A Concept Hierarchy based Ontology Mapping
Approach

Ying Wang, Weiru Liu, and David Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, BT7 1NN, UK
{ywang14, w.liu, da.bell}@qub.ac.uk

Abstract. Ontology mapping is one of the most important tasks for on-
tology interoperability and its main aim is to find semantic relationships
between entities (i.e. concept, attribute, and relation) of two ontologies.
However, most of the current methods only consider one to one (1:1)
mappings. In this paper we propose a new approach (CHM: Concept Hi-
erarchy based Mapping approach) which can find simple (1:1) mappings
and complex (m:1 or 1:m) mappings simultaneously. First, we propose a
new method to represent the concept names of entities. This method is
based on the hierarchical structure of an ontology such that each con-
cept name of entity in the ontology is included in a set. The parent-child
relationship in the hierarchical structure of an ontology is then extended
as a set-inclusion relationship between the sets for the parent and the
child. Second, we compute the similarities between entities based on the
new representation of entities in ontologies. Third, after generating the
mapping candidates, we select the best mapping result for each source
entity. We design a new algorithm based on the Apriori algorithm for se-
lecting the mapping results. Finally, we obtain simple (1:1) and complex
(m:1 or 1:m) mappings. Our experimental results and comparisons with
related work indicate that utilizing this method in dealing with ontology
mapping is a promising way to improve the overall mapping results.

1 Introduction

Research and development on ontology mapping (or matching) has attracted
huge interests (e.g., [1-6]) and many mapping methods have been proposed.
Comprehensive surveys on recent developments of ontology mapping can be
found in [7, 8].

Considerable efforts have been devoted to implement ontology mapping sys-
tems, especially one to one mappings. However, complex mappings (m:1, 1:m
and m:n) are also pervasive and important in real world applications. In [7], an
example was given to illustrate the importance of complex mappings in schema
mapping research. We believe that the same issue exists in ontology mapping.
Therefore, it is very important to find simple and complex mapping results in a
natural way.

To address this problem in this paper, we first propose a new method to rep-
resent entities in ontologies. Traditionally, the concept names of entities are used

directly. This representation method does not consider the hidden relationships
between concept names of entities, so it cannot reflect the complete meaning of
the concept names of entities. When computing the similarities between entities
based on this representation method, the result is hardly accurate. So it is sig-
nificant to have a better method to represent entities. In this paper, we propose
a new representation method for entities. For the multi-hierarchical structure
of ontology, we view it as a concept hierarchy. For the example given in Figure
1(a), we observe that for each concept (in this paper, concept, concept node and
entity represent the same thing) in this concept hierarchy, its complete meaning
is described by a set of concept names. In other words, there is a kind of se-
mantic inclusion relationship among these concepts. For instance, a branch from
CS, Courses to Graduate Courses in Figure 1(a), CS means the department
of computer science, Courses means the courses offered by the department of
computer science and Graduate Courses means Graduate Courses is a kind
of Courses and is offered by the department of computer science, i.e. CS, so
the semantics of Courses can be completed by extending Courses to {CS,
Courses}. Identically, we can extend the concept Graduate Courses to {CS,
Courses, Graduate Courses}. Actually, a branch from one concept node to
the root node indicates a complete meaning for this concept node. So for any
concept name of entity C' in an ontology, we can represent it by a new method
as follows. First, we find the branch which has the concept C. Second, we collect
those concepts along the path between C' and the root node to form a set. We
use this new set to represent entity C.

Once each entity is represented by a set of words, we compute the similarities
between entities. In this paper, we separate the similarity values into two types:
one is the similarities between entities which belong to one ontology, another is
the similarities between entities which belong to two different ontologies. Here,
we choose the Linguistic-based matcher (which uses domain specific thesauri to
match words) and the Structure-based matcher (which uses concept-hierarchy
theory) to compute similarities (we utilize Linguistic-based matcher because the
performance of this matcher is good for similar or dissimilar words. Please refer
to [9] for details).

As a result, we obtain a set S7 consisting of mapping candidates such that
from each entity in ontology O1, a similarity value is obtained for every entity
in ontology O,. Following this, we select the best mapping entity in Os for each
entity in O; and these best mapping results constitute another set S5. In Ss,
we search all the mapping results to see if there exist multiple source entities
in O; that are mapped to the same target entity in Os. If so, we apply a new
algorithm based on Apriori algorithm [10] to decide how many source entities in
O; should be combined together to map onto the same entity in Oy. Our study
shows that this method significantly improves the matching results as illustrated
in our experiments.

The rest of the paper is organized as follows. Section 2 describes the simi-
larity measures used. Section 3 illustrates how to select final mapping results by
using our new algorithm. Section 4 gives the background information about the

experiments and the results. Section 5 discusses related work and concludes the
paper with discussions on future research.

2 Ontology Mapping

Ontology mapping can be done based on similarities, so we need to leverage
the degree of the similarity between any two entities no matter these entities
are in one ontology or from two ontologies. In this section, we describe our
notion to measure the similarity between entities in detail. In this paper, we
use concept node to denote an entity in ontology and we compute the similarity
between concept nodes to indicate the similarity between entities. We compute
the similarity of two concept nodes, e; and e;, denoted as Sim(e;, e;):

wissimis(e;, €5) + wsssimgs (e, €5) €;,e; € same ontology
simys(e;, e;) ei,e; € different ontologies

(1)
where w;; and wgs are two weight coefficients, reflecting the relative impor-
tance of the components. In our approach, we think both of the components are
equally important, so we assign them both with coefficient 0.5. sims(e;, e;) and
simgs(e;, e;) denote the similarities obtained from the linguistic-based matcher
and structure-based matcher respectively.

Simf(es, e;) = {

2.1 Extension for Concept Nodes

When using different methods to compute the similarity values between two
names of entities in ontologies, such as edit distance-based method [11], or Jaro-
Winkler distance-based method [12] etc, we discover that these methods are too
simple to reflect the semantic relationship between those entities.

Ezample 1. Figure 1(a) provides a simple ontology which describes a department
of computer science and shows its concept hierarchy. It is clear that if we only use
one method (edit distance-based method or Jaro-Winkler distance-based method)
to compute the similarity between those entities, such as “CS” and “People”,
we cannot, obtain good results because these two names of entities are not very
similar directly but are related indirectly.

As shown in Figure 1(a), we found that the hierarchical structure is very
similar to the concept hierarchies in multi-hierarchy association rules mining
[10]. In this kind of mining, a concept hierarchy defines a sequence of mappings
from a set of low-level concepts to higher-level, more general concepts. According
to the concept hierarchies, “People” actually means “People in the department of
Computer Science”, i.e. “People” and “CS” should be denoted as: {CS People}
and {CS} separately. So we can denote all the concept names of entities in an
ontology by a new approach in terms of the inclusion relationship between these
concept names from the root node to leaf nodes and then Figure 1(a) can be

changed to Figure 1(b).
We now give precise similarity measures between entities. As stated above,

concept names of entities have been expanded to concept sets, such as Figure

{1 fCSy
Clourses People (08 Courses | 108 People}
Graduate underGraduware i 1CS Course SC8 Course 108 Peaple {8 People
Conrses Courses Htlent Ay Ciraduated ourses| umiderGiraduare Courses | Smdent Facuity}
(1) i)

Fig. 1. (a) An ontology which describes a department of computer science; (b) A new
method to represent the ontology where we expand all the concepts

ey
n:
HLBIR B g 12 ns G Ca)
PO G2} [SE s (T2 Csd

Fig. 2. An expanded ontology model where each node represents a concept

2, so we compute the similarity between any two sets by adopting a general
method for computing similarities between composite words. We will introduce
the method in the subsection: Calculating Similarities of Ontology Entities. So
Equation(1) can be modified as:

wissimys(Ey, Bj) + wsssimgs(E;, E;) By, E; € same ontology
simys(Ey, Ej) E;, E; € different ontologies

(2)

Sim(E;, E;) = {

where F;, IJ; are the concept sets for the concept nodes separately.

2.2 Linguistic-based Matcher

We employ the Linguistic-based matcher as our similarity measure and in our pa-
per the linguistic similarity between two concept nodes is denoted as sim(e;, e;).
Linguistic-based matcher uses common knowledge or domain specific thesauri to
match words and this kind of matchers have been used in many papers [13, 14].

The concept names of entities are usually composed of several words, so first
we adopt Lin’s matcher to compute the similarity between two words and then
we use another method to compute the similarity between concept names based
on the revised version of Lin’s matcher.

Lin’s Matcher: Lin’s matcher is a kind of Linguistic-based matcher. In this
paper, we use an electronic lexicon WordNet for calculating the similarity val-
ues between words. Lin in [15] proposed a probabilistic model which depends
on corpus statistics to calculate the similarity values between words using the

WordNet. This method is based on statistical analysis of corpora, so it considers
the probability of word, (sense;) and words (senses) and their most specific
common subsumer lso(wi,ws) appearing in the general corpus. However, since
the words in given ontologies are usually application specific, this general cor-
pus statistics obtained using the WordNet can not reflect the real possibility
of domain-specific words. To improve Lin’s method, we propose to calculate a
punishment coefficient according to the ideas in the path length method [16].
The path length method regards WordNet as a graph and measures the similar-
ity between two concepts (words) by identifying the minimum number of edges
linking the concepts. It provides a simple approach to calculating similarity val-
ues and does not suffer from the disadvantage that Lin’s method does, so we
integrate Lin’s method and a punishment coefficient to calculate the similarity
values between words. First, we outline Lin’s approach. The main formulas in

this method are as follows: simp,(s1,82) = log(igglg)(f_f_slé’g‘q(i))()(SQ)), p(s) = freTq(s)

and freq(s) = 3, cooras(s) cOunt(n) where: p(s1, s) is the probability that the
same hypernym of sense s; and sense ss occurs, freq(s) denotes the word counts
in sense s, p(s) expresses the probability that sense s occurs in some synset and
N is the total number of words in WordNet.

The punishment coefficient which is based on the theory of path length of
WordNet is denoted as: %al. Its meaning is explained as follows: « is a constant
between 0 and 1 and is used to adjust the decrease of the degree of similarity
between two senses when the path length between them is deepened and [ex-
presses the longest distance either sense s; or sense so passes by in a hierarchical
hypernym structure. Because sense s; and sense sy occupy one of the common
branches, this value has to be halved.

Therefore in our method, the similarity value calculated by Lin’s method is
adjusted with this coefficient to reflect more accurate degree between two senses
s1 and s9. The revised calculation is:

2-1
SiMmew (51, 82) = og(p(s1,52)) N

l
= Tog(p(s1)) + log(p(s)) " 2° ®)

1
2

Word w; and word we may have many senses, we use s(wp) and s(wz) to
denote the sets of senses for word w; and word wsy respectively as s(wy) =
{s1:]11=1,2,....m},s(we) = {s1; | = 1,2, ...,n}, where the numbers of senses
that word w; and word wy contain are m and n. We then choose the maximum
similarity value between two senses from the two sets of senses for words w; and
wy, so the similarity between words is: sim (w1, wa2) = max(siMmpew (514, 525)), 1 <
1<m,1<j53<n

Calculating Similarities of Ontology Entities We compute similarities be-
tween names of ontology entities based on the word similarities obtained from
the two matchers separately. The names of ontology entities are composed of sev-
eral words, so we split a phrase (name of entity) and put the individual words
into a set and then we deal with these words as follows: first, we calculate sim-
ilarities of every pair of words within both sets by using one of the matchers

(Linguistic-based matcher or Structure-base matcher). After that, for each word
in one set, compute similarity values between this word and every word from the
other set and then pick out the largest similarity value. Finally attach this value
to the word. Repeat this step until all of the words in the two sets have their
own values. Finally, we compute the final degree of similarity of names using the
sum of similarity values of all words from two sets divided by the total counts
of all words.

2.3 Structure-based Matcher

Ontology can be regarded as a model of multi-hierarchy, so in terms of the
structure we propose a Structure-based Matcher which determines the similarity
between two nodes (entities) based on the number of children nodes. We first
introduce the method.

An ontology is usually designed in such a way that its topology and struc-
ture reflects the information contained within and between the concepts. In [17],
Schickel-Zuber and Faltings propose the computation of the a-priori score of
concept ¢, APS(c), which captures this information. Equation (4) gives the def-
inition of the a-priori score of concept ¢ with n descendants as:

1

APS(c) = I

(4)

To illustrate the computation of the a-priori score, consider the simple example
shown in Figure 3 where n; represents the concept node in the ontology and
Ny is the number of descendants for each concept node n;. First, the number
of descendants of each concept is computed. Then, Equation (8) is applied to
compute the a-priori score of each concept in the ontology.

fi Coneepts Ml APS(m)
/\ L 0 1/2
s 1 s 0 L2
/\\ n 2 1/4
I s n 0 iz
i 4 it

(a) by

Fig. 3. (a) An ontology model where each node represents a concept; (b) The a-priori
scores for those concepts

It is very easy to find that the concept becomes more generalized as we travel
up the ontology, and the a-priori score decreases due to the increasing number of
descendants. That is the a-priori score reflects the information of each concept
node, i.e., the higher score the concept has, the more information the concept

expresses. So it is possible to estimate the similarity between two concept nodes
by finding the overlapping part of information between two concepts.

After obtaining the a-priori score for each concept node, we use the following
definition to calculate the similarity as the structure-based matcher.

Given two a-priori scores APS(n;) and APS(n;) for two concept nodes n;
and n; respectively, the similarity between n; and n; is defined as [17]:

min(APS(n;), APS(n;)) (5)
max(APS(n;), APS(n;))

simgs(ni,nj) =

Ezample 2. From Figure 3(b), we can get the APS(n;) value for each node n;
and then we can compute the similarity between any two nodes. For instance,
simgs(ny, ng) = 1/% =1/3.

3 Selection of the Best Mapping Results

For each entity e; in O, we apply the linguistic-based matcher for computing
the similarities between this entity and every member of Os and find the best
mapping for this entity. Let S denote the set that contains the best mapping
candidate in Os for every entity in O;. In S, there may exist complex mapping
results, i.e. several entities in O; map to the same entity in Oy. Our task is to
decide where several entities in O; should be mapped to the same entity in O,.
DCM framework [18] is a schema matching system and it is focused on
dealing with matching multiple schemas together. In this framework, there is
a APRIORICORRMINING algorithm for discovering correlated items. In [18], cor-
related items are defined as the mapping results. This algorithm is to find all the
correlated items with size [+ 1 based on the ones with size [in multiple schemas.
It first finds all correlated two items and then recursively constructs correlated
[+1 items from correlated [items. In this paper, our aim is to make sure if several
entities in O; should be combined together to map to the same entity in O, so we
regard the entities in O; as the items and attempt to find if they are correlated.
We try to obtain the most correlated items directly, but AprRioORICORRMINING
algorithm is not suitable for our objective, so we propose an improved algorithm
named REVISEDAPRIORIMINING based on APRIORICORRMINING algorithm.
First, for each entity of O in set S, we collect its mapping entities of O; and
input these source entities and use the REVISEDAPRIORIMINING to find whether
these entities are really correlated and can be combined together to map one
entity in Oz. As shown in Algorithm 1, first we find the incorrelate entities in
V based on the similarities between them and store them into X (Line 4-8).
Next, for each item in X, we have to construct different entities groups in which
two entities of one item in X can not happen together (Line 9-16). When this
algorithm is complete, we obtain a set V' that stores the entity groups. Each
entity group is a different combination of correlated entities. We search the set
V to find the largest entity groups (in terms of cardinality). Since there may
exist more than one such group, i.e. the number of entities in these groups are

the same, we select one such group by using the formula below:

G, = arg maxizl(z sim(e;, e;)),e; € O1,€5 € Oy (6)

i=1
where G denotes the entity group which stores the combined entities, [is the
number of entity groups in V' and n is the number of entities in each group.

Algorithm 1 REVISED APRIORI MINING:

Input: Input entities in Oy: Z = {e1, €2, ..., e, }, Threshold T
Output: Combined entity groups V = {Vi, Va,..., Vi }

1: X —0

2: Create two queues A «— 0,V «— ()

3 v=vu{z}

4: for all ei,e; € Z,i# j do

5: if sim(e;,e;) < T then
6:
7
8
9

X — X U{{ei,e;}}
end if
. end for
: for each item {e;,e;} € X do
10: A=V,V =10
11: for each set Vi in A do

12: A= A\{V,}

13: Remove e; and e; respectively from Vi, then V; is changed into two different sets V), and
v,

14: V=VU{V,},V=VU{V,}

15: end for

16: end for

17: return V

4 Experiments
4.1 Dataset

We have implemented our approach in Java and now we present the experimental
results that demonstrate the performance of our methods using the OAEI 2007
Benchmark Tests. In our experiments, we only focus on classes and properties
in ontologies.

Generally, almost all the benchmark tests in OAEI 2007 describe Biblio-
graphic references except Test 102 which is about wine and it is totally irrelevant
to other data. We choose twenty-five test data for testing. All of these twenty-five
test data can be divided into four groups [19] in terms of their characteristics:
Test 101-104, Test 201-210, Test 221-247 and Test 301-304. A brief description
is given below.

— Test 101-104: These tests contain classes and properties with either exactly
the same or totally different names.

— Test 201-210: The tests in this group change some linguistic features com-
pared to Test 101-104. For example, some of the ontologies in this group
have no comments or names, names of some ontology have been replaced
with synonyms.

— Test 221-247: The structures of the ontologies have been changed but the
linguistic features have been maintained.

— Test 301-304: Four real-life ontologies about BibTeX.

In our evaluation, we take Test 101 as the reference ontology. All the other
ontologies are compared with Test 101.

4.2 Comparison of Experimental Results

We now compare the outputs from our system (denoted as CHM) to the results
obtained from ASMOYV, DSSim, TaxoMap and OntoDNA algorithms which were
used in the 2007 Ontology Alignment Contest !, and there are fifty tests totally.
However, in some of ontologies, the names of entities are represented in scram-
ble or in French, so the similarities between the names of entities can not be
computed by our linguistic-based matcher. We ignore the comparisons of these
ontologies. The details of experimental results are given in Table 1. In Table 1,

p for precision, r for recall, f for f-measure, Best and Worst denote the values
F(SIM)
f(Best or Worst)
the value equals to 1, it means these systems obtain the same results. If the value

is smaller than 1, it means C'H M presents worse than other systems. Otherwise,
it shows CHM is better than others.

between C HM and Best system or Worst system in one row. If

Table 1. Comparison of experiment results

’ Grou D [CHM [ASMOV DSSim [TaxoMap [OntoDNA [Best|Worst|
ps atasets
[p[c[flp[e[flp[e[flp [[E[p[r[F]E] T]
101 100{100{100|100{100{100{100{100{100| 100 [100| 100 |100|100|100| 1 1
Test 101-104 103 100{100[{100/100{100[100{100{100|100] 100 | 34 | 51 | 94 [100]| 97| 1 1.96
104 100{100{100({100{100{100{100({100{100| 100 | 34 | 51 [94 |100|97 | 1 1.96

203 |100{100{100|100{100|{100{100|100{100{NaN|0.00{NaN| 94 [100| 97 | 1 =)
204 86 | 84 | 85 [100[100[100| 96 [91 [93| 92 | 24 | 38 |93 | 84 | 88 [0.85]| 2.24
Test 201-210[205 47| 44146 [100[100/100| 94 [33 [49 | 77 | 10 | 18 |57 | 12 | 20 [0.46| 2.56
208 86 | 83 [85 [100[100[100] 95 [90 | 92 [NaN| 0 [NaN[93 |84 [880.85] oo
209 49 141[45[92[90[91]9132]47[NaN| 0 [NaN[57|12]20[0.49] oo

221 82| 82| 82 (100/100/100/100(100|100| 100 | 34 | 51 |93 | 76 | 83 [0.82| 1.61
222 8992] 91 [100/100/100/100{100[100| 100 | 31 | 47 | 94 |100| 97 [0.91| 1.94
224 [100{100{100|100{100{100{100|100{100{ 100 | 34 | 51 |94 [100| 97| 1 1.96
225 100[100[100[{100{100[100{100[100[{100] 100 | 34 | 51 [94 [100[97| 1 1.96
228 [100{100{100|100{100{100{100|100{100{ 100 [100 | 100 | 53 |27 |36 | 1 | 2.78
230 73[90 [81 1[99 [100] 99 [97 [100] 98 | 100 | 35 | 52 | 91 [100| 95 [0.82| 1.56
231 100/100]/100[100{100{100/100[100{100| 100 | 34 | 51 | 94 [100]| 97 | 1 1.96
232 82 | 82 [82 [100[100[100{100[100{100][100 | 34 | 51 [93 | 76 [84 [0.82] 1.61
233 5252152 |100[100/100/100{100[100]| 100 | 100 | 100 | 53 | 27 | 32 |0.52]| 1.63
236 [100{100{100|100{100{100{100|100{100{ 100 [100 | 100 | 53 |27 | 32| 1 | 3.13
237 93 97|95 [100/100/100/100{100[100| 100 | 31 | 47 | 94 [100] 97 [0.95| 2.02
239 88 [100] 94 | 97 [100] 98 | 97 [100| 98 | 100 | 100 | 100 | 50 | 31 | 38 [0.94| 2.47
241 58 | 58 [58 [100[100[100{100[100{100] 100 [100 | 100 [53 | 27 [32 [0.58] 1.81
246 88 [100] 94 | 97 [100] 98 | 97 [100] 98 [100 | 100 | 100 [50 | 31 [38 [0.94| 2.47
301 43145(44 |93 |82 |87|82|30|44|100| 21 | 35 88|69 |77 [0.51| 1.26
Test 301-304| 302 3415342 [68|58]63[85|60|70]100| 21 [35 [90[40[55|0.6 | 1.2
304 5114950 [95[96[95][96 92|94 93 | 34 | 50 |92 |88 |90 [0.53| 1

Test 221-247

Overall, we believe that the experimental results of our system are good.
Although on individual pair of ontologies, our results are less ideal than the
ASMOV system and DSSim, however, our results are better than TazoMap
system and OntoDNA system on most pairs of matching. The performances of
these three different approaches, i.e., ASMOV, DSSim and our system CHM
are good for almost the whole data set from Test 101 to Test 246, but our
system does not perform well for Test 205, Test 209, Test 233 and Test 241. The
performance of all these five systems are not very good for the data set from
Test 301 to Test 304. Below we analyze the reasons for this.

! http://oaei.ontologymatching.org/2007 /results/

10

One-to-one Mapping Results

— More effective results:

e The two ontologies to be matched contain classes and properties with
exactly the same names and structures, so every system that deploys the
computation of similarities of names of entities can get good results, for
instance, Test 101 vs 103 and vs 104.

o Most of the results of Test 221-247 are good because the linguistic fea-
tures have been maintained. However, the structures of them have been

changed, so the performance of our system has been affected.
— Less effective results:
e Test 201-210 describe the same kind of information as other ontologies,

i.e. publications, however, the class names in them are very different from
those in the reference ontology Test 101, especially Test 205 and 209, so
our system does not obtain good results.

e Our method is based on the hierarchical structure of an ontology, but
for Test 233 and Test 241, these two ontologies have only one layer.
When computing the similarity between two concepts in Test 233 and
Test 101, such as MastersThesis in Test 233 and MastersThesis in
Test 101. First, our method extends MastersThesis. Test 233 only has
one layer, so MastersThesis can not be changed. Test 101 has three
layers, so MastersThesis is extended to {MastersThesis, Academic,
Reference}. The similarity value is reduced and does not reflect the true
similarity between these two concepts.

Table 2. Comparison of complex mapping results

Group Datasets CHM

plr]f
301 [55[55]55
Test 301-304| 302 [71[42[53
304 [33[50[40

Complex Mapping Results In Test 301-304, there exists inclusion relation-
ships between entities, for example, Collection<Book. Several source entities
have the inclusion relationships to one target entity separately, so we take this
mapping as complex (m:1) mapping.

Tests 301-304 are real-life BibTeX ontologies which also include different
words compared to Test 101 describing publications so the results are similar to
Test 205, so we do not get good similarity results from this data set. However
we still find some complex mappings (m:1) by using our algorithm to discover
the best mapping results, such as for Test 302 vs Test 101, we get {Collection,
Monograph, Book} mapping to Book.

5 Related Work and Conclusion

Related Work: Ontology matching is important and has received significant
attention. However, existing matching methods mostly focus on simple (1:1)
mappings. Here we present some related work on complex matching.

11

RiIMOM [20] is a general ontology mapping system based on Bayesian deci-
sion theory and the approach divides the process of discovering complex mapping
(m:1 mapping) into two steps: mapping entities discovery and mapping expres-
sion discovery. We mainly focus on mapping entities discovery. In mapping en-
tities discovery, the system aims at finding whether there are multiple source
entities mapped onto one target entity. If there are multiple source entities that
are mapped onto one target entity, then it will combine those source entities.
It does not consider any hidden relationship between those source entities, so it
may cause wrong complex mappings.

PBM [21] and BMO [22] are two approaches to focusing on complex mappings
so far. PBM is a method for partition-based block matching that is practically
applicable to large class hierarchies. It first partitions the two large class hier-
archies into blocks separately and then constructs the mappings between these
blocks. It does not consider the relationship between the classes which belong to
two large hierarchies respectively. It partitions these two hierarchies separately
instead of partitioning one hierarchy by referring another one. This may produce
wrong mappings. It is not always reasonable to partition a hierarchy itself into
blocks, so this is one of the reason that it can not obtain very good results.

BMO tries to utilize a partition method to handle complex mappings just like
PBM. But it is different on the process of partition. BMO puts the two ontologies
together for partitioning and then obtains the block mapping results directly. It
considers the correspondence between different ontologies and avoids too much
manual intervention. BMO is a method that implements complex matching, but
it failed to consider many issues, such as if it finds multiple complex mapping
results, then what method should be used to combine them, etc.

Conclusion: In this paper, we proposed a new representation for concepts in on-
tology and then utilized two matchers (Linguistic-based matcher and Structure-
based matcher) to deal with ontology mapping. In the Linguistic-based matcher,
we improved Lin’s method which computes similarity values between words. In
the Structure-based matcher, we adopted the structure of ontology to calculate
the similarity between two entities. Following this, we investigated how we can
obtain reasonable ontology mapping results. We apply our new algorithm to
search complex ontology mapping (m:1 mapping) from a set of ontologies used
for ontology mapping competitions. The experimental results demonstrated that
it is efficient and feasible for dealing with ontology mapping.

References

1. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In Proceedings
of the 1st European Semantic Web Symposium (ESWS’04). (2004) 76-91

2. Ehrig, M., Staab, S.: Qom - quick ontology mapping. In Proceedings of the 3rd
International Semantic Web Conference (ISWC’04). (2004) 683-697

3. Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the 17th National Conference on Ar-
tificial Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence (AAAI/IAAT00). (2000) 450-455

12

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Noy, N.F., Musen, M.A.: Anchor-prompt: Using non-local context for semantic
matching. In Workshop on Ontologies and Information Sharing at the 17th Inter-
national Joint Conference on Articial Intelligence (IJCAT’01). (2001)

Kalfoglou, Y., Schorlemmer, W.M.: Information-flow-based ontology
mapping. In Proceedings of the International Federated Conferences
(CoopIS/DOA/ODBASE’02). (2002) 1132-1151

Su, X., Gulla, J.A.: Semantic enrichment for ontology mapping. In Proceedings
of the 9th International Conference on Applications of Natural Language to Infor-
mation Systems (NLDB’04). (2004) 217-228

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
Journal of VLDB. 10(4) (2001) 334-350

Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics 4 (2005) 146-171

Wang, Y., Liu, W., Bell, D.: Combining uncertain outputs from multiple ontology
matchers. In Proceedings of the 1st International Conference on Scalable Uncer-
tainty Management (SUM’07). (2007) 201-214

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. (2000)

Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys 33(1) (2001) 31-88

Winkler, W.E.: The state of record linkage and current research problems Statis-
tical Society of Canada, Proceedings of the Survey Methods Section (1999) 73-80
Tang, J., Liang, B., Li, J.: Multiple strategies detection in ontology mapping. In
Proceedings of the 14th international conference on World Wide Web (WWW’05)
(Special interest tracks and posters). (2005) 1040-1041

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cu-
pid. In Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01). (2001) 49-58

Lin, D.: An information-theoretic definition of similarity. In Proceedings of the
15th International Conference on Machine Learning (ICML’98). (1998) 296-304
Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In Proceedings of 14th International Joint Conference for Artificial Intelli-
gence (IJCAT’95). (1995) 448-453

Schickel-Zuber, V., Faltings, B.: OSS: A semantic similarity function based on
hierarchical ontologies. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (LJCAT’07). (2007) 551-556

He, B., Chang, K.C.: Automatic complex schema matching across Web query
interfaces: A correlation mining approach. ACM Transactions on Database Systems
31(1) (2006) 346-395

Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
In Proceedings of 15th World Wide Web Conference (WWW’06). (2006) 23-31
Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using Bayesian decision
for ontology mapping. Journal of Web Semantics 4(4) (2006) 243-262

Hu, W., Zhao, y., Qu, y.: Partition-based block matching of large class hierarchies.
In Proceedings of the 1st Asian Semantic Web Conference (ASWC’06) (2006) 72—
83

Hu, W., Qu, Y.: Block Matching for Ontologies. In Proceedings of the 5th Inter-
national Semantic Web Conference (ISWC’06). (2006) 300-313

