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Abstract. Most existing ontology matching methods are based on the
linguistic information. However, some ontologies have not sufficient or
regular linguistic information such as natural words and comments, so
the linguistic-based methods can not work. Structure-based methods are
more practical for this situation. Similarity propagation is a feasible
idea to realize the structure-based matching. But traditional propagation
does not take into consideration the ontology features and will be faced
with effectiveness and performance problems. This paper analyzes the
classical similarity propagation algorithm Similarity Flood and proposes
a new structure-based ontology matching method. This method has two
features: (1) It has more strict but reasonable propagation conditions
which make matching process become more efficient and alignments
become better. (2) A series of propagation strategies are used to
improve the matching quality. Our method has been implemented in
ontology matching system Lily. Experimental results demonstrate that
this method performs well on the OAEI benchmark dataset.

1 Introduction

Currently more and more ontologies are used distributedly and built by different
communities. Many ontologies describe similar domains but use different
terminologies. Such ontologies are referred to as heterogeneous ontologies. It
is the major obstacle to realize semantic interoperation. Ontology matching,
which captures relations between ontologies, aims to provide a common layer
from which heterogeneous ontologies could exchange information in semantically
sound manners.

Some ontology matching methods have been proposed in recent years. In these
methods, calculating linguistic similarity is the most popular way to discover
alignments. However, not all ontologies provide sufficient and regular linguistic
information. For example, the adult mouse anatomy ontology1 uses codes
like MA 0000436 to name the concepts. Some ontologies have few comments
1 http://webrum.uni-mannheim.de/math/lski/anatomy09/mouse anatomy 2008.owl
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and labels to help the readers to understand their elements, and the 248-266
ontologies in the OAEI benchmark dataset are such extreme cases. For this
situation, linguistic-based methods would miss a lot of alignments. Therefore, a
practical matching system should consider the structure similarity to compensate
for the disadvantages of linguistic-based methods.

The structure-based ontology matching is different from the geometrical
graph matching because the latter can not reflect the semantic matching.
So the traditional graph matching algorithms [1] are not suitable here. For
ontology matching, the structure-based methods usually employ the similarity
propagation idea “similar objects are related to similar objects”. Several
similarity propagation matching algorithms have been used for database or
XML schema matching [2,3]. However, in our practice, we find these traditional
similarity propagation matching algorithms can not be used for ontology
matching directly. For example, we implement Blondel’s graph matching
algorithm [4] for ontology matching and can not obtain good results, but a
modified method [5] performs well on the OAEI benchmark.

This paper analyzes the classical similarity propagation matching algorithm
Similarity Flood [2], then proposes an effective similarity propagation method
according to the ontology features. The new method can avoid some
disadvantages of the previous one has, and can solve the ontology structure
matching problem efficiently. The original contributions of this paper include: (1)
We propose an effective similarity propagation method for matching ontologies,
especially for the ontologies without sufficient and regular linguistic information;
(2) The new method has more strict but reasonable propagation condition which
makes matching process become more efficient and alignments become better; (3)
A series of similarity propagation strategies are used in the method to improve
the matching quality; (4) We implement the new method and the experimental
results show the method is effective for ontology matching.

The remainder of this paper is organized as follows: Section 2 discusses the
structure similarity problem in ontology matching. Section 3 presents the new
similarity propagation method. Section 4 describes the propagation strategies.
Some experimental results and discussions are presented in Section 5. Section 6
is a brief overview of related work and section 7 is the conclusion.

2 Structure Similarity Problem in Ontology Matching

Usually, an ontology contains concepts, relations, instances and axioms. The
ontology matching can be defined as follows:

Definition 1 (Ontology Matching). The matching between two ontologies
O1 and O2 is a set of quadruples: M = {mk|mk =<sei, tej , r, s>}, where mk

denotes an alignment, sei and tej represent the expressions which are composed
of elements from O1 and O2 respectively; r is the semantic relation between sei

and tej, and r could be equivalence(=), generic/specific(�/�), disjoint(⊥) and
overlap (�), etc.; s is the confidence about an alignment and typically in the
[0, 1] range.
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Fig. 1. An ontology matching example

This paper focuses on the matching about concept − concept and relation −
relation with equivalence semantic relation.

Usually if we have enough and regular linguistic information about the
elements, the alignments can be discovered easily. But the real world ontologies
can not always provide sufficient and regular linguistic information. For example,
Fig.1 is a matching snapshot in OAEI benchmark. ontology A has necessary
comments for the concepts. The labels and comments in Ontology A are the
regular natural words. But in ontology B some concepts have meaningless label
and there is no any comments to explain these concepts. In our view, two reasons
may cause this phenomenon. Firstly, some ontology engineers do not provide
sufficient annotation for each element. Secondly, the ontology engineers would
use some particular labels to name the elements. For instance, concept “Address”
may be nameds as “Add” , “Adr” or “Dizhi” (in Chinese spelling). Therefore, it
is necessary to find a way to discover the alignments for the ontologies without
sufficient and regular linguistic information.

When the ontologies lack of linguistic information, matching methods usually
utilize ontology structure information to find alignments. Although an ontology
can be described as a graph, ontology matching is not equal to a graph matching
problem. In graph matching, two elements are matched means they are similar
in geometrical view other than they have semantic relation. Moreover, graph
matching is a N–P problem [1], so it can not process ontology matching efficiently.
For example, when we try to use the graph matching API provided by SOQA−
SimPack [6] to match ontology graphs, we find it needs more than several
days or even several weeks for a normal matching task. Most importantly, only
the graph topology can not represent the semantic information in ontology, so
the geometrical graph similarity can not imply the corresponding elements are
semantically similar. Therefore, it is not suitable to treat ontology matching as
a simple graph matching problem.
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Currently most structure-based ontology matching methods are inspired by
the simple idea: “similar objects are related to similar objects”. This idea
also derives some heuristic rules, such as “concepts may be similar when their
super/sub concepts are similar” and “concepts may be similar when they have
similar instances”. These rules have been used by some matching system [7, 8].
But when the ontologies have little regular linguistic information, the heuristic
rules usually can not work. It is because that the similarity between elements’
neighbors can not be determined by linguistic information, the similarity between
elements can not be determined too.

A feasible way is similarity propagation, namely, current similarity can
propagate to neighbors in the graph to get more similarity results. After each
propagation, the similarity results are normalized. The propagation process is
terminated until the similarity results is convergent. Based on such similarity
propagation idea, researchers have proposed some similarity propagation models
[2, 3, 4, 5, 9]. Among these models, similarity flood is the most influential one.
This paper will modify the similarity flood to solve the matching problem for
the ontologies without sufficient or regular linguistic information.

The similarity flood includes three steps: (1) constructing pairwise
connectivity graph; (2) constructing induced propagation graph; (3) computing
fixpoint values for matching. Similarity flood is a versatile matching algorithm
and can be implemented easily, but it is not sensitive for the initial similarity.
Similarity flood algorithm has been used for schema matching in database and
XML data. However, similarity flood is not a perfect algorithm. Melnik and his
colleagues summarize six disadvantages [2], such as the neighbors have similarity
is the necessary precondition of this algorithm. After we try to use similarity
flood to match ontologies directly, we also find the algorithm can not work
smoothly for ontology matching. First, similarity flood does not consider the
similarity between edges, so the edge matching between ontologies can not be
determined. Secondly, the maximum pairwise connectivity graph is NA∗NB (NA

and NB are the numbers of edges in two ontologies), and it will greatly increase
the time complexity for fixpoint computing and space complexity for storing the
pairwise connectivity graphs. In real world matching tasks, the ontology graph
may be thousands scale, so the corresponding pairwise connectivity graphs would
become very large. For the above reasons, the similarity flood algorithm can not
be used directly for ontology matching.

3 Similarity Propagation Method with Strong Constraint
Condition

Ontology graph consists of the triples like <si, pi, oi>. The propagation condition
is the core for a similarity propagation method. In ontology graph matching, a
reasonable similarity propagation should consider both vertexes (si and oi) and
edges (pi) in the triples. As far as similarity flood, the propagation condition
presumes that all edge pairs (px, py) have 1.0 similarity value, and the similarity
of one vertex pair (sx, sy) will be propagated to another vertex pair (ox, oy). This
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propagation condition obviously has the disadvantages: (1) It would produce
a large number of alignment candidates and generate a large scale pairwise
connectivity graph; (2) The propagation condition would produce many incorrect
alignment candidates.

To provide a new similarity propagation method for dealing with ontology
matching, this paper proposes a new propagation condition for ontology triples
as definition 2, namely, the strong constraint condition for similarity propagation.

Definition 2 (Strong Constraint Condition for Similarity Propagation
in Triples). Given two triples ti =<si, pi, oi > and tj =<sj, pj , oj >, and let
Ss,Sp and So denote the corresponding similarities of (si, sj), (pi, pj) and (oi, oj)
for the two triples. The similarity can be propagated iff ti and tj satisfy the
following three conditions:

(1) In Ss, Sp and So, at least two similarities must be large than threshold θ;
(2) If ti includes ontology language primitives, the corresponding positions of

tj must be the same primitives;
(3) ti or tj has at most one ontology language primitive.

Condition (1) ensures the final similarity result is creditable after propagating.
We set θ = 0.005 in the implementation. The ontology language primitives
refer to RDF vocabularies and OWL vocabularies. Condition (2) ensures
two triples use same ontology language primitive to describe the facts. For
example, <Conference Paper, rdfs :subClassOf, Paper> and <Paper, rdfs :
subClassOf, Document> use the RDF primitive rdfs:subClassOf as predicate,
so the similarity can be propagated between them. Condition (3) ensures there
is no definition and declaration triples during propagating, because such triples
may cause incorrect matching results. For example, two triples <PhDStu, rdf :
type, rdfs : Class > and < Paper, rdf : type, rdfs : Class > will cause wrong
alignment: PhDStu=Paper.

After once propagation, the similarity of one element pair will be increased
by the amount of other two pairs. Taking the similarity Ss as an example after
ith propagation, its new similarity is:

Si
s = Si−1

s + wpo × Si−1
p × Si−1

o (1)

Analogously, the Si
p and Si

o are:

Si
p = Si−1

p + wso × Si−1
s × Si−1

o (2)

Si
o = Si−1

o + wsp × Si−1
s × Si−1

p (3)

The wpo, wso and wsp are propagation factors, and we will discuss them later.
All similarities will be normalized after each similarity propagation.
Based on the strong constraint condition, the new similarity propagation

method still can be divided into three steps as follows:
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Fig. 2. Similarity propagation method with strong constraint condition

(1) Constructing pairwise connectivity graph
Traditional similarity flood is not sensitive to the initial similarity seeds, so
all initial similarity values can be set to 1.0. However, in ontology matching,
similarity propagation can not use the same setting, because it would not only
cause very large pairwise connectivity graph but also generate many wrong
alignments. In our view, the quality of the initial similarity seeds is very
important for matching ontologies. We believe correct alignments would generate
more correct alignments during similarity propagation, but wrong alignments
would be noise in similarity propagation. Therefore, this paper try to use some
high quality alignments as the initial similarity seed.

The seeds can be calculated by other linguistic-based matching methods
or provided manually. This paper uses a method called semantic description
document to produce the initial seeds. The detail about this linguistic-based
matching method can be referred to our other work [10].

According to the initial similarity seed and the strong constraint condition,
the pairwise connectivity graph can be constructed as Fig. 2 shows. Obviously,
the pairwise connectivity graph is influenced by similarity seeds. Different seeds
would cause different pairwise connectivity graphs.

(2) Constructing propagation graph
According to formula (1)-(3), the similarity from two element pairs always
be propagated to the third pair. The propagation factor measures how many
similarity can be propagated. There are three kinds of propagation factor: wsp,
wso and wpo. Take wsp as an example, it denotes how many similarity come
from Ss and Sp can be propagated to So. Let fsp denote the number of the

triple pairs having (si, sj)
(pi,pj)−−−−→ (ox, oy) style in pairwise connectivity graph,

then wsp = 1/fsp. wso and wpo can be defined and calculated similarly.
Propagation graph can be represented by a bipartite graph as Fig. 2 shows.

The weights of edges denotes the propagation factors. In the implementation,
for the reason that the propagation factors can be directly obtained according
to the pairwise connectivity graph, we can just record the propagation factors
but need not to store the propagation graph.
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(3) Computing fixpoint
The similarity propagation between ontology graphs can be computed iteratively
until the final similarity matrix converges. Under the strong constraint condition,
the fixpoint can be computed by formula (4), where normalization is omitted for
clarity.

Actually, formula (4) is the synthesized style for formula (1)-(3). For each
element pair (x, y), it would be subject pair, predicate pair or object pair, so
its new similarity in the (i + 1)th propagation would come from four parts: (1)
the similarity in ith propagation; (2) the propagating similarity when (x, y) is
object pair; (3) the propagating similarity when (x, y) is subject pair; (4) the
propagating similarity when (x, y) is predicate pair.

si+1(x, y) = si(x, y) +
∑

<au,pu,x>∈A
<bu,qu,y>∈B

si(au, bu) · si(pu, qu) · wsp

+
∑

<x,pv,av>∈A
<y,qv,bv>∈B

si(av, bv) · si(pv, qv) · wpo

+
∑

<at,x,ct>∈A
<bt,y,dt>∈B

si(at, bt) · si(ct, dt) · wso

(4)

4 Propagation Strategies

To improve the efficiency of similarity propagation and the quality of propagation
results, some reasonable strategies are adopted in the propagation. In general,
this paper uses six strategies to make the matching results better and to improve
the matching efficiency.

I. Propagation Scale Strategy
We should select the right parts in ontologies for similarity propagation. This
paper studies four propagation scale strategies as follows:

(1) Full graph propagation
In similarity propagation, full ontology graph is the most direct propagation
scale. It can assure that there is no ontology information to be missed. However,
this propagation scale strategy also has obvious disadvantages: (a) For the large
scale ontology graph, it is possible to cause large pairwise connectivity graph.
(b) More triples do not mean better propagation results. Some triples are not
important for describing the semantics. So too many triples may increase the
uncertainty in propagation and bring negative affection for matching results.

(2) Independent semantic subgraph propagation
In an ontology, a semantic subgraph of an element is used to describe the element’s
meaning precisely. The definition and extracting algorithm of the semantic
subgraph can be found in our other work [10]. If we constrain the propagation
scale in the semantic subgraphs, the propagation can avoid the triples without
important semantics. Therefore, the similarity propagation result would be
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determined by the semantic subgraphs. Given two elements a and b and the
corresponding semantic subgraphs Gs

a and Gs
b, the similarity S(a, b) is obtained

by the similarity propagating between Gs
a and Gs

b. If two ontologies have n and m
elements respectively, this strategy needs n×m times propagation.

(3) Combined semantic subgraph propagation
The semantic subgraphs are combined in this strategy. We implement two
combining ways: (a) combine all semantic subgraphs; (b) combine all semantic
subgraphs of concepts to a graph Gc

C , and then combine semantic subgraphs of
relations to another graph Gc

R. When we match concepts, we just consider Gc
C .

Similarly, the matching between relations just uses Gc
R.

(4) Hybrid semantic subgraph propagation
This strategy is a mix of strategy (2) and strategy (3). In the propagation, one
side is a semantic subgraph of an element e, and another side is the combined
graph Gc

C or Gc
R. After a propagation, we can get the similarity about e to all the

elements in another ontology. Obviously, this strategy needs n times propagation.

II. Incremental Updating for Pairwise Connectivity Graph
The strong constraint condition greatly reduces the scale of pairwise connectivity
graph. After once similarity propagation, the similarity matrix would change
and new similarity values would appear. Therefore, we need to construct a new
pairwise connectivity graph for the next propagation. It is a time consuming
process.

To reduce the constructing cost, we adopt an incremental updating way. After
a propagation, the new pairwise connectivity graph need not to be reconstructed,
but it can be extended based on the previous one. Namely, we just update the
parts in the pairwise connectivity graph whose similarities have been changed.

III. Trust the Credible Seeds
In the initial similarity seeds, we regards the alignments having high similarity
value as right alignments. Therefore, we keep these alignments during the
propagation. The first advantage of this strategy is assuring some correct
alignment can not be changed. Another advantage is avoiding some unnecessary
similarity propagation computing. If S(ai, bj) is a credible seed, then all
similarity propagation like S(ai, bx) and S(ay, bj) can be skipped. In short,
credible seeds not only can reduce the propagation cost, but also decrease the
negative affection in propagation.

IV. Cross Validation for Propagation Result
This strategy only works for hybrid semantic subgraph propagation scale
strategy. Given an element ai, we can get a set of similarities {S(ai, bx)}(x =
1, ..., n). Given another element bj in the opponent ontology, we also can get
another similarity set {S(ay, bj)}(y = 1, ..., m). Therefore, we will have two
similarity matrices. The similarity value at S(ai, bj) may be different. This paper
calculates the average of two similarity matrices as the final propagation result.
The two similarity matrices have the function of validating crossly, so it can
improve the quality of propagation result.
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V. Penalty for Propagation
For an ideal similarity matrix, correct alignments should have higher confidence
values and incorrect alignments should have lower confidence values. The real
world similarity matrix is far away from the perfect one. So it is necessary to
penalize the propagation result. The penalty should make little influence for
alignments having high confidence value and make the potential misalignments
have lower confidence value.

We provide two penalty factors pa and pb as follows:

pa =
s(ai, bj)

max(smax(ai, bx), smax(ay, bj))
(5)

pb =
1

1 + e−αt
, t = (

N + 1
ni + 1

/log(N + 1)), α ≥ 1 (6)

N is the sum of columns and rows of similarity matrix; ni is the number of the
alignments whose confidence values are large than 0 in ith column and jth row.
After being penalized, the new similarity value is:

S
′
(ai, bj) = S(ai, bj) · pa · pb (7)

pa penalizes the alignments having low similarity values, and pb penalizes the
alignments whose column and row have too many alignments with S(x, y) > 0.
We set α = 3 in the implementation.

VI. Termination Condition
Our propagation should satisfy two termination conditions: (1) The cosine
between two sequential similarity matrices is not bigger than the given threshold.
Propagation should assure the final similarity matrix is convergent. Melnik and
his colleagues have proved that fixpoint computing can be convergent if the
pairwise connectivity graph is a strongly connected graph [2]. (2) There is no
updating for the pairwise connectivity graph. Besides the two conditions, to
avoid the matrix needs too many times propagation to converge, we also set the
maximum propagation times as 8 in the implementation.

5 Experimental Evaluation

We have implemented the new similarity propagation method in ontology
mapping system Lily. Lily is implemented by Java and C++. More information
about Lily can be found at http://ontomappinglab.googlepages.com/lily.htm.

The dataset is OAEI benchmark2. It includes more than 50 matching tasks
having non-sequential number from 101 to 304. According to the dataset
feature, we divide the dataset into 5 groups: (1) 101-104: this group contains
same, irrelevant, language generalized and restricted ontologies. (2) 201-210:
the ontology structure is preserved, but the labels and identifiers are replaced
2 http://oaei.ontologymatching.org
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by random names, misspellings, synonyms and foreign names. The comments
have been suppressed in some cases. (3) 221-247: This group can be divided
into two subgroups: 221-231 and 232-247. The first subgroup contains 11
kinds of modifications, such as the hierarchy is flattened or expanded, and
individuals, restrictions and data types are suppressed. In the second subgroup,
the modifications are the combinations of the ones used in 221-231. (4) 248-266:
This is the most difficult test set. All labels and identifiers are replaced by
random names, and the comments are also suppressed. (5) 301-304: This group
contains 4 real matching tasks.

This paper uses the classical criterion: precision, recall and F-measure to
evaluate the matching results. Let Q is the real matching result and T is the
reference result, then the precision, recall and F-measure are:

P =
|Q ∩ T |
|Q| , R =

|Q ∩ T |
|T | , F−measure =

2PR

P + R
(8)

5.1 Evaluating the Propagation Scale Strategies

This experiment aims to compare different propagation scale strategies. The
dataset is 248 task. The experimental result (F-measure) is showed in
Table 1. Size is the semantic subgraph size. Seed denotes the initial similarity
seeds obtained by the linguistic matching method. C1, C2, C3 and C4 represent
the four kinds of propagation scale strategies. Notice that C3A denotes all
semantic subgraphs are combined; C3B denotes concept semantic subgraphs and
relation semantic subgraphs are combined independently. C4A and C4B are both
hybrid semantic subgraph propagation scale strategy, but in C4A the ontology
has been enriched. The last row of Table 1 provides the average values for the
semantic subgraphs from size 5 to 35.

Comparing with the seeds, Table 1 shows the similarity propagation can
improve the quality of matching results. For all propagation scale strategies, their
matching qualities can rank as: C4B >C4A>C3B >C3A>C1>C2. Through

Table 1. Comparison of different propagation scale strategies

Size Seed C1 C2 C3A C3B C4A C4B
0 0.020 0.020 0.020 0.020 0.020 0.020 0.020
1 0.371 0.603 0.604 0.422 0.246 0.537 0.496
2 0.431 0.653 0.604 0.547 0.352 0.570 0.552
3 0.418 0.531 0.476 0.541 0.400 0.715 0.736
5 0.493 0.608 0.529 0.658 0.607 0.761 0.802
10 0.536 0.587 0.592 0.675 0.693 0.828 0.828
15 0.586 0.643 0.586 0.662 0.658 0.849 0.837
20 0.557 0.610 0.630 0.671 0.675 0.822 0.785
25 0.561 0.629 0.598 0.662 0.731 0.789 0.832
30 0.561 0.648 0.690 0.658 0.706 0.753 0.879
35 0.561 0.620 0.651 0.621 0.653 0.716 0.826
Avg. 0.531 0.621 0.611 0.658 0.675 0.788 0.827
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analyzing the experimental data, we have the conclusions: (1) Full graph strategy
does not produce good results as we expect. (2) Independent semantic subgraph
strategy causes the worst results. The reason is that the misalignments would
have high similarity values when the similarity matrix is normalized after the
propagation. So it is difficult to determine the correct alignments. (3) The results
of C3A and C3B are very close; (4) C4A and C4B produce the best results.
Surprisingly, the C4B without ontology enrich preprocess performs well than
C4A with original ontology. The fact implies that some ontology preprocess may
cause negative affection for similarity propagation.

5.2 Initial Similarity Seeds

We need validate whether and how our similarity propagation method is sensitive
to the initial similarity seeds. In this experiment, we modified the seeds manually
to keep the seeds always have the feature: Precision = Recall = F −measure.
The seed quality F-measure decreases from 1.0 to 0 with step 0.1. The dataset
is 248 task too. For an experiment at F−measure=x, we execute the matching
three times. In each time, we modifies the seed randomly. We treat the average
of the three results as the final F−measure value.

The experimental result is showed in Fig. 3, where line B denotes the seed
quality; C1, C3A and C4B are F-measure lines for the corresponding propagation
scale strategies. We can draw the conclusions: (1) The initial seed influences the
matching result greatly. With the change of seed quality, the matching result
quality changes monotonously. (2) After propagating, the result is usually better
than the initial seed. (3) C4B scale strategy is influenced by the seed slightly, so
C4B is the preferred propagation scale strategy in the implementation.

Fig. 3. Influence of initial seed to matching results
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5.3 Overall Matching Results

Fig. 4 compares the matching results with similarity propagation and the results
without similarity propagation. P1, R1 and F1 denote the precision, recall and
F-measure for the method without similarity propagation. P2, R2 and F2 are
the quality criterions about the method in this paper.

According to Fig. 4: (1) The similarity propagation method proposed in this
paper improves the matching result quality, especially for the 248-266 dataset.
(2) When the ontologies have not sufficient or regular linguistic information, we
also find that our similarity propagation method can increase the recall greatly.
Therefore, the similarity propagation method can discover more matching results
using limited linguistic information.

Ontology mapping system Lily has implemented the similarity propagation
methods in this paper, and Lily is one of the best systems in the OAEI benchmark
evaluation in recent years. Table 2 shows results of some matching systems in
OAEI-2008 benchmark evaluation [11, 12]. The evaluation divides the dataset

Fig. 4. Matching without similarity propagation VS with similarity propagation

Table 2. Overall matching results of some systems (OAEI 2008)

Systems ASMOV DSSim Anchor-Flood RiMOM AROMA
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

1xx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2xx 0.95 0.85 0.97 0.64 0.98 0.59 0.96 0.82 0.96 0.70
3xx 0.81 0.77 0.90 0.71 0.95 0.31 0.80 0.81 0.82 0.71
H-mean 0.95 0.86 0.97 0.67 0.98 0.62 0.96 0.84 0.95 0.70

Systems CIDER GeRoMe SPIDER SAMBO Lily
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

1xx 0.99 0.99 0.96 0.79 0.99 0.99 1.00 0.98 1.00 1.00
2xx 0.97 0.57 0.56 0.52 0.97 0.57 0.98 0.54 0.97 0.86
3xx 0.90 0.75 0.61 0.40 0.15 0.81 0.95 0.80 0.87 0.81
H-mean 0.97 0.62 0.60 0.58 0.81 0.63 0.99 0.58 0.97 0.88
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Fig. 5. Performance under different propagation scale strategies

into three groups: 1XX, 2XX and 3XX. The evaluation results show our system
performs well on the benchmark dataset.

5.4 Performance

In Lily, we find the similarity propagation process occupies about 30%-50%
matching time. It is necessary to analyze the major performance factors in
propagation. In practical matching tasks, small semantic subgraphs would cause
small pairwise connectivity graph, and the iteration process for calculating
fixpoint would also terminate quickly. On the contrary, big semantic subgraphs
would increase the burden in the propagation. So we believe the semantic
subgraph size is a key factor for the performance. Fig. 5 demonstrates the running
time with various subgraph size under different propagation scale strategies.

According to Fig. 5, (1) For full graph or combined subgraph scale strategies,
the running time of propagation has no direct relevance to the semantic subgraph
size. So C1, C3A and C3B are almost steady. When the semantic subgraph
size is large than 5, the size of pairwise connectivity graph will keep stable.
So the running time of C1, C3A and C3B would have little correlation with
semantic subgraph size. (2) But for C4 propagation scale strategy, the running
time increases with the semantic subgraph size quickly. It means we should set
suitable semantic subgraph size for hybrid semantic subgraph scale strategy.

6 Related Work

Many ontology matching approaches are proposed in recent years. Some
researchers have gave several excellent reviews for this topic [13, 14, 15]. This
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paper mainly focuses on the matching problem for the ontologies without
sufficient or regular linguistic information. Structure-based matching method is
a feasible way to deal with this special matching situation. For the reason that
the ontology graph topology can not represent the semantics reasonably, the
way using classical graph matching algorithm can not obtain good alignments,
and it also have the serious performance problem due to high time complex of
graph matching. Therefore, the method based on similarity propagation idea is
the feasible way to solve the problem.

Blondel and his colleagues proposed a iteration equation for measuring the
similarity between directed graphs [4]. This method is based on the Hub −
Authority idea. Based on the similar idea, in [9] the authors proposed a more
universal measurement for the vertex similarity in network, and they also pointed
out that Blondel’s method is a special case of their method. These graph
matching algorithms can only calculate the vertex similarity in graph, but they
can not deal with the edge similarity. To overcome the problem, the bipartite
graph is used to represent the ontology graph [5]. Tous and Delgado represent
the ontology graph as the vector space method [16]. Similarity flood [2] is the
most popular algorithm inspired by the similarity propagation, but it can not be
directly used for ontology matching. In ontology mapping system RiMOM, three
propagation strategies are used for structure matching: (1) propagation between
concepts; (2) propagation between relations; (3) propagation between concepts
and relations [17]. In another matching system PROMPT [8], a similarity
propagation algorithm called AnchorPROMPT is used to find alignment.

The structure-based matching method based on our similarity propagation
method is an effective solution for the ontologies without sufficient or regular
linguistic information. Especially, our propagation method is reasonable for the
ontology. We also propose some strategies to improve the propagation results
and accelerate the matching process such as the propagation scale is constrained
in the semantic subgraphs.

7 Conclusion

This paper proposes an effective similarity propagation method for matching the
ontologies without sufficient or regular linguistic information. The new method
is based on the strong constrained condition, and it is reasonable for ontology
model. Some useful propagation strategies are also adopted to improve the
matching results. Experiments shows that this structure-based matching method
performs well on OAEI benchmark dataset.
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