
A Structure-based Similarity Spreading
Approach for Ontology Matching

Ying Wang, Weiru Liu, and David A Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, BT7 1NN, UK

{ywang14, w.liu, da.bell}@qub.ac.uk

Abstract. Most of the frequently used ontology mapping methods to
date are based on linguistic information implied in ontologies. However,
same concepts in different ontologies can represent different semantics
under the context of different ontologies, so relationships on mapping
cannot be solely recognized by applying linguistic information. Discov-
ering and utilizing structural information in ontology is also very impor-
tant. In this paper, we propose a structure-based similarity spreading
method for ontology matching which consists of three steps. We first
select centroid concepts from both ontologies using similarities between
entities based on their linguistic information. Second, we partition each
ontology based on the set of centroid concepts recognized in it using
clustering method. Third, we utilize a similarity spreading method to
update the similarities between entities from two ontologies and apply
a greedy matching method to establish the final mapping results. The
experimental results demonstrate that our approach is very effective and
can obtain much better results comparing to other similarity based and
similarity flooding based algorithms.

1 Introduction

Ontology mapping is a solution to the semantic heterogeneity problem in infor-
mation integration and sharing. It establishes correspondences between seman-
tically related entities in different ontologies [1]. Virtually any application that
involves multiple ontologies must establish semantic mappings among them, to
ensure interoperability [2]. Different applications arise in myriad domains [3]: on-
tology engineering, information integration, web services, and multi-agent com-
munication etc.

Most of the ontology mapping approaches use the elementary-level matching
techniques [4–6] (e.g., string-based methods, linguistic-based methods) which
map elements by analyzing entities in isolation, ignoring their relationships with
other entities [7]. But the determination of the true semantics of an entity is
often difficult without a context, so structural information of an ontology plays
an important role for ontology mapping.

When an ontology is viewed as a graph, an entity of an ontology (a node
in a graph) inherits its parents semantics, and also passes on its own semantics

2

to its children. Therefore, considering structural information is a natural way
for enhancing ontology mapping as illustrated by the following two examples.
Example 1 shows that two apparently different entities from two ontologies are
similar when their neighboring concepts are similar. On the other hand, in Ex-
ample 2, even when two entities of two ontologies are similar, if their neighboring
concepts are not sufficiently similar, then these two entities are very likely not
matched.

Example 1. Figure 1 is a mapping snippet between two ontologies which de-
scribes bibliographic references from OAEI benchmark. In this mapping exam-
ple, concept Proceedings and concept Proc have different labels and seemingly
not very similar semantically. But if they are embedded into the ontologies they
belong, the neighbors of Proceedings: Book, Monograph, Collection are
very similar to the neighbors of Proc: Book, Monograph, Collection, so
Proceedings and Proc are highly possible to be mapped together.

Fig. 1. An example of different concepts with the same meaning.

Example 2. Figure 2 shows an example of mapping snippet between two concept
hierarchies which are extracted from Google Directory1 and Yahoo Directory2

separately. We observe that concept History in Figure 2(a) has exactly the same
label as the concept History in Figure 2(b). When using traditional methods to
compare the similarity between these two concepts, such as edit-distance based
or lexical-based methods, a high similarity value will be obtained which means
they should be mapped together. However this is incorrect, because we observe
that the neighboring concepts of these two entities are not similar: one talks
about the history of music and the other describes the history of architecture.
So these two entities should not be mapped.

The idea of semantic propagation was explored in [6] on schema mapping
in data integration, called similarity flooding which utilize graphs to compute
structure similarities between data elements. In this paper, we extend this idea
to ontology mapping. The difference between ontology mapping and schema
mapping is that ontologies normally have richer semantics and more complex
structures than schemas. If we apply the schema mapping similarity flooding al-
gorithm to mapping ontolgies directly, the computational cost for storing graphs
will be too high to be practically applicable.

1 http://www.google.com/dirhp
2 http://dir.yahoo.com/

3

Fig. 2. An example of same concepts with different meaning.

Although there have been several extensions of similarity flooding to ontology
mapping, such as [8, 9], they all suffer from some drawbacks. The main drawback
in [8] is that the similarity propagation is done each time for a whole ontology
graph. However, similarities can only be preserved to entities that are not too
far from a given entity, that is, propagation should be done locally in relation to
a given entity. The approach proposed in [9] tried to overcome this limitation by
adding some restrictions when generating the pairwise connectivity graphs, so
that propagations are done through these local graphs. However, the condition
for generating the connectivity graphs may eliminate some useful links that
should have been used for propagating similarities.

In this paper, we propose another extension to the similarity flooding ap-
proach, aiming to explore only locally related neighboring entities through a
partition technique. This approach can reduce the computational complexity
encountered in [8] on the one hand and avoid the danger of ignoring any useful
entities on the other hand as may happen in [9], because only those neighboring
concepts which are very close to the given entity structurally and highly related
to this concept semantically should be considered. For example, as shown in
Figure 2(a), concept Organization is not close to concept History and their
semantics are not closely related, so the interaction (similarity propagation) be-
tween them can be ignored.

To propagate similarities locally, we need first to determine how to partition
an ontology graph. To facilitate this, a set of centroid concepts (entities) are
selected from two given ontologies. From these centroid concepts, some parti-
tion sets can be built. Our idea of selecting centroid concepts is built on the
recognition that for two ontologies in the same domain, most of the concepts are
repeated frequently, for instance, concepts Reference, Book of the first ontol-
ogy also appear in the second ontology. Therefore, it is possible to start with
highly matched concepts, selected as centroid concepts. This idea was used in
[10] to find anchors (a pair of look-alike concepts) for flooding alignments to the
neighbors of anchors. The difference between their approach and the idea here
is that [10] floods alignments but our approach spreads similarities and revises
the similarity value of a nodes when the similarity values of the nodes in its
partition are changed.The idea of using anchors was also discussed in [11]. The

4

difference between our approach of finding centroid and that in [11] is that the
computation of structural similarities between entities are totally different.

Our mapping approach is realized by the following three main steps.
Step one: Establish preliminary mappings between any two entities from

two given ontologies based on their descriptive (semantic) information.
Step two: Select centroid concepts from the two ontologies based on simi-

larities between entities where the similarity value is 1. Each centroid is taken
as the starting point of a partition set, and every remaining concept in each
ontology is assigned to the partition set where the similarity value between the
centroid of this partition set and this concept is the highest.

Step three: A structural-based similarity propagation method is performed
to update the similarities between entities and a greedy matching method is used
to find the final mapping results.

The main contributions of our proposed approach are:

– We propose a structure-based mapping method based on the similarity flood-
ing algorithm.

– We select centroid concepts for determining the similarity propagation scope
by deploying several computing similarity methods.

– We utilize a partition method to partition the entities in the same ontology
into different similarity propagation scopes.

– Experimental results show that our method performs very well comparing
with other similar approaches.

The rest of the paper is organized as follows. Section 2 introduces the basic
methods used for computing the similarities between entities from two ontologies
and then presents an algorithm to select the centroid concepts for each ontology.
Section 3 illustrates our clustering-based method to partition ontologies. Section
4 presents the similarity spreading method. Section 5 describes the experimental
datasets and the results of our experiments. Section 6 discusses related work and
concludes the paper.

2 Centroid concepts selection

In this paper, ontologies are described by OWL and an entity in an ontology is
defined as: e ∈ C ∪ P where C and P are the sets of concepts and properties in
an ontology respectively.

We first compute the initial similarities between entities and then select the
centroid concepts from these two ontologies.

When calculating similarities between entities, we aim to maximize the de-
scriptive (or semantic) information of an entity, such as its ID, its label and its
comment to cover diverse situations. The descriptive information of an entity is
can be one of the following two forms:

– The descriptive information of a concept:
DI(e) = {ID, label, comment}

5

– The descriptive information of a property:
DI(e) = {ID, label, comment, domain, range}

where ID is the name of an entity, label provides an optional human readable
name of an entity, and comment is often expressed in natural language describ-
ing an entity. Domain and range are the basic but important ways to restrict
a property. The domain of a property limits the individuals to which the prop-
erty can be applied and the range of a property limits the individuals that the
property may have as its value3.

Given two entities ei from O1 and ej from O2, we first apply the string-
based and WordNet-based methods to compute the similarities between words,
where these words are from the ID, label, or domain and range of entities. After
this, we compute the similarities between entities based on the similarities of
words. We also use the Vector Space Model (VSM)-based method to compute
the similarities between entities based on their comments. Finally, we combine
these similarities obtained from above methods as the final similarities between
entities. The details of these methods are given below.

2.1 String-based method and WordNet-based method for
computing similarities between entities

String-based method It consider strings as sequences of letters in an alphabet.
They are typically based on the following intuition: the more similar the strings,
the more likely they are to denote the same concepts [7]. In this paper, we apply
the method proposed by Stoilos etc in [12] where the similarity measure between
words wi and wj is defined as:

simStr(wi, wj) = comm(wi, wj)− diff(wi, wj) + winkler(wi, wj) (1)

where comm(wi, wj) stands for the commonality between wi and wj , diff(wi, wj)
for the difference between wi and wj , and winkler(wi, wj) for the improvement
of the result using the method introduced by Winkler in [13].

WordNet-based method It uses common knowledge or domain specific the-
sauri to match words. This kind of matcher has been used in many studies
[14–16]. In this paper, we use an electronic lexicon, WordNet, for calculating
the similarity values between words. WordNet is a lexical database developed by
Princeton University which is now commonly viewed as an ontology for natural
language concepts.

WordNet can be taken as a hierarchical structure and the idea of the path
length method [17] is to find the sum of the shortest path from two concepts
(words) to their common hypernym. The similarity between two words wi and
wj is measured by using the inverse of the sum length of the shortest paths:

simWN (wi, wj) =
1

llength + rlength
(2)

3 http://www.w3.org/TR/owl-features/

6

where llength is the shortest path from word node wi to its common hypernym
with word node wj and rlength denotes the shortest path from wj to its common
hypernym with wi.

Calculating similarities from words to entities We have computed simi-
larities between pairs of words according to two methods stated above, next we
calculate similarities of entities based on the results obtained from the two meth-
ods separately. Let us assume that each entity is composed of several words and
these individual words are grouped into a set. For example, entity HistoryBook
is used to generate a set of words {History, Book}. Calculating the similarity
between two entities is translated into calculating the similarity between two
sets of words:

1. First, for each word wi in one set of words, compute the similarity values
between wi and every word wj from the other set of words and then pick
out the largest similarity value.

2. Second, attach this value to word wi. Repeat this step until all of the words
in both sets have their own values.

3. Third, the final similarity value of a pair of entities is the sum of similarity
values of all the words from the two sets divided by the total number of all
the words in the two sets.

2.2 VSM-based method for computing similarities between entities

In vector space model [18], documents are represented by vectors of words and
the similarity between two documents are computed by using the cosine simi-
larity equation. To apply this method, we first regard each comment attached
to an entity as a document and all of the comments belonging to two ontologies
are regarded as the collection of documents. Then, we deploy the vector space
model based method to compute the similarity between entities.

simV SM (ei, ej) = cossim(di, dj) =
−→
di · −→dj

|di| · |dj | (3)

where for each document d in a document collection D, a weighted vector can
be constructed as −→d = (w1, w2, ..., wn) where wi is the weight of word i in
document d, and wi = tfi · idfi = tfi · log |D|

|di| where tfi is the frequency of word
i in document d, |D| is the total number of documents and |di| is the number of
documents that contains word i

2.3 Combination of similarities between entities

We have obtained the similarities of entities from three different methods by
using descriptive information of entities, now we combine these similarities to-
gether. If the similarity value of one of three matchers based on descriptive

7

information is 1, then the similarity value between these two entities is set to 1,
since there is a method which is very sure about the equivalence between them.
Otherwise, the similarity value is set to be the average the three similarities
values obtained, as used in [19].

2.4 Centroid concepts selection

The selection of centroid concepts (e ∈ C) is based on the similarities between
concepts from ontologies. As shown in Algorithm 1, entities (concepts) from two
ontologies are selected as centroid concepts if each of them has a perfect match
in another ontology.

Algorithm 1 Selecting Centroid Concepts from Ontologies
Input: Ontologies O1 and O2

Output: Concept sets C1 and C2

1: C1 ← ∅, C2 ← ∅
2: for all ei ∈ O1, ej ∈ O2 do
3: if sim(ei, ej) = 1 then
4: C1 ← C1 ∪ {ei}, C2 ← C2 ∪ {ej}
5: end if
6: end for

Example 3. After computing the similarities between concepts in Figure 2, we
can obtain four centroid concepts for both ontologies: Visual Arts, History,
Art History, Organization.

3 Ontology partition

Now, we describe the process of partitioning ontologies based on the centroid
concepts selected from ontologies. The intuition of partitioning is that objects in
the same partition set should be close or related to each other, both semantically
and structurally.

3.1 Similarities between entities in one ontology

Structure similarity Wu and Palmer [20] proposed a method to measure
the similarity between concepts within one conceptual domain. The conceptual
domain is constructed as a hierarchical structure, so this method only considers
the structure of the domain and does not use any other extra information.

simStru(ei, ej) =
2 ∗N3

N1 + N2 + 2 ∗N3
(4)

where ei and ej are two concepts in the same ontology and we assume that ep is
their most specific, common parent node; N1 is the number of concepts on the
path from ei to ep and N2 is the number of concepts on the path from ej to ep;
N3 is the number of nodes on the path from ep to root.

8

Semantic similarity The calculation of semantic similarity between entities
in one ontology is the same as for calculating similarities between entities form
two different ontologies as seen in Section 2.

3.2 Ontology partition

The algorithm for partitioning each ontology is illustrated below. We partition
an ontology into a partition by considering the sum of the structural based
similarity and semantic based similarity outlined in Section 3.1.

Algorithm 2 Partitioning Ontology
Input: Ontology O1 and centroid concept set C1 where C1 = {c1, ...ck}.
Output: A partition P = {G1, ...Gk}.
1: Gi = {ci} for i = 1,, k.
2: if |C1| > 1 then
3: for every entity er in O1 where er ∈ C and er 6∈ G1 ∪ ... ∪Gk do
4: choose a centroid concepts ci ∈ C1 which has the maximum similarity with er

(if there are several such centroid concepts, arbitrarily choose one).
5: Gi = Gi ∪ {er}.
6: end for
7: end if

In this algorithm, if there is only one centroid concept, there is no need to
do the partition, so the partition algorithm is applied when there is more than
one centroid concept.

Example 4. Continue Example 3. We can partition the ontologies in Figure 2 as
shown below:

– For ontology one demonstrated by Figure 2(a): P={{Visual Arts, Arts, Mu-
sic, Bands and Artists, Composition},{History, Opera, 20th Century Pop},
{Art History}, {Organization}}

– For ontology two illustrated by Figure 2(b): P={{Visual Arts, Arts& Hu-
manities, Design Arts, Interior Design, Architecture, Fashion and Beauty},
{History, Roman, Chinese}, {Art History},{Organization}}

4 Similarity propagation method

In order to apply the similarity flooding idea in our paper, we first introduce the
similarity flooding (SF) algorithm proposed in [6]. In this method, two schemas
A and B which are described by SQL DDL statements are first translated into
graphs by using an import filter SQL2Graph that understands the definitions of
relational schemas, in each of these graphs, different components in relational
schema which have relationships are connected by edges. For example, there is
an edge between table Personnel and column Pno. Each connection in a graph is

9

represented as a triple (s, p, o) where s and o denote the source node and target
node respectively, and p is the label of the edge. Then the three main processes
in SF are:

– Construction of pairwise connectivity graph (PCG) between A and B. The
PCG is defined as:

((x, y), p, (x′, y′)) ∈ PCG(A,B) ⇔ (x, p, x′) ∈ A and (y, p, y′) ∈ B

Each node in the PCG is an element from A × B, i.e. a possible candidate
mapping pairs between two graphs.

– Construction of induced propagation graph (IPG). The induced propagation
graph for A and B is constructed from PCG, where for every edge in the
PCG, the IPG contains an additional edge with the same source and target
nodes but in the opposite direction. The weights placed on the edges of the
propagation graph indicate the coefficients of the similarity of a mapping
candidate pair to its direct neighbors and back.

– Fixpoint computation. At the very beginning, the algorithm assigns similar-
ities between nodes of two graphs using some traditional similarity calcula-
tion methods. Then it runs an propagation of similarities between connected
nodes in the IPG iteratively until satisfy some stop conditions.

4.1 Construction of PCG and IPG from ontologies

Given two ontologies O1 and O2, we have partitioned them into partition sets.
Here, we need to build a directed label graph for every partition set. In every
partition set, the nodes are the concepts and the edges are from the struc-
ture information including SubClassof, HasProperty, HasRange, SubPropertyof.
For each pair of corresponding partition sets from the two ontologies based on
matched centroid concepts, we try to build an PCG. In this PCG, any pair of
concepts nodes from O1 and O2 is merged into a single node when this pair of
concepts have the same relationships with their neighbouring concepts, and in
turn, their corresponding neighbouring concepts are merged too. For example,
in Figure 3, {history,history} is merged into one node in Figure 4 because they
have similar relationships with their child nodes. The IPG is then constructed
based on this PCG as discussed above.

Example 5. Figure 3 shows two connected graphs, each is from one ontology
from one partition set.

Figure 4 shows the PCG constructed from the two connected graphs in Figure
3, and its corresponding IPG.

4.2 Fixpoint computation

In SF, σ(x, y) denotes the similarity between x ∈ O1 and y ∈ O2. The SF is based
on the iterative computation of σ-values. In every iteration, the σ-value for a
pair (x, y) is incremented by the σ-values of its neighbor pairs in the propagation

10

Fig. 3. An example of two connected graphs and each is from one partition set in one
ontology.

Fig. 4. An example of PCG and IPG.

graph multiplied by the weights on the edges going from the neighbor pairs to
(x, y) [6]. The fixpoint formula of iteration for similarity propagation is:

σi+1 = normalize(σi + ϕi) (5)

ϕi = Σm
j=1σ

i
jwj (6)

where σi and σi+1 are the similarities at the ith and (i+1)th iteration, function
ϕi is used to compute the increase of the similarities where m is the total number
of neighbouring nodes connected. The value (σi + ϕi) is finally normalized by
the maximal σ-value of the current iteration ((i + 1)th iteration). The above
computation is repeated until certain conditions are met, that is when there is
no changes in similarities produced. To avoid a large number of iterations, a
maximum number of propagation can be set to terminate the calculation.

4.3 Greedy matching

In order to finalize the matching, a greedy matching method in [21] is applied
for choosing the best match candidates from the list of ranked matched pairs
returned by the similarity spreading approach stated above. Once a pair has the
maximum similarity, the entities in the pair are removed from the ontoliges, and
the algorithm is applied to match the next pair until no more such pairs can be
found.

11

5 Experiments

5.1 Datasets

We now present the experimental results that demonstrate the performance of
different mapping methods on the OAEI 2009 Benchmark Tests. In our experi-
ments, we only focus on classes and properties in ontologies.

Generally, almost all the benchmark tests in OAEI 2009 describe Biblio-
graphic references except Test 102 which is about wine and they can be divided
into five groups [22] in terms of their characteristics: Test 101-104, Test 201-210,
Test 221-247, Test 248-266 and Test 301-304. A brief description is given below.

– Test 101-104: These tests contain classes and properties with either exactly
the same or totally different names.

– Test 201-210: The tests in this group change some linguistic features com-
pared to Test 101-104. For example, some of the ontologies in this group
have no comments or names, names of some ontology have been replaced
with synonyms.

– Test 221-247: The structures of the ontologies have been changed but the
linguistic features have been maintained.

– Test 248-266: Both the structures and names of ontologies have been
changed and the tests in this group are the most difficult cases in all the
benchmark tests.

– Test 301-304: Four real-life ontologies about BibTeX.

5.2 Experimental evaluation metrics

To evaluate the performance of mapping, like many other papers that use re-
trieval metrics, Precision, Recall and f-measure to measure a mapping method,
we use these measures to evaluate our methods as well. Precision describes
the number of correctly identified mappings versus the number of all mappings
discovered by the three approaches. Recall measures the number of correctly
identified mappings versus the number of possible existing mappings discov-
ered by hand. f-measure is defined as a combination of the Precision and Re-
call. Its score is in the range [0, 1]. precision = |mm∩ma|

|ma| , recall = |mm∩ma|
|mm| ,

f −measure = 2∗precision∗recall
precision+recall where mm and ma represent the mappings re-

sults discovered manually and by our method proposed in this paper respectively.

5.3 Comparison of experimental results

We now compare the outputs from our system (denoted as A-SP) to the results
obtained from the similarity flooding algorithm (denoted as A-SF), and the
traditional similarity based methods without using flooding technique (denoted
as B-SP). The details are given in Figure 5, which compares the f-measure of
three approaches. The benchmark tests are identified as numbers 101 to 304 on
the x-axis.

12

Fig. 5. The comparison of the f-measure of the three approaches.

We observe that the overall experimental results of A− SF and A− SP are
better than B − SP , and the results of A− SP are better than A− SF .

From Test 101 to Test 247, the two ontologies to be matched almost contain
classes and properties with exactly the same names and comments, so every
approach that deploys the computation of similarities of names and comments of
entities can get good results. However, there still have three special cases do not
obtain good results compared to other tests from Test 101 to Test 247. They are
Test 205, 209 and 210. These three tests describe the same kind of information
as other ontologies, i.e. publications, however, the class names and comments
in them are very different from those in the reference ontology Test 101 so the
three approaches does not obtain good results. We think A−SP presents better
than A−SF on these tests because in the process of partitioning ontologies and
constructing the PCG, A−SP has got the best mapping pairs in each spreading
scale. However, A−SF has to construct PCG for the whole ontolgies, and some
wrong similarities may generated during this process.

From Test 248 to Test 266, the names of the entities in ontologies are scram-
bled, meaningless and there are no comments attached to each entity, so string-
based similarity method becomes the only useful method for computing simi-
larity, but the similarity results still not very satisfied. These three approaches
cannot obtain good results on this group of tests.

Test 301-304 are real-life BibTeX ontologies which also include different words
compared to Test 101 describing publications so the results are similar to Test
205, so we do not get quite good similarity results from this data set.

6 Related work and Conclusion

Related work Many structure-based ontology mapping approaches have been
proposed [11, 6, 8–10, 23–25]. Anchor-PROMPT [11] takes a set of anchors (pairs

13

of related terms) as input from the source ontologies and traverses the paths be-
tween the anchors in the source ontologies. It compares the terms along these
paths to identify similar terms and generates a set of new pairs of semantically
similar terms. Similarity flooding [6] builds a pairwise connectivity graph and
uses the structure features to spread similarity between elements in this graph.
RiMOM [8] integrates multiple strategies for ontology alignment. It utilizes a
strategy selection module to dynamically determine which strategies should be
used in the alignment for different tasks. In its similarity propagation step, it
uses the similarity flooding algorithm to generate structure similarities. The sim-
ilarity propagation method [9] computes the similarity between entities based on
the idea of similarity flooding. It first defines some conditions to limit the gener-
ation of pairwise connectivity graphs n the process of similarity propagation, it
needs to build subgraphs for each element. Anchor-flood [10] starts off with an
anchor (a pair of “look-alike”) concepts form ontology and collects two blocks
of neighboring concepts. The concepts of the pair of blocks are aligned and the
process is repeated for finding new alignments. The differences between these ap-
proaches and our method proposed here have been discussed in the Introduction
and our approach overcomes some weaknesses in these methods.

Conclusion In this paper, we propose a method for computing similarities
based on both the semantic and structural information in ontologies. We partic-
ularly integrated the semantic flooding idea into our method in order to reflect
structural information. Our methods consists of three steps to find the final map-
ping results. As a future work, investigation on how to partition ontologies will
be carried out to see how different partitions will affect similarity spreading.

References

1. P. Shvaiko, J. Euzenat: Ten Challenges for Ontology Matching. In Proceedings of
the 7th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE’08). (2008) 300–313

2. A. Doan, J. Madhavan, P. Domingos, and A. Halevy: Ontology Matching: A
Machine Learning Approach. Handbook on Ontologies in Information Systems, S.
Staab and R. Studer (eds.), Springer-Velag, 2004. Invited paper, 397–416

3. J. Euzenat, P. Shvaiko: Ontology Matching. Springer, 2007.
4. H.H. Do, E. Rahm: COMA - A System for Flexible Combination of Schema Match-

ing Approaches. In Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB’01). (2001) 610–621

5. J. Madhavan, P. Bernstein, E. Rahm: Generic Schema Matching with Cupid.
In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01). (2001) 49–58

6. S. Melnik, H. Garcia-Molina, and E. Rahm: Similarity Flooding: A Versatile Graph
Matching Algorithm and Its Application to Schema Matching. In Proceedings of
the 18th International Conference on Data Engineering (ICDE’02). (2002) 117–128

7. P. Shvaiko, J. Euzenat: A survey of schema-based matching approaches. Journal
of Data Semantics. 4 (2005) 146–171

8. J. Li, J. Tang, Y. Li, Q. Luo: RiMOM: A Dynamic Multistrategy Ontology Align-
ment Framework. IEEE Transactions on Knowledge and Data Engineering. 21(8)
(2009) 1218–1232

14

9. P. Wang, B. Xu: An Effective Similarity Propagation Method for Matching On-
tologies without Sufficient or Regular Linguistic Information. In Proceedings of
the 4th the Semantic Web, Asian Conference (ASWC’09). (2009) 105–119

10. M.S. Hanif, M. Aono: An Efficient and Scalable Algorithm for Segmented Align-
ment of Ontologies of Arbitrary Size. Journal of Web Semantics. 7(4) (2009)
344-356

11. N.F. Noy, M.A. Musen: Anchor-prompt: Using non-local context for semantic
matching. In Workshop on Ontologies and Information Sharing at the 17th Inter-
national Joint Conference on Articial Intelligence (IJCAI’01). (2001)

12. G. Stoilos, G.B. Stamou, S.D. Kollias: A string metric for ontology alignment.
In Proceedings of the 4th International Semantic Web Conference (ISWC’05)
(ISWC’05). (2005) 624-637

13. W. Winkler: The state record linkage and current research problems. Technical
report, Statistics of Income Division, Internal Revenue Service Publication. (1999)

14. J. Tang, B. Liang, Z. Li: Multiple strategies detection in ontology mapping. In
Proceedings of the 14th international conference on World Wide Web (WWW’05)
(Special interest tracks and posters). (2005) 1040–1041

15. J. Madhavan, P.A. Bernstein, E. Rahm: Generic schema matching with cupid.
In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01). (2001) 49–58

16. P. Bouquet, L. Serafini, S. Zanobini: Semantic coordination: A new approach and
an application. In Proceedings of the 2nd International Semantic Web Conference
(ISWC’03). (2003) 130-145

17. P. Resnik: Using information content to evaluate semantic similarity in a taxonomy.
In Proceedings of the 14th International Joint Conference for Artificial Intelligence
(IJCAI’95). (1995) 448–453

18. G. Salton, A. Wong and C.S. Yang: A Vector Space Model for Automatic Indexing.
Communications of the ACM. 18 (1975) 613–620

19. Q. Zhong, H. Li, J. Li, G. Xie, J. Tang, L. Zhou, Y. Pan: A Gauss Function
based Approach for Unbalanced Ontology Matching. In Proceeding of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’09). (2009)
669–680

20. Z. Wu, M.S. Palmer: Verb Semantics and Lexical Selection. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics (ACL’94).
(1994) 133–138

21. W. Wu, C.T. Yu, A. Doan, W. Meng: An Interactive Clustering-based Approach
to Integrating Source Query interfaces on the Deep Web In Proceedings of the 30th
ACM SIGMOD International Conference on Management of Data (SIGMOD’04).
(2004) 95–106

22. Y. Qu, W. Hu, G. Cheng: Constructing virtual documents for ontology match-
ing. In Proceedings of the 15th international conference on World Wide Web
(WWW’06). (2006) 23–31

23. G. Jeh, J. Widom: SimRank: a measure of structural-context similarity. In Proceed-
ings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’02). (2002) 538–543

24. W. Hu, N. Jian, Y. Qu, Y. Wang: GMO: A Graph Matching for Ontologies.
In Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, (IO’05).
(2005)

25. J. Euzenat, P. Guégan, P. Valtchev: OLA in the OAEI 2005 Alignment Contest.
In Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, (IO’05).
(2005)

