
A Benchmark for Model Matching Systems:

The Heterogeneous Metamodel Case

Manuel Wimmer and Philip Langer

Business Informatics Group
Institute of Software Technology and Interactive Systems

Vienna University of Technology
{wimmer,langer}@big.tuwien.ac.at

Abstract

Recently, several model matching tools emerged that
compute the corresponding elements of two different
models. Having a closer look at concrete matching
scenarios, one may find different cases such as match-
ing different versions of one model, e.g., model evolu-
tion, or matching heterogenous models that do not
have a common predecessor. Especially, the latter
case is interesting as a first step when similar but at
the same time potentially heterogenous metamodels
have to be bridged for exchanging models between
different tools.

Most model matching tools provide means for
matching heterogenous metamodels. In particular,
several heuristics are implemented in matching algo-
rithms to reason about heterogenous structures and
terminologies used in the metamodels to be matched.
However, which set of heuristics is appropriate for het-
erogeneous metamodel matching and how to weight
them when aggregating the different results to achieve
correspondences with high quality is still an open chal-
lenge. To address this issue, we propose a benchmark
consisting of real world metamodels and manually de-
fined expected correspondences that allows to evalu-
ate automatically the quality of the output of model
matching tools.

1 Introduction

More than 10 years ago, a new software develop-
ment approach was officially launched—the Model
Driven Architecture (MDA)—intended to support
Model Driven Engineering (MDE). As indicated by
their names, models play the key role in MDA as well
as in MDE and are becoming more and more first-class
citizens in the software development process.

With the rise of MDA, the landscape of available
tools for model-driven software development is grow-
ing steadily. These tools support a wide range of tasks
like model creation, simulation, checking, and code
generation–to name just a few. Coming along with
this multitude of tools, heterogeneity increases, which

complicates or even prevents tool interoperability due
to different syntax, semantics, exchange formats, etc.

The efficient exchange of models, however, consti-
tutes an important prerequisite for effective software
development processes based on MDE. Unfortunately,
the transformation of one model to another model and
the development of integration solutions is a cumber-
some if performed manually. An approach to tackle
this problem—at least semi-automatically—is to con-
sider the metamodels of the modeling languages and
to identify correspondences between them. These cor-
respondences may be valuable input for developing
model transformations to exchange models between
tools, merging two metamodels into an unified meta-
model, or “just” to understand the differences be-
tween two metamodels.

Current model matching tools may be employed
to compute the correspondences between metamodels.
However, based on experiments with ontology match-
ing tools [5], it seems challenging to compute corre-
spondences with good quality between heterogeneous
metamodels, i.e., to produce a less amount of false
negatives and false positives, but at the same time
a high amount of true positives. One key in match-
ing heterogenous metamodels is to use an appropriate
combination of heuristics for reasoning on the struc-
tures of the metamodels as well as additional informa-
tion such as linguistic knowledge to reason on name
heterogeneities. Current tools offer several match-
ing algorithms and their configuration. However, cur-
rently less knowledge exists about the performance of
these tools for the heterogenous metamodel matching
case.

In this paper, we aim at addressing this challenge
by proposing a benchmark based on real-world meta-
models that allows to evaluate automatically the qual-
ity of model matching tools for the case of comput-
ing correspondences between heterogenous metamod-
els. To make this benchmark easily applicable, we
provide the correspondences that should be found by
the tools in a standardized format coming from the
area of ontology alignment [9] that is straight-forward

to produce. The benefit of using this format is the
automatic evaluation of the quality of the computed
correspondences.

The benchmark is available as open source project
at Eclipse labs.1 We already applied the benchmark
successfully to a list of Ontology matching tools back
in 2007 [5]. In the meantime, several dedicated model
matching tools emerged [6], thus we believe that now
it is a good point in time to revive this benchmark
proposal. For instance, we recently evaluated EMF
Compare that is the out-of-the-box model comparison
tool for the Eclipse Modeling Framework (EMF).2 We
provide this evaluation as a reference case how to in-
stantiate this benchmark proposal at our benchmark
website.

2 Goal of the Benchmark

The goal of the benchmark proposed in this paper is to
provide the basis to compare current model matching
tools for the heterogenous metamodel matching case.
Further applications are also possible such as find-
ing appropriate configurations of the matchers used
within the tools. With the proposed benchmark, we
aim at assessing the following questions about model
matching tools:

1. Correctness: What is the ration between cor-
rectly and falsely detected correspondences? This
property is also referred to as precision.

2. Completeness: What is the ration between cor-
respondences to be found and correctly detected
correspondences? This property is also referred
to as recall.

The benchmark should allow an automatic evalua-
tion of the two stated properties. Thus, it has to cover
the metamodels to be matched, the correspondences
that have to be found, i.e., the gold standard, as well
as a component that is able to compare the actual
computed correspondences with the expected ones to
compute the two stated properties. In the following,
we explain how we designed the benchmark to fulfill
these three points.

3 Design of the Benchmark

We now provide details about the matching scenar-
ios that are comprised by the benchmark, as well as
the measures and how they are computed for giving a
statement on the quality of the computed correspon-
dences. Furthermore, we discuss the formats used to
represent the metamodels as well as the correspon-
dences.

1http://code.google.com/a/eclipselabs.org/p/

m3-benchmark
2http://www.eclipse.org/emf/compare

Matching scenarios. The benchmark consists of
ten matching scenarios involving well-known struc-
tural modeling languages from the fields of object-
oriented modeling and data modeling. These sce-
narios cover different challenges for model matching
tools. While some modeling languages use a very sim-
ilar terminology for their metamodel elements, other
languages are very heterogenous with respect to the
used terminology. This is in particular true for sce-
narios where two languages coming from different
modeling fields are matched, e.g., data modeling vs.
object-oriented modeling. Furthermore, some meta-
models are small ones having simple structures, others
are larger metamodels involving complex containment
and inheritance structures to represent the modeling
languages.

Metamodels. We assembled five different modeling
languages to define ten matching scenarios (each sce-
nario matches two different metamodels). In partic-
ular, we provide the metamodels of the UML class
diagram3 (version 1.4 and 2.0), the modeling lan-
guage of the Eclipse Modeling Framework (Ecore)4,
the Extended Entity-Relationship Language (EER)5,
and the data modeling part of the Web Modeling
Language (WebML)6. For all these metamodels, we
provide Ecore-based representations as well as OWL-
based representations (that have been automatically
produced by our metamodel lifter component [4] to
evaluate ontology matching tools as well). It has to
be noted that although the UML class diagram version
1.4 and 2.0 may look as a language evolution example,
it is actually not the case. The UML 2.0 metamodel
has not been defined by modifying the UML 1.4 meta-
model, but from scratch.

Table 1 summarizes the main characteristics of the
modeling languages by means of counting the meta-
model elements according to their types. As the num-
bers suggest, the metamodels can be categorized by
their size in small, medium, and large. UML 1.4,
UML 2.0, and Ecore are using inheritance relation-
ships heavily resulting in a large inheritance depth,
in contrast to WebML and EER. Furthermore, the
UML metamodels make use of multiple inheritance.
Finally, Table 1 states the origin of the terminology
which is used for naming the metamodel elements. It
is worth mentioning that the UML metamodels and
Ecore use object-oriented terminology (OO for short),
in contrast to WebML and EER, which use database
terminology (DB for short).

Correspondences. For each scenario, we devel-
oped manually the set of correspondences that is ex-
pected as the result of the manual matching task act-

3http://www.omg.org/technology/documents/modeling_

spec_catalog.htm
4http://www.eclipse.org/emf
5based on [1]
6big.tuwien.ac.at/projects/webml

Table 1: Modeling languages used in the benchmark.

U
M
L
2.
0
C
D

U
M
L
1.
4
C
D

E
co
re

W
eb
M
L

E
E
R

#Class 40 33 18 6 7
#Attribute 18 31 31 8 5
#Containment 23 8 9 3 4
#Reference 52 29 25 4 7
#Enumeration 3 6 0 2 0
#EnumLiteral 11 18 0 15 0
#AllModelElements 158 143 83 53 23
Size large large middle small small

Taxonomy
#SuperClass 17 11 7 1 1
#SubClass 36 28 16 4 2
#Multiple Inheritance 9 3 0 0 0
Inheritance Depth 6 5 5 1 1

Terminology OO OO OO DB DB

ing as the gold standard. The correspondences are ex-
pressed in the INRIA Alignment Format7 [3], which
is a commonly agreed format for representing corre-
spondences in the ontology matching community. The
INRIA Alignment API8 [2] provide dedicated support
to interact with this format.

Listing 1: Example for the INRIA Alignment Format
1 <Alignment>
2 <uri1>http ://UML1.4</uri1>
3 <uri2>http ://UML2.0</uri2>
4 . . .
5 <Cell>
6 <entity1 rdf : resource=’http : //UML1.4#

↪→Class ’ />
7 <entity2 rdf : resource=’http : //UML2.0#

↪→Class ’ />
8 <measure rdf : datatype=’http : //www.w3 . org

↪→/2001/XMLSchema#f loat ’>
9 0.7479

10 </measure>
11 <relation>=</ relation>
12 </Cell>
13 <Cell>
14 <entity1 rdf : resource=’http : //UML1.4#

↪→Element name ’ />
15 <entity2 rdf : resource=’http : //UML2.0#

↪→NamedElement name ’ />
16 <measure rdf : datatype=’http : //www.w3 . org

↪→/2001/XMLSchema#f loat ’>
17 0.8923
18 </measure>
19 <relation>=</ relation>
20 </Cell>
21 . . .
22 </Alignment>

An example for expressing correspondences in the
INRIA Alignment Format is shown in Listing 1. The
correspondences are collected in one XML file that
consists of a set of Cells. Each cell is representing
one correspondence. The metamodel elements that
correspond to each other are referred by the entity1
and entity2 elements using an URI. In our example,
the Class meta-class in the UML 1.4 is mapped to
the Class meta-class in UML 2.0. Additional meta-
information is provided by the measure element and
the relation element. The measure element is referring
to the confidence that the correspondence holds. This
value is of special importance in cases where many

7http://alignapi.gforge.inria.fr/format.html
8http://alignapi.gforge.inria.fr/index.html

correspondences are computed for one metamodel el-
ement. The relation element is describing the kind
of the identified correspondence. While in generic
model matching, normally no special type is used, in
the metamodel matching case, also more specific types
such as sub-type or super-type relationships may be
computed. However, in the current benchmark, we
use simple equals correspondences, only, and also the
measures are not further interpreted.

We defined not only correspondences between
metaclasses, but also between their features, i.e.,
attributes and references. As a convention to
refer to features in the alignment files, we use
Class.name.concat(’ ’).concat(Property.name). Be-
sides this convention, the cells in the alignment files
are analogous for properties as for classes.

Measures. To measure the quality of the match-
ing tools, we reuse measures stemming from the field
of information retrieval [8] to compare the manually
determined correspondences M (also called expected
correspondences) to the automatically found corre-
spondences A. The primary measures are precision
and recall, which are negatively correlated. Thus, we
use a common combination of the primary measures,
namely F-measure.

The measures are based on the notion of true pos-
itives (tp = A ∩ M), false positives (fp = A \ M),
and false negatives (fn = M \A). Based on the cardi-
nalities of these sets the aforementioned measures are
defined as in [7, 8] as follows:

• Precision = |tp|
|A| = |tp|

|tp|+|fp|

• Recall = |tp|
|M | = |tp|

|tp|+|fn|

• F-Measure = 2 ∗ Precision∗Recall
Precision+Recall

Precision reflects the share of relevant correspon-
dences among all the automatically found correspon-
dences. Recall reflects the frequency of relevant corre-
spondences compared to the set expected correspon-
dences. As these two measures may be thought of

as probabilities, their values may range from 0 to 1,
whereas the higher value, the better. F-measure takes
both precision and recall into account to overcome
some over- or underestimations of the two measures.
Formally the F-measure is in our case the equally
weighted average of the precision and recall measure.

For evaluating the benchmark itself, we reuse the
INRIA Alignment API that provides an evaluation
framework for correspondences expressed in the IN-
RIA Alignment Format. More specifically, the API is
able to compute basic values such as true negatives,
false negatives, true positives as well as the aforemen-
tioned metrics for a set of expected correspondences
and automatically computed ones. How to use the
API for our benchmark is demonstrated for the re-
sults of EMF Compare on our project website.

Execution. For executing the proposed benchmark,
the metamodels have to be matched by the tool under
evaluation. This may require to transform the Ecore-
based metamodels to tool-specific formats. Normally,
a model-to-text transformation can act as an im-
porter. However, by using Ecore, which is the de-
facto metamodeling standard in the MDE community,
we expect that importers are already available in the
majority of model matching tools. After running the
model matching algorithms for the 10 scenarios, the
produced correspondences have to be translated to the
INRIA Alignment Format in case no specific exporter
for this format is available. Again, a model-to-text
transformation could serve for this purpose. In our
reference case we also provide such a model-to-text
transformation for EMF Compare. The produced cor-
respondences can be automatically evaluated by an
Eclipse project also provided at our website by just
copying the produced files using pre-defined names to
a special folder. More information on this is directly
provided in the Eclipse project that is based on the
INRIA Alignment API. The output of running the
Eclipse project are the mentioned measures for each
matching scenario as well as the average values for all
scenarios.

4 Conclusion

In this paper, we have presented a benchmark and an
evaluation framework for model matching tools con-
sidering the heterogenous metamodel matching case.
The evaluation framework is generic in the sense that
also other (meta)model matching cases may be eval-

uated, e.g., understanding metamodel evolution by
matching metamodels having the same origin. Here
we kindly invite the community to contribute fur-
ther matching cases to cover the broad spectrum of
(meta)model matching.

References

[1] P. P. Chen. The Entity-Relationship Model - To-
ward a Unified View of Data. ACM Transactions
on Database Systems, 1(1):9–36, 1976.

[2] J. David, J. Euzenat, F. Scharffe, and C. Tro-
jahn dos Santos. The Alignment API 4.0. Se-
mantic Web, 2(1):3–10, 2011.

[3] J. Euzenat. An API for Ontology Alignment.
In Proceedings of the ISWC’04, pages 698–712.
Springer, 2004.

[4] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler,
T. Reiter, W. Retschitzegger, W. Schwinger, and
M. Wimmer. Lifting Metamodels to Ontologies - a
Step to the Semantic Integration of Modeling Lan-
guages. In Proceedings of MODELS’06. Springer,
2006.

[5] G. Kappel, H. Kargl, G. Kramler, A. Schauerhu-
ber, M. Seidl, M. Strommer, and M. Wimmer.
Matching Metamodels with Semantic Systems -
An Experience Report. In Workshop Tagungsband
der Datenbanksysteme in Business, Technologie
und Web (BTW) Konferenz, pages 38–52. Verlag
Mainz, 2007.

[6] D.S. Kolovos, D. Di Ruscio, A. Pierantonio, and
R.F. Paige. Different Models for Model Matching:
An Analysis of Approaches to Support Model Dif-
ferencing. In Proceedings of the CVSM Workshop
@ ICSE’09, pages 1–6. IEEE, 2009.

[7] D.L. Olson and D. Delen. Advanced Data Mining
Techniques. Springer, 2008.

[8] G. Salton and D. Harman. Information retrieval.
Wiley, 2003.

[9] P. Shvaiko and J. Euzenat. Ontology Matching:
State of the Art and Future Challenges. IEEE
Transactions on Knowledge and Data Engineer-
ing, 25(1):158–176, 2013.

