With already labelled points and the actual similarity values of concepts
involved, it is possible to classify a point, i.e., to give it a right label, based on its loca-
tion given by the actual similarity values.
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N

y(i)x(i)

Fig. 2. Graphical representation of the MRF used in this work. The shaded, circular node denotes
a hidden, discrete variable and the clear square node denotes the observed, multidimensional
variables. This model is repeated N times, once for each data element.

3.3 The Classifier Used: Markov Random Field

We use a Markov Random Field (MRF, [8]) to model the classification-based mapping
problem. Let T = { (x(i), y(i)) }N

i=1 be the training set containing N mappings, with,
for each given pair of concepts i, a feature vector x(i) ∈ R

K and an associated label
y(i) ∈ Y , where K is the number of features of a pair of instances and Y is the set of
possible values the label can take. Here, the label y(i) is either positive or negative, al-
though this can be extended to a set of possible mapping relations, such as exactMatch,
broadMatch, narrowMatch, relatedMatch or noLink.

We consider a simple graphical model, consisting of an observed multivariate input
x and a single random variable y (see Figure 2). The input is a vector of the similarity
features, the random variable represents the possible values of the label and associated
probabilities. We assume the mappings are conditionally independent and identically
distributed (i.i.d.), conditionally on the observations, and model the conditional proba-
bility of a mapping given the input, p(y(i)|x(i)), using a probability distribution from
the exponential family. That is:

p(y(i)|xi, θ) =
1

Z(xi, θ)
exp

( K∑

j=1

λjφj(y(i),x(i))
)
, (1)

where θ = { λj }K
j=1 are the weights associated to the potential function and Z(xi, θ),

called the partition function, is a normalisation constant ensuring that the probabilities
of the mutually exclusive labels sum to 1. It is given by

Z(xi, θ) =
∑

y∈Y
exp

( K∑

j=1

λjφj(y(i),x(i))
)
. (2)

The resulting model can be seen as a Conditional Random Field (CRF, [9]) of length
zero. Since we assume that the mappings of different concept pairs are independent of
each other, the likelihood of the data set for given model parameters p(T |θ) is given by:

p(T |θ) =
N∏

i=1

p(y(i)|x(i)) (3)

During learning, our objective is to find the most likely values for θ for the given
training data. We can obtain this using Bayes’ rule if we assume some prior probability
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distribution p(θ) on the parameters. We here chose a prior which favours small values,
that we model with a normal distribution with zero mean and covariance σ2 for each
λi, as this penalises overly flexible models and this reduces over-fitting. The posterior
probability of θ is then given by

p(θ|T ) =
p(T |θ)p(θ)

p(T )
, (4)

where p(T ) is a normalisation term which does not depend on θ and can therefore be ig-
nored during optimisation. Moreover, since the logarithm is a monotonically increasing
function, we can optimise log p(θ|T ) rather than p(θ|T ). This is simpler, as it involves
taking the derivative of a sum rather than of a product over all data points. Ignoring
additive constants, which do not affect the derivative, the function we optimise is then:

log p(θ|T ) =
N∑

i=1

⎡

⎣
K∑

j=1

λjφj(y(i),x(i)) − log Z(x(i))

⎤

⎦ −
K∑

j=1

λ2
j

2σ2 . (5)

This function cannot be optimised in closed form because of the logarithm of a sum in
the partition function. However it is a convex function which can easily be optimised
numerically using any variation of gradient ascent, although (quasi-)Newton methods
have proven best suited [10]. We used the limited memory BFGS method to obtain the
results presented here [11]. The first derivative of eq. 5 is given by

∂p(θ|T )
∂λj

=
N∑

i=1

[

φj(y(i),x(i)) −
∑

L∈{0,1}
φj(y(i),x(i))p(y(i)|x(i), θ)

]

− λj

σ2 (6)

The variance of the prior, σ, is a parameter that has to be set by hand and can be seen
as a regularisation parameter which prevents over-fitting of the training data.

Once the model is trained, we use the resulting parameters to compute the probability
of a label for a pair of concepts. The decision criterion for assigning a label y(i) to a
new pair of concepts i is then simply given by:

y(i) = argmax
y

p(y|x(i)) (7)

That is, for a given pair of concepts, the label with the highest probability given the
pair’s feature vector is assigned. Note that in settings where a higher cost is associated
with one type of error than the other, another threshold could be set. For example, if the
system were used to propose candidates for mapping, missed mappings would be worse
than erroneously proposed candidate pairs. In such a case, we could set the system to
propose the pair if, say, p(y = positive|x(i)) > 0.3.

4 Description of the Experiments

The goal of our experiments is to show the effectiveness of our approach in general,
and to evaluate the influence of three factors: the existence of joint instances, the use
of heterogeneous rather than homogeneous collections for mapping, and how to build a
representative training data set when no hand-made initial training set is available.
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Table 1. Numbers of positive examples in the training sets

Thesauri lexical equivalent mapping non-lexical mapping
GTAA vs. GTT 2720 116

GTAA vs. Brinkman 1372 323

Experimental setup. All of our experiments are set up in the same way. We map two
thesauri which are used to annotate instances either from the homogeneous, or from
heterogeneous collections.

Training data. Ideally, the training set should be representative enough to model the
relation between instance similarity and concept mappings. For the first KB case, we
used the manually-built golden standard from [7] as the training set. This set contains
a balanced number of positive and negative examples; where all positive mappings are
non-lexically but semantically equivalent pairs. For the second BG case, no such hand-
crafted golden standard is available. Of course, we can build a training set manually, as
we did in the GTT and Brinkman case. But this is a very time consuming task, especially
when two thesauri to be mapped are very big. To overcome this problem we used two
ways to construct a training set automatically.

– (lexical seeding) One assumption we take is that concepts with the same label form
a valid mapping. Therefore, we applied a simple lexical mapper3 to select the pos-
itive examples. The same number of pairs of concepts are selected at random as
negative data from the set of pairs that were not lexically matched. Some true map-
pings may therefore conceivably be present among the negative training examples,
but the probability of this occurring is negligible. A more serious problem, however,
is the strong bias towards lexical similarity of this data set.

– (background seeding) A way to find non-lexically equivalent concepts which are
semantically equivalent is to use “background knowledge” [12]. More concretely,
for mapping Brinkman concepts to those of GTAA, we use GTT as a background
knowledge. In our previous work, many Brinkman concepts are mapped to GTT
concepts using the co-occurrence based techniques [7]; some of these mappings are
non-lexical ones. For each Brinkman with no lexical mapping to any GTAA concept
but which is mapped to a GTT concept, we check whether the corresponding GTT
concept is lexically mapped to a GTAA concept. If there is such a link, then the
Brinkman and the GTAA concept are considered as a mapping.

Table 1 lists the size of the training sets built by the above two ways.

Evaluation. Weapply twodifferent typesofevaluation:standard10-foldcross-validation,
and testing on a specific test set. The former is applied whenever possible as it provides us
with an estimate of the reliability of the results. However, as we will see, when evaluating

3 This Dutch language-specific lexical mapper makes use of the CELEX (http://
www.ru.nl/celex/) morphology database, which allows to recognise lexicographic vari-
ants of a word-form, as well as its morphological components.

http://
www.ru.nl/celex/
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how the selection of the training data affects the results, we need to keep the training sets
separate and cross validation is not possible.

The quality of our methods is measured quantitatively using the misclassification
rate or error rate, i.e., the number of wrongly classified pairs over the total number of
pairs. This is an appropriate measure when the training and test data sets have balanced
numbers of positive and negative examples. At the end of Section 4.3, we will briefly
discuss the case of more skewed distributions of positive and negative examples.

From a more qualitative point of view, we also analyse the respective importance of
the different features, based on the explicit (learned) weights of these features.

4.1 Experiment I: RQ1: Feature-Similarity Based Mapping Versus Existing
Methods

The purpose of the following experiment is to compare our new method with existing
methods. The task is to map GTT and Brinkman concepts given books from the two KB
collections. We compare our approach with the co-occurrence based method detailed
in [7], a simple lexical approach, and the state-of-the-art Falcon ontology mapper.4 An
existing golden standard that was built manually by experts, including 747 positive and
negative examples, is used for the evaluation.

We compare the following methods:

Falcon: we apply the Falcon mapper to map GTT and Brinkman. We then calculate the
error rate by considering all mappings returned by Falcon as classified positive and
all the rest pairs as classified negative.

Sjacc, the Jaccard similarity between concepts is measured based on 222K dually an-
notated books. It is defined as the number of books that have been annotated by
both concepts over the total number of books that have been annotated by those
concepts. As described in [7] we apply a simple adaption to exclude concepts with
too few instances.

Slex, the relative edit distance between the labels (including “prefLabel” and “altLa-
bel”) of the two concepts is measured and the minimum distance is kept as the
lexical similarity of these two concepts.

Sbag , where all information was put into a single bag, and similarity is calculated based
on one bag of words.

{f1, . . . , f28} is an instance of our mapping method, where the similarity between each
field of the instances was computed separately as depicted in Figure 1.

We train four classifiers on Sjacc, Slex, Sbag and {f1, . . . , f28}, respectively, and esti-
mate the error-rate using 10-fold cross-validation. When trained on a single feature (e.g.,
Sjacc, Slex and Sbag), the classifier simply learns a threshold that separates mapped
from non-mapped concepts.

The results are summarised in Table 2: The classifiers based solely on lexical or
Jaccard similarity perform slightly better than chance level. Just calculating similarity
between the complete information of all instances in Sbag is even worse. It is obvious

4 http://iws.seu.edu.cn/projects/matching/

http://iws.seu.edu.cn/projects/matching/
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Table 2. Comparison between existing methods and similarities-based mapping, in KB case

Mapping method Error rate
Falcon 0.28895
Slex 0.42620 ± 0.049685

Sjacc80 0.44643 ± 0.059524
Sbag 0.57380 ± 0.049685

{f1, . . . f28} (our new approach) 0.20491 ± 0.026158

Table 3. Comparison between classifiers using joint and disjoint instances, in KB case

Collections Testing set Error rate
Joint instances golden standard (representative) 0.20491 ± 0.026158

(original KB corpus) lexical only 0.137871
No joint instances golden standard (representative) 0.28378 ± 0.026265

(double instances removed) lexical only 0.161867

that based on this information alone, the classification does not work. Falcon outper-
forms all three of these methods.

Using the similarity of different fields separately reduces the error rate to a more
acceptable level of around 20%, and significantly outperforms all other methods.

4.2 Experiment II: RQ2: Extending to Corpora without Joint Instances

As mentioned in Section 2, there is an overlap between the two collections in KB, so
that there are books which are dually annotated, by both GTT and Brinkman concepts.
This allows us to apply methods based on co-occurrence to find mappings [7]. However,
it is not always the case that two thesauri have joint instances. In this section we evaluate
whether our approach can be applied to the case where there are no joint instances, i.e.,
where there are no doubly annotated instances.

To determine the influence of joint instances on our mapping approach we trained
two classifiers: one on the complete KB corpus, and one on the same corpus minus
the joint instances, i.e. keeping books which are annotated by either GTT or Brinkman
concepts, but not by both. For this purpose, we used the same golden standard used
above, containing 747 concept pairs for all of which joint instances exist.

We applied two evaluation methods: first, 10-fold cross-validation on the golden
standard, and second, testing on a set of purely lexically equivalent concepts. We did
this to check whether instance-similarity-based methods could recover the mappings
found by lexical techniques.

The results in Table 3 show that inferring the mapping from disjoint instances results
in a higher error rate. This is not surprising, as instance co-occurrence information is
implicitly distributed among the features, and the existence of joint instances is indeed
a more direct indicator of the similarity between concepts. Yet even without joint in-
stances, the classifier performs reasonably well, surely good enough for many applica-
tions. This indicates that our method can be extended to situations where joint instances
are not available.
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On lexically equivalent pairs of concepts the error rate is actually significantly lower
than the average error rate tested on the golden standard. This means that by using
instances alone, the classifier trained on semantically equivalent concepts works well
enough on classifying lexically equivalent mappings. Finding mappings between lexi-
cally equivalent concepts tends to be easier than between concepts which do not have
lexically equivalent labels: some instance features, such as title or subject, tend to con-
tain words that are closely related to the concept labels. As we will see below, classi-
fiers trained on concept pairs that are lexically matched therefore tend to perform worse
when tested on pairs that should be mappings but have no lexically equivalent labels,
than the other way around.

4.3 Experiment III: RQ3: Extending to Heterogeneous Collections

The instances used in the previous experiments are books from two collections of KB.
These books are described using the same metadata structure, which allows a straight-
forward measure of similarity. Such a shared structure is however not available when
finding mappings between thesauri which are used for different collections with het-
erogeneous metadata structures. In this section, we evaluate the effect of applying our
method to corpora for which instances are described in a heterogeneous way.

In order to work with heterogeneous collections we need to select features to model
the similarity space.

RQ3.1: Feature selection. The method to construct the pair features outlined in Fig-
ure 1 requires corresponding metadata fields. In heterogeneous collections these are
most likely not really available. We have some choices to construct a vector of pair
features. We will first discuss our options before evaluation the effect on the mapping
quality.

1. (exhaustive combination) As instances in different collections have different meta-
data structures, a naı̈ve approach is to ignore the meaning of the fields and to calcu-
late the similarity between all possible pairs of fields exhaustively. In our case, this
similarity vector then has 28 × 38 (1064) dimensions. Theoretically, as the dimen-
sionality of the data grows, an exponentially large number of training examples is
required, which is unrealistic in practice. However, the similarity vector in practice
can be very sparse — as in our case, fields such as “date” and “creator” do not have
any similarity — so that over-fitting might not be too serious.

In order to avoid the potential over-fitting problem, we need to reduce the dimen-
sionality of the data. We have two options:

2. (manual selection) To manually select corresponding metadata fields and calculate
the similarity between the selected fields. In our case, among 28 fields in KB col-
lection and 38 fields in the BG collection, we found eight shared fields which were
therefore chosen for the similarity measuring.

3. (mutual information) To select the most informative fields automatically. We com-
puted the mutual information between the label (positive or negative) and each of
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Table 4. Comparison of the performance with different methods of feature selection, using non-
lexical dataset

Thesaurus Feature selection Error rate
manual selection 0.11290 ± 0.025217

GTAA vs. mutual information 0.09355 ± 0.044204
Brinkman exhaustive 0.10323 ± 0.031533

Thesaurus Error rate
0.10000 ± 0.050413

GTAA vs. GTT 0.07826 ± 0.044904
0.11304 ± 0.046738

the exhaustively computed similarities. This indicates how informative the simi-
larity between each combination of instance features is to predict the label. We
then select a number of the most informative field combinations: In our case, we
arbitrarily selected the 30 most informative fields.

We now investigate how this choice influences the performance of classifiers. We
map GTAA to GTT/Brinkman and test the performance using three selections of simi-
larity features. Results are given in Table 4. We see that, due to the nature of our data,
the differences in error rate are not statistically significant here. However, the exhaus-
tive enumeration of all feature pairs results in a very high-dimensional feature space.
The corresponding classifier therefore much more prone to over-fitting than the other
feature selections, not to mention the computational overhead in time and space. Yet,
it should also be noted that training with the exhaustive features still only takes around
8 minutes for a set of 4896 examples, on a 2.3GHz Core II processor, as compared to
around 15 seconds for the features selected by mutual information. Classification of
new pairs is essentially instantaneous.

Automatic selection of features according to mutual information gives the best re-
sults, thus answering our third research question: automatic feature selection does result
in good mappings. This is also of practical value, as the lower dimensionality of the re-
sulting data leads to reduced computational costs.

RQ3.2: Training set. We mentioned above that the construction of a training set by
hand is expensive and often impractical, and that we devised two automatic seeding
methods: lexical and background seeding. Background seeding can provide us with
semantically valid mappings, but the background knowledge is often hard to obtain.
Lexical seeding has the advantage that it is easily applied and that the training-sets can
easily be quite large, compared to manually created sets. However, we will have to
evaluate how this biases the training set and thus the classifier.

In the following experiment, we train two classifiers based on two training sets which
were automatically generated by these two methods. Table 5 compares the results, using
automatically selected features.

As we mentioned in Section 4.2, when tested on lexical mappings, both classifiers,
whether trained on lexical mappings or on non-lexical mappings perform well. How-
ever when tested on non-lexical mappings, the classifier trained on lexical mappings
performs much worse than the one trained on non-lexical mappings. This indicates
that when trained on lexical mappings only, the resulting classifier is biased towards
pairs of concepts with lexically similar labels and exhibits a degraded performance on
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Table 5. Comparison using different datasets (feature selected using mutual information)

Thesauri Training set Test set Error rate
non-lexical non-lexical 0.09355 ± 0.044204

GTAA vs. lexical non-lexical 0.11501
Brinkman non-lexical lexical 0.07124

lexical lexical 0.04871 ± 0.029911

Thesauri Error rate
0.07826 ± 0.044904

GTAA vs. 0.098712
GTT 0.088603

0.06195 ± 0.008038
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Fig. 3. The influence of positive-negative ratios in Brinkman-GTAA mapping

non-lexical mappings. This is an interesting finding, as it suggest that the use of a non-
lexical training set is more generic.

We further investigated the influence of the ratio of positive-negative examples during
training and testing. We trained on different datasets with the positive-negative ratio vary-
ing from 1:1 to 1:1000 and tested on two datasets with 1:1 and 1:1000 positive-negative
examples. When training and testing on the data with the same or similar positive-negative
ratio, our method performs well, see the left of Fig. 3 (a) and the right of (b). Note, when
training on very few positive examples but many negative examples, the error rate could
stay very low due to the correct classification of negative examples while the the pre-
cision for positive mappings could be low, as the classifier is focused on classifying
negative examples and the predictive power on positive examples is therefore not opti-
mised. In practice, the training data should be chosen so as to contain a representative
ratio of positive and negative examples, while still providing enough material for the
classifier to have good predictive capacity on both types of examples.

4.4 Experiment IV: RQ4: Qualitative Use of Feature Weights

The final set of experiments is a qualitative analysis of the explicit knowledge extracted
from the classifiers: the weighting of the features. The training process results in a set
of weightings for the features used, i.e., θ = { λj }K

j=1, as introduced in Section 3.
The value of λj reflects the importance of the feature fj in the process of determining
similarity (mappings) between concepts.

When mapping between the GTT and Brinkman thesauri with disjoint instances from
the two KB collection, we indeed found fields with descriptive information, such as
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Table 6. Examples of informative pairs of metadata fields from the exhaustive feature list

KB fields BG fields
kb:title bg:subject
kb:abstract bg:subject
kb:annotation bg:LOCATIES
kb:annotation bg:SUBSIDIE
kb:creator bg:contributor
kb:creator bg:PERSOONSNAMEN
kb:Date bg:OPNAMEDATUM
kb:dateCopyrighted bg:date
kb:description bg:subject
kb:publisher bg:NAMEN
kb:temporal bg:date

kb:abstract, kb:subject, kb:title, are informative for the classification process. We also
find some language-independent fields, such as kb:ISBN and kb:contributor, are simi-
larly important. This indicates this method can be applied in a multi-lingual setting, as
long as the features are chosen so as to be language-independent.

When mapping from GTT and Brinkman to GTAA in the heterogeneous BG case,
the features are similarities calculated from the exhaustive combination of all metadata
fields. By observing the features with large λ values, we can find interesting links be-
tween those fields. Basically, we expect a feature in the exhaustive set (which is the
Cartesian product between the two instance-feature sets) that corresponds to a high
value of λ to indicate that the meta-data fields are related.

As introduced above, eight pairs of fields, such as kb:subject–bg:subject, kb:
issued–bg:date, etc., were manually selected. Among the top 30 features with the
highest mutual information, about half of these manually selected pairs were present.
Investigating the λ values of the features, from the classifier trained on the exhaus-
tive feature set, shows that other pairs of fields, listed in Table 6, are also informative.
That is, the similarity between these fields is important to determine the similarity be-
tween concepts. This in itself provides useful information for mapping metadata fields,
and can also help to achieve interoperability at the meta-data level across different
collections.5

5 Conclusion

In this paper, we have proposed a machine learning method to automatically use the
similarity between instances to determine mappings between concepts from different
thesauri/ontologies. This method has the advantage that it does not rely on concept
labels or ontology structure. It can therefore be used when other methods fail, e.g. in
multi-lingual settings or when the ontologies have very little structure.

5 Similar (and sometimes complementary) results can be obtained using the mutual information
as done for feature selection, however this is out of the scope of this paper.
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A major improvement of this method, compared to previous instance-based methods,
is that it does not require dually annotated instances, i.e., common instances. Instead it
uses a more fine-grained similarity at the instance level and uses a classifier to learn the
relationship between instance similarity and concept mappings. We have shown that us-
ing feature-similarity of instances provides significant improvements when compared
to existing methods, such as methods based on the co-occurrence of instances, or on the
lexical similarity of concept labels. Moreover, we have demonstrated that our method
can be applied when instances are heterogeneous. In our experiments, we have ob-
tained good results when mapping thesauri annotating book and multimedia collections
for which the instances are strongly dissimilar and only heterogeneous metadata was
available. Finally, the method also works when no initial hand-crafted training map-
pings are available, as we have shown that using training sets of lexical mappings, or
mappings generated using some background knowledge, can still provide high quality
results.

A qualitative analysis on the resulting parameters λ allowed us (1) in the homo-
geneous case, to observe which metadata fields play important roles for mapping de-
cisions; (2), more interestingly, in heterogeneous case, to find some links between
metadata fields from different collections. Though a by-product rather than the core
of our research, we consider this to be a nice contribution to the field of meta-data
mapping.

In the future, we intend to apply our method to other collections, e.g. multilingual
collections and to investigate integration with other techniques, e.g. based on lexical
similarity or structure-based methods.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
J. 10(4) (2001)

2. Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief
survey. AI Magazine 26(1) (2005)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
4. Li, W.S., Clifton, C., Liu, S.Y.: Database integration using neural networks: Implementation

and experiences. Knowledge and Information Systems 2, 73–96 (2000)
5. Doan, A.H., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies

on the semantic web. In: Proceedings of the 11th international conference on World Wide
Web, pp. 662–673 (2002)

6. Ichise, R., Takeda, H., Honiden, S.: Integrating multiple internet directories by instance-
based learning. In: Proceedings of the eighteenth International Joint Conference on Artificial
Intelligence (2003)

7. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based on-
tology matching. In: Proceedings of the 6th International Semantic Web Conference, Busan,
Korea (2007)

8. Kindermann, R., Snell, J.L.: Markov Random Fields and their applications. American Math-
ematical Society (1980)

9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learn-
ing, pp. 282–289 (2001)



Learning Concept Mappings from Instance Similarity 355

10. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology, Edmonton, Canada, vol. 1, pp. 134–141. Associ-
ation for Computational Linguistics (2003)

11. Nocedal, J.: Updating quasi-newton matrices with limited storage. Mathematics of Compu-
tation 35, 773–782 (1980)

12. Aleksovski, Z., ten Kate, W., van Harmelen, F.: Ontology matching using comprehensive on-
tology as background knowledge. In: Shvaiko, P., et al. (eds.) Proceedings of the International
Workshop on Ontology Matching at ISWC 2006, CEUR, pp. 13–24 (2006)


	Learning Concept Mappings from Instance Similarity
	Introduction
	Application Problems
	Homogeneous Collections with Multiple Thesauri
	Heterogeneous Collections with Multiple Thesauri

	Mapping Method: Classification Based on Instance Similarity
	Representing Concepts as Feature Vectors
	Representing Similarity of Concepts
	The Classifier Used: Markov Random Field

	Description of the Experiments
	Experiment I: RQ1: Feature-Similarity Based Mapping Versus Existing Methods
	Experiment II: RQ2: Extending to Corpora without Joint Instances 
	Experiment III: RQ3: Extending to Heterogeneous Collections
	Experiment IV: RQ4: Qualitative Use of Feature Weights

	Conclusion
	References


