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Abstract. Realizing information exchange is a frequently recurring
challenge in nearly every domain of computer science. Although lan-
guages, formalisms, and storage formats may differ in various engineer-
ing areas, the common task is bridging schema heterogeneities in order
to transform their instances. Hence, a generic solution for realizing infor-
mation exchange is needed. Conventional techniques often fail, because
alignments found by matching tools cannot be executed automatically
by transformation tools. In this paper we present the Smart Matching
approach, a successful combination of matching techniques and trans-
formation techniques, extended with self-tuning capabilities. With the
Smart Matching approach, complete and correct executable mappings
are found in a test-driven manner.

1 Introduction

In this paper we present a self-tuning approach for information integration. Our
approach—the Smart Matching approach—allows the derivation of high quality
executable mappings for different kinds of schemas from small, simple examples
defined by the user.

Seamless information exchange between different sources is an important task
in nearly every engineering area of computer science. This ubiquitous challenge
recurs in various application domains starting from the exchange of data between
databases over the exchange of ontology instances between semantic web services
to the exchange of complete models between modeling tools. Although every
engineering area has its own languages, formalisms, and storage formats, the
problem is always the same. Two heterogeneous schemas have to be bridged in
order to transform instances of the one schema to instances of the other. Thus,
a generic information integration solution for the use in different application
domains is highly valuable.
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On the one hand, matching techniques for automatically finding semantic
correspondences between schemas have been developed in the context of infor-
mation integration. On the other hand, transformation techniques have been es-
tablished for automatically transforming data conforming to a schema A to data
conforming to a schema B in a semantic preserving way. However, the combina-
tion of matching approaches and transformation approaches is accompanied with
several difficulties due to the huge gap between detected alignments, mappings,
and executable transformation code. For bridging this gap, two problems have to
be solved. First, state-of-the-art matching techniques do not produce executable
transformation code. Second, for the automatic execution of the transformation,
correctness and completeness of the found alignments are indispensable. A solu-
tion for the first problem is presented in [7], where reusable mapping operators
for the automatic transformation of models are introduced. A solution for the
second problem is conceptually proposed in [8], where we discussed how to im-
prove current integration techniques by the application of self-tuning methods
in a test-driven manner resulting in the Smart Matching approach. Based on this
work, we implemented the self-tuning matching framework Smart Matcher.

In this paper we describe how the Smart Matcher increases the complete-
ness and correctness of alignments based on predefined examples. In particular,
we present the realization of the Fitness Function for self-evaluation and the
Mapping Engine for self-adaptation which are the basis of the self-tuning.

This paper is organized as follows. In Section 2 we present the Smart Matching
approach at a glance and the running example of this paper. Sections 3 and 4
elaborate on the two core components of the Smart Matcher namely the Fitness
Function and the Mapping Engine, respectively. In Section 5 we present an
evaluation of our approach. Related work is discussed in Section 6. In Section 7
we conclude and give an outlook to future work.

2 Smart Matching at a Glance

In this section, we present the Smart Matcher and its underlying conceptual ar-
chitecture at a glance. The Smart Matching method combines existing integration
techniques, i.e., matching and transformation approaches, by introducing a ded-
icated mapping layer for bridging the gap between alignments, mappings, and
executable transformation code as described in [1]. Feedback-driven self-tuning
improves the quality of the mappings in an iterative way [9]. For the implementa-
tion of the self-tuning capabilities, the quality of mappings has to be evaluated.
Therefore, we adopt test-driven development methods from software engineer-
ing [3] for developing integration solutions. The Smart Matcher’s architecture is
illustrated in Fig. 1. Basically, the application of the Smart Matcher comprises
eight phases which are described in the following.

1. Develop example instances. Like in test-driven software development, we spec-
ify an expected outcome for a specific input, i.e., instances for input and output
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Fig. 1. The Smart Matching approach at a glance.

schemas representing the same real world example are developed. Those in-
stances are necessary to verify the mappings identified in later phases in order
to follow a feedback-driven integration method. The user defined input instance
is later called LHS (left-hand side) instance, the output instance is named target
RHS (right-hand side) instance. This is the only time during the whole Smart
Matching process where human input is necessary.

2. Generate initial alignments. Existing matching tools create initial alignments
which may serve as input for the Smart Matcher. Every tool which supports the
INRIA alignment format [4] may be used. This phase is optional, i.e., the Smart
Matcher is also able to start from an empty set of alignments.

3. Interpret initial alignments. The alignments produced in Phase 2 are trans-
formed into an initial mapping model. This task is performed by the Mapping
Engine.

4. Transform instances. In this phase, the Transformation Engine executes the
initial mapping model and thereby transforms LHS instances into actual RHS
instances.

5. Calculate differences. The Fitness Function compares the actual and the
target RHS instances by means of their contained objects, values, and links. The
differences between the instances are collected in a Diff-Model, which expresses
the quality of the mappings between the source schema and the target schema.

6. Propagate differences. The differences, i.e., missing and wrong objects, values,
and links, identified by the Fitness Function are propagated back to the Mapping
Engine. The feedback is based on the assumption that schema elements are not
appropriately mapped if differences are calculated for their instances.
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7. Interpret differences and adjust the mapping model. The Mapping Engine an-
alyzes the feedback and adapts the mapping model between source and target
schema by searching for and applying appropriate mapping operators. Depend-
ing on the types of schemas to be integrated and the used mapping language,
different kinds of mapping strategies may be used.

8. Iteration. Now Phase 4 and Phase 5 are repeated. If the comparison in Phase 5
does not detect any differences or if a certain threshold value is reached, the pro-
cess stops. Otherwise, the Smart Matcher’s Mapping Engine adapts the mapping
model based on the identified differences and starts a new iteration by returning
to Phase 4.

In the following, we elaborate on the Fitness Function necessary for self-
evaluation in Phase 5 and the Mapping Engine necessary in particular for the
self-adaptation in Phase 7. Therefore, the next sections comprise detailed de-
scriptions on the design rationale and implementation of these two components
based on the example depicted in Fig. 2 (a). The schema on the LHS assigns
a discount with a height to each customer who is characterized by name and
famName. The schema on the RHS describes similar information, namely the
rebate height of a person. Only the family a person belongs to is modeled
by its own class. A correct mapping between those schemas should detect that
the attribute famName ought to be mapped to the class family what is not
given by the mapping shown in Fig. 2 (b) which has been produced from the
automatically computed alignments (cf. Fig. 2 (a)).

3 A Fitness Function for Mapping Models

The aim of the Fitness Function is to provide feedback on the quality of the
mapping models to the Mapping Engine. In the transformation scenario, the
quality of a mapping model indicates the correctness of the transformation of
the input model to the corresponding output model. Using a test-driven approach
where input and output pairs (e.g., cf. Fig. 2 (c)) are given, the generated output
model is compared with a given target output model (cf. Fig. 2 (d)). The smaller
the differences between the actual output model and the target output model are,
the better the quality of the mapping model is. This raises the question how to
compute expressive differences between actual and target instance models. When
using object-oriented schemas which typically consist of classes, attributes, and
references, differences on the instance level appear between objects, values, and
links. In the following, we describe our heuristic-based comparison method which
is sufficient to compute the necessary feedback for the mapping engine without
applying expensive comparison algorithms.

Comparing Objects. In general, objects have a unique ID within an in-
stance model (cf. Fig. 2 (c), e.g., f1:Family). However, when we want to com-
pare actual instance models with target instance models which are independently
created, one may not assume that two objects with the same ID are equivalent.
This is because often IDs are arbitrarily assigned, e.g., based on the order the
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Fig. 2. Running example: (a) alignments, (b) initial mapping model (c) user-defined
test instances, (d) actual vs. target instances for initial mapping model.

objects are instantiated. Therefore, we cannot rely on exact ID-based compar-
ison approaches, instead we have to apply a heuristic. The weakest condition,
which is necessary but not sufficient, for verifying that two instance models are
equivalent is to count the objects of a particular class in each instance model
and compare the resulting numbers, i.e., compute the cardinalities for a given
class. Consequently, having the same amount of objects for each class of the RHS
schema (abbr. with rhsSchema) in the actual instance model (abbr. with actual)
and in the target model (abbr. with target), is an indication that the applied
mappings between the classes of the schemas ought to be correct and complete.
This consideration leads to the following condition.

Condition 1 := forall classes c in rhsSchema |

actual.allObjects(c).size() = target.allObjects(c).size()

Because Condition 1 is not sufficient, it is possible that in certain cases the
amount of objects is the same for a given class but the mappings are not correctly
defined. Assume that for example a LHS class has a mapping to a RHS class,
which is instantiated twice, but actually the LHS class should be mapped to
another RHS class which is also instantiated twice. However, due to the fact
that the RHS classes have both the same amount of instances, no difference can
be determined when considering Condition 1 only. Thus, the mapping between
the classes are falsely interpreted as correct. To be sure that two objects are
equal, a deep comparison is necessary, meaning that attribute values and links
of the objects under consideration have to match. Using deep comparison, this
kind of false mappings between classes can be detected.
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Example. Fig. 2 (d) illustrates on the LHS the actual instances generated by
the interpretation of the automatically computed alignments and on the RHS
the given target instances. When Condition 1 is evaluated on these two models,
the cardinalities of the classes Rebate and Person are the same for the actual
model and for the target model. However, the cardinality of the class Family
is obviously not equivalent for both instance models. The Family objects are
totally missing in the actual model.

Comparing Values. Having the same cardinalities for a specific class is a
prerequisite for verifying that actual and target instance models are the same.
To be sure that two objects, one in the actual and the other in the target
instance model, are equal, these objects must contain exactly the same attribute
values. Therefore, for each attribute of the RHS schema two sets of values are
computed. The first one comprises all values of a specific attribute for the actual
model and the second one does the same for the target model. In case these two
sets comprise the same elements, the mapping for the RHS attribute seems to be
correct. Otherwise the attribute mapping is assumed to be incorrect or missing.

Condition 2 := forall attributes a in rhsSchema |

actual.allValues(a) = target.allValues(a)

Example. When Condition 2 is evaluated for our running example, one can
easily see that for the attribute Rebate.height Condition 2 holds. However, for
the attribute Person.label the computed sets are totally different, namely for
the actual instances the resulting set is {simpson, simpson, flenders} which
has no match with the computed set for the target instances {homer, marge,
ned}. Furthermore, Condition 2 does not hold for Family.label, because in the
actual model there are no Family objects that may hold such values.

Comparing Links. The last indication that the actual and target instance
models are equal, and consequently that the mapping model between the schemas
is correct, is that the structure of the instance models is the same, i.e., the
links between objects must be equivalent. In particular, equal objects must have
the same amount of incoming and outgoing links, which is in general hard and
expensive to prove. In order to provide a fast comparison method for links, we
decided only to check if the references of the RHS schema have the same amount
of instantiated links.

Condition 3 := forall references r in rhsSchema |

actual.allLinks(r) = target.allLinks(r)

Example. Considering our running example, Condition 3 holds for the refer-
ence Person gets Rebate. However, for the reference Person memberOf Family
Condition 3 does not hold. In the actual model we have no instantiations of this
reference, thus the result of the allLinks operation is the empty set, whereas
in the target model the operation allLinks produces a set with three entries.

Preparing the feedback for the mapping engine. After evaluating these
three conditions for all RHS schema elements, the feedback for the Mapping
Engine is defined as the set of all RHS schema elements which do not fulfill
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the aforementioned conditions. For the adaptation of the mapping model done
by the Mapping Engine, we decided that it is currently sufficient to know the
schema elements for which differences on the instance level have been found.
Therefore, these schema elements are collected for the feedback only, and not
the actual differences, i.e., objects, values, and links. Concerning our running
example, the following set is computed as feedback for the Mapping Engine
{Family, Person.label, Family.label, Person partOf Family}.

4 A Feedback-aware Mapping Engine

After the Fitness Function has computed the feedback, the Mapping Engine
interprets it and adapts the current mapping model to improve its quality. In
order to adapt mapping models in an appropriate and efficient way, we make
use of two kinds of strategies. First, local strategies are needed to find out if a
given mapping operator may be applied appropriately for a set of given schema
elements. Second, a global strategy is needed to guide the mapping process in
general and in particular for orchestrating the local strategies.

4.1 Local Strategies

As depicted in the Smart Matcher architecture (cf. Fig. 1), the LHS instance
models are transformed into RHS actual instance models. Subsequently, the dif-
ference between the actual and target instance models is computed on the RHS
which is then propagated back to the Mapping Engine. Consequently, the Smart
Matcher always transforms form left to right but adapts the mapping models
from right to left. For adaptation purposes, the Mapping Engine has to ap-
ply new mappings which can also replace existing ones. However, before a new
mapping is applied, it has to be ensured that the selected mapping operator is
applicable for a given set of schema elements, i.e., the mapping model should
be executable and the execution should result in consistent RHS instances. In
particular, each mapping operator needs a specific LHS structure and RHS struc-
ture as well as already applied mapping operators as context. Based on these
constraints, local strategies can be derived for determining if a given mapping
operator can be applied in a particular situation. Therefore, we have extended
our mapping operators with a isApplicable method which checks for given LHS
and RHS schema elements if a mapping can be applied in the current state of
the mapping model. For determining the implementation of the isApplicable
methods, information inherent in the mapping language is needed. This means,
the local strategies can be derived from the abstract syntax and static seman-
tic constraints of the mapping operators which have to be assured to generate
correct and executable mappings. If the isApplicable method returns true for
given LHS and RHS elements, the mapping operator can be applied. Thus, with
the help of the local strategies, we are able to automatically build mappings
between the schemas. However, until now, we have not defined how a mapping
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model is actually build. Therefore, in addition to the local strategies, a global
strategy is needed which guides the overall mapping process.

4.2 Global Strategies

Before a global strategy can be derived, one first has to think about how map-
ping models are manually developed. Generally, mapping models are developed
in a three-step process. First, some prototypical mappings are established. Sec-
ond, these mappings have to be interpreted, i.e., in the transformation scenario
the RHS instances are generated from the LHS instances. Third, the output of
the transformation has to be verified in order to be sure that the mappings were
correctly developed. For automation purposes, these steps have to be covered
by the global strategy. However, what aggravates the derivation of the global
strategy is that there a several variations how to proceed in each step. For ex-
ample, one user may prefer to build several mappings between classes in the first
place before mappings between attributes and references are created. Whereas,
another user may prefer to find only one mapping between two classes and then
tries to find all attribute mappings for these two classes. These examples al-
ready show that the derivation of a global strategy is not as predetermined as
the derivation of the local strategies. In particular, the following variation points
for global strategies exist.

– Sequence of mapping operator applications. The first decision that has
to be made is the sequence in which the different types of mapping opera-
tors are applied. One possibility may be first finding structural commonalities
between the schemas by applying symmetric operators, followed by bridging
structural heterogeneities by applying asymmetric operators.

– Depth-first vs. breadth-first search. Additionally to the application se-
quence of mapping operators, the global strategy may decide to find all C2C
mappings first and afterwards A2A and R2R mappings are explored (breadth-
first) or find iteratively one C2C mapping and for this mapping all possible
A2A and R2R mappings are searched (depth-first).

– All-at-once vs. incremental evaluation. Finally, it has to be decided, when
and how often mappings are evaluated. The global strategy may find several
possible mappings and evaluate them all together (all-at-once) or evaluate
each found mapping individually (incremental). The all-at-once approach is
similar to the waterfall model in software engineering, with its disadvantage
of spending much effort when working in the wrong direction. This can be
avoided with the incremental approach; however, much more evaluation steps
are necessary.

Because there are different ways to define a global strategy, we decided to
use a state-machine based implementation approach for global strategies. The
major advantage of this approach is to separate basic functionality, such as
transforming models, computing differences between models, as well as searching
and applying mappings, from the global strategy guiding the overall mapping
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process. This allows us to reconfigure the global strategy faster than compared to
reconfigurations on source code level, which is especially needed to empirically
analyze various configurations of the aforementioned variation points. In the
following, we present the most efficient configuration explored in our empirical
experiments. Fig. 3 illustrates this global strategy as an UML state diagram,
which is a depth-first and incremental strategy regarding to the aforementioned
variation points. The depth-first search also determines the application sequence
of the mapping operators. Please note that only those parts of the global strategy
are illustrated which are relevant for our running example. The first task of
the global strategy is to calculate the not yet correctly mapped LHS and RHS
schema elements based on the output of the Fitness Function. Then, it proceeds
with the establishment of mappings able to act as context mappings for other
mappings. More specifically, the idea is to examine one mapping between a RHS
class and an arbitrary LHS element, and then attributes and references of this
RHS class are used to approve the correctness of this context mapping. This
means, if a mapping for a RHS class is found and this mapping fulfills the
cardinality constraint (cf. Condition 1 in Section 3), in the next steps, mappings
for its features, i.e., attributes and references, are searched. If at least one feature
mapping is evaluated to true, i.e., fulfills Condition 2 or 3 of Section 3, the context
mapping is approved. For the opposite case, the context mapping is marked as
false, although the cardinality constraints are fulfilled. After giving an overview
on the design rational of this strategy, we discuss the three major phases of this
strategy based on the state machine illustrated in Fig. 3.

Finding context mappings. As already mentioned before, the local strate-
gies search from right to left. Hence, after the Init state where not yet cor-
rectly mapped LHS and RHS schema elements are computed, a RHS class is
selected in the state Select RHS Class to establish a context mapping. The
first choice is to select a LHS class to apply the C2C mapping operator (cf. state
Search 4 LHS Class). If a C2C mapping has been found by the local strategy
(cf. isApplicable method), it is applied and the state Evaluation is entered.
Otherwise, the RHS class is stored in the C2C blacklist which has as impact
that this RHS class will never be applied to a LHS class in future iterations (cf.
condition [not in C2C BL]).

Evaluating context mappings. Within the state Evaluate, the LHS instance
model is transformed into a RHS actual instance model. After the transforma-
tion, the actual and the target instance models are compared and the output of
the Fitness Function is analyzed. If the applied mapping is evaluated to true,
e.g., for C2C mappings it is required that the cardinality constraint is fulfilled,
consists of searching for feature mappings for the selected RHS class. In case the
evaluation returned false, the RHS class and the LHS element are stored in the
blacklist (i.e., this combination will never be applied again) and it is switched
into the state Init.

Approving context mappings. When the context mapping is evaluated to true,
the current state is changed to Select RHS Att in which a not yet correctly
mapped attribute of the RHS class is selected. Subsequently, the strategy looks
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for free LHS attributes. The structure and behavior of the following states for the
application of attribute mappings is analogous to the aforementioned application
of context mappings. After the evaluation of the found A2A mapping (cf. state
Evaluation), three cases have to be distinguished. First, the A2A mapping
is evaluated to true and the RHS class has no references, which results in an
approved context mapping, i.e., it is not changeable in future iterations, and in
a transition to the Init state. Second, no A2A mapping has been evaluated to
true and the RHS class has no references which results also in a transition to
the Init state but the context mapping is marked as evaluated to false, i.e., it is
changeable in future iterations. Third, the RHS class has additional references,
then the state is changed to Select RHS Ref independent of the evaluation of
the A2A mapping. The mapping of the RHS references and approving of the
context mapping is analogous to that of attributes.

Running Example. For exemplifying the execution behavior of the pre-
sented global strategy, we make use of the running example. In Section 3, we
have elaborated on the output of the Fitness Function for the initial mapping

a b

Init
[termination condition]

[not RHS containClass && not RHS containAtt && RHS containRef]
entry / computeRHS()
entry / computeLHS() [not RHS_containClass && RHS_containAtt]

[ _ _ _ ]

[RHS_containClass]
Select RHS Class

[inC2C_BL &&
not inA2C BL]

Search 4 LHS Class Search 4 LHS Attribute

not inA2C_BL]
[not inC2C_BL]

Search 4 LHS Class Search 4 LHS Attribute
do / isApplicable() entry / isApplicable()

[not mapFound]
[mapFound] 
/apply() [mapFound] 

/apply()

[not mapFound] 

Evaluation
entry / transform()
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entry / transform()
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Select RHS AttSelect RHS Att[cMapEval2False ||
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Search 4 LHS Att
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[ d]

Evaluation
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Evaluation
entry / transform()
entry / evaluate()
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a b
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/apply

Evaluation
/apply
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[cMapIsApproved && 
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Fig. 3. Incremental depth-first global strategy implemented as UML state machine.
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model which is summarized in Iteration 0 of Fig. 4. Now, it is explained how the
global strategy adapts the mapping model based on this input. In addition, the
necessary iterations are illustrated in Fig 4.

Iteration 1 and 2. When we reconsider the computed output of the Fitness
Function, we find out that only one RHS class is not correctly mapped. In par-
ticular, the class Family has currently no mapping to a LHS element. Therefore,
the global strategy switches from the Init state to the state Select RHS class
in which the Family class is selected. On the LHS schema no free classes are
available now. Thus, it is not possible to apply a C2C mapping and the global
strategy searches for a free attribute on the LHS to apply a A2C mapping with-
out aggregation. The Customer.name attribute is selected and an A2C mapping
is applied. Subsequently, the Evaluation state is entered, the transformation
is started, and the produced actual model is compared with the given target
model. The evaluation results amongst others into differences for Family in-
stances which is an indicator that the applied mapping is not correct. Thus, the
found mapping is put onto the blacklist and the Init state is entered. Because
there is another configuration possibility for the A2C operator, in iteration 2, an
A2C mapping with aggregation is applied which is also not correct and therefore
we end up again in the Init state.

Iteration 3. The Init state computes the same unmapped RHS and LHS ele-
ments as in the previous iterations. Thus, we enter again the Select RHS class
state where the class Family is selected. Again, no class on the LHS is free and a
LHS attribute is selected. In this iteration, we already know that Customer.name
is not the corresponding element. Therefore, another free attribute is searched
which results in selecting Customer.famName. After building the A2C map-
ping marked without aggregation between Family and Customer.famName, the
Evaluation state is entered. This time, the evaluation shows that the cardi-
nalities of the class Family are not equal, but some attribute values overlap.
However, for evaluating this mapping to true, the similarity value is too low.
Therefore, the next iteration is started by switching to the Init state.

Iteration 4. After entering the Init state, we have again the same set of
incorrectly mapped RHS elements. Thus, the same path is followed as before.
But this time, the applied A2C mapping is marked with aggregation. This means,
only for unique values new objects are created. The evaluation of this mapping
shows that no differences may be found for the focused RHS elements and the
mapping is marked as evaluated to true. Because the Family class has no further
unmapped features, the state Init is entered.

Iteration 5. This time, the Init state computes that only one RHS at-
tribute is not appropriately mapped. Therefore, we directly navigate to the
Select RHS Att state in which Person.label is selected. Within the next state,
Customer.name is selected, because this is the only free LHS attribute. The A2A
mapping is applied and the evaluation computes no difference between the actual
and target models. Thus, the whole mapping process terminates.
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Fig. 4. The Smart Matcher in action.
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Fig. 5. The development of quality indicators over time.

5 Evaluation

In the project ModelCVS3 which was aimed at finding solutions for the inte-
gration of modeling tools, the need for automatic model transformations arose.
Due to the lack of appropriate tools for metamodel matching, and the strong
relatedness of metamodels and ontologies [11], models were lifted to ontologies,
and ontology matching tools where applied. Unfortunately, the quality of the
resulting alignments did not meet our expectations [6] and we could not deduce
reliable mappings for model transformation. Consequently, the Smart Matching
approach was established. Although developed with a certain application do-
main in mind, the result was a generic matching tool which is not restricted
to metamodels only. In the following we present results of a case study where
elements of the UML class diagram 1.4 metamodel are matched to elements of
the UML class diagram 2.0 metamodel. Both metamodels consist of about 60
elements. The user-defined instance models describe a gas station with about 40
elements for the source model and about 30 elements for the target model. For
a detailed description of the setting please refer to our project page4.

Starting from an empty alignment set, the Smart Matcher achieves a preci-
sion of 0.963 and a recall of 0.897 resulting in an f-measure of 0.929. When we
translate the UML class diagram 1.4 terms into German and match it against the
English UML class diagram 2.0, we obtain the same results as the Smart Matcher
follows an uninterpreted mapping approach. In contrast, COMA++, the most
successful system in our matching systems evaluation [6], yields alignments with
a precision of 0.833, a recall of 0.583, and an f-measure of 0.683. The results of
the German UML class diagram 1.4 matched with the UML class diagram 2.0
clearly indicate the relevance of similarity information for COMA++: the preci-
sion decreases to 0.368 and the recall is 0.117 with an f-measure of 0.178. Fig. 5
shows the evolution of precision, recall, and f-measure with respect to the num-
ber of Smart Matching iterations. Whereas the precision value tends abruptly
towards one, recall and f-measure steadily increase. At iteration 91, the preci-
sion slightly decreases. The found mapping is interpreted as correct with respect
3 www.modelcvs.org
4 http://big.tuwien.ac.at/projects/smartmatcher
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to the provided instance models, although it is not. This is due to our heuristic
for references, which is not sufficient when two references which have the same
amount of links are between the same classes. For additional information on the
case study, we kindly refer again to our project page.

6 Related Work

The enormous demand for matching systems in order to automatically solve
information integration problems led to a vast number of different approaches
(for surveys cf. [5, 10]). Following the classification of [10] the Smart Matcher
realizes a schema-based approach where user-defined instances are employed to
verify and to improve the found alignments iteratively. In this sense, the Smart
Matcher is based on supervised machine learning techniques. In addition to the
source and the target schema, training data consisting of input/output pairs is
provided and a relationship model is generated which maps the input instances
to the output instances.

Several systems have been proposed which incorporate machine learning tech-
niques in order to exploit previously gathered information on the schema as well
as on the data level. For example, LSD, Autoplex, and Automatch use Naive
Bayes over data instances, SemInt is based on neural networks, and iMap anal-
yses the description of objects found in both sources by the establishment of a
similarity matrix (see [5] for an overview).

The probably closest approach to ours is SPICY. Like the Smart Matcher,
SPICY [2] enhances the mapping generation process with a repeated verification
phase by comparing instances of the target schema with transformed instances.
The similarity in conceptual architecture of these two approaches contrasts to
the significant differences in their realization as well as the moment a human
user has to intervent. Whereas SPICY only deals with 1:1 and 1:n alignments,
the Smart Matcher is able to resolve more complex heterogenities due to the in-
tegration of the CAR-language. This results in very distinct search, comparison,
and evaluation strategies. Furthermore SPICY assumes that instances of the
target schema are a priori available (e.g. from a Web data source). In contrast,
for the application of the Smart Matching approach a human user must explicitly
engineer the same instances in the source and in the target schema as the Smart
Matcher implements the idea of unit testing. When SPICY terminates, it returns
a ranked list of transformations which has then to be evaluated and verified by
the user. When the Smart Matcher terminates, the resulting mappings are correct
and complete with respect to the source and target input instances.

Finally, the eTuner [9] approach automatically tunes the configurations of
arbitrary matching systems by creating synthetic schemas for which mappings
are known. Hence, in contrast to the Smart Matcher which tunes the search
process itself, the eTuner adjusts other systems externally in order to increase
the accuracy of the found alignments.
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7 Conclusion and Future Work

In this paper we have presented the realization of the Smart Matcher, which im-
plements a generic method for the automatic detection of executable mappings
between a source schema and a target schema. During the whole search pro-
cess, human intervention is only necessary once, namely at the beginning. The
user has to define instances which represent the same real world issue in the
language of the source schema as well as in the language of the target schema.
Those instances allow a permanent evaluation and an incremental improvement
of the found mappings by the comparison of the user given target instances with
the generated actual instances. The Smart Matcher’s feedback-driven approach
guarantees that the resulting mappings are sound and complete with respect to
those instances. Therefore an accurate engineering of the instances is inevitable
for the successful application of the Smart Matcher, but the effort spent in the
preparation phase is compensated with less effort necessary in later phases. For
many schemas (e.g., UML diagrams, ontologies, database schemas) the creation
of the instances is supported by comfortable editors and once the instances are
established for one schema, those instances may be reused in multiple integration
scenarios. Furthermore, the required size of the instances does not need to be
large for obtaining a satisfying quality of the mappings, as we have experienced
in our case study.

In future work, we will focus on the development of appropriate methods
for the definition of the example instances in order to provide recommendations
and in order to guide the user during the preparation phase. Furthermore, we
plan more extensive comparisons with other systems, especially with those which
incorporate learning techniques. Concerning the Smart Matcher itself, we plan to
improve the search strategies by enhancing them with sophisticated heuristics.
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