Why Your Data Won’t Mix: Semantic Heterogeneity

Alon Y. Halevy
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195
alon@cs.washington.edu

1. INTRODUCTION

When database schemas for the same domain are devel-
oped by independent parties, they will almost always be quite
different from each other. These differences are referred to
as semantic heterogeneity. Semantic heterogeneity also ap-
pears in the presence of multiple XML documents, web ser-
vices and ontologies — or more broadly, whenever there is
more than one way to structure a body of data. The presence
of semi-structured data exacerbates semantic heterogeneity,
because semi-structured schemas are much more flexible to
start with. In order for multiple data systems to cooperate
with each other, they must understand each other’s schema.
Without such understanding, the multitude of data sources
amounts to a digital version of the Tower of Babel.

This article begins by reviewing several common scenar-
ios in which resolving semantic heterogeneity is crucial for
building data sharing applications. We then explain why re-
solving semantic heterogeneity is difficult, and review some
recent research and commercial progress in addressing the
problem. Finally, we point out the key open problems and
opportunities in this area.

2. SCENARIOS OF SEMANTIC HETERO-
GENEITY

Enterprise Information Integration (EII): Enterprises to-
day are increasingly facing data management challenges that
involve accessing and analyzing data residing in multiple
sources, such as database systems, legacy systems, ERP sys-
tems and XML files and feeds. For example, in order for
an enterprise to obtain a “single view of customer”, they
must tap into multiple databases. Similarly, to present a uni-
fied external view of their data, either to cooperate with a
third party or to create an external facing web site, they must
access multiple sources. As the electronic marketplace be-
comes more prevalent, these challenges are becoming bot-
tlenecks in many organizations.

There are many reasons for which data in enterprises re-
sides in multiple sources in what appears to be a haphazard
fashion. First, many data systems were developed indepen-
dently for targeted business needs, but when the business
needs changed, data needs to be shared between different
parts of the organization. Second, enterprises acquire many
data sources as a result of mergers and acquisitions.

Over the years, there have been multiple approaches to ad-
dressing enterprise information integration challenges. Until
the late 90’s, the two leading approaches were data ware-
housing and building custom solutions. Data warehousing
solutions had the disadvantage of accessing stale data in many
cases and not being able to work across enterprise bound-
aries. Custom code solutions are expensive, hard to main-
tain, and typically not extensible.

In the late 90’s, several companies offered solutions that
queried multiple data sources in real-time. In fact, the term
EIl is typically used to refer to these solutions. While the
users of these systems still see a single schema (whether re-
lational or XML), queries are translated on the fly to appro-
priate queries over the individual data sources, and results
are combined appropriately from partial results obtained from
the sources. Consequently, answers returned to the user are
always based on fresh data. Interestingly, several of these
companies built their products on XML platforms, because
the flexibility of XML (and more generally of semi-structured
data) deemed it more appropriate for data integration appli-
cations. A recent article [8] surveys some of the challenges
faced by this industry. Finally, more recent research has pro-
posed peer-to-peer architectures for sharing data with rich
structure and semantics [1].

In any of these data sharing architectures, reconciling se-
mantic heterogeneity is key. No matter whether the query
is issued on the fly, or data is loaded into a warehouse, or
whether data is shared through web services or in a peer-to-
peer fashion, the semantic differences between data sources
need to be reconciled. Typically, these differences are rec-
onciled by semantic mappings. These are expressions that
specify how to translate data from one data source into an-
other in a way that preserves the semantics of the data, or
alternatively, reformulate a query posed on one source into
a query on another source. Semantic mappings can be spec-
ified in a variety of mechanisms, including SQL queries,
XQuery expressions, XSLT scripts, or even Java code.

In practice, the key issue is the amount of effort it takes
to specify a semantic mapping. In a typical data integration
scenario, over half of the effort (and sometimes up to 80%)
is spent on creating the mappings, and the process is labor
intensive and error prone. Today, most EIl products come
with some tool for specifying these mappings, but the tools
are completely manual — an expert needs to specify the exact

mapping between the two schemas.

Querying and Indexing the Deep Web: The deep web
refers to web content that resides in databases and is accessi-
ble behind forms. Deep web content is typically not indexed
by search engines because the crawlers that these engines
employ cannot go past the forms. In a sense, the form can
be seen as a (typically small) schema, and unless the crawler
can understand the meaning of the fields in the form, it gets
stuck there.

The amount and value of content on the deep web are
spectacular. By some estimates, there are 1-2 orders of mag-
nitude more content on the deep web than the surface web.
Examples of such content range from classified ads in thou-
sands of newspapers across the world, to data in govern-
ment databases, product databases, university repositories
and more.

Here too, the challenge stems from the fact that there is
a very wide variety in the way web-site designers model
aspects of a given domain. Therefore, it is impossible for
designers of web crawlers to assume certain standard form-
field names and structures as they crawl. Even in a simple
domain such as searching for used cars, the heterogeneity
in forms is amazing. Of course, the main challenge comes
from the scale of the problem. For example, the web site at
www.everyclassified.com, the first site to aggregate content
from thousands of form-based sources, includes over 5000
semantic mappings of web forms in the common categories
of classified ads. Later in the article, I will describe the ideas
which made this web site possible.

It is important to emphasize that accessing the deep web
is even more of a challenge for the content providers than
it is for the search engines. The content providers thrive on
getting users’ attention. In the early days of the WWW, any
good database would be immediately known (e.g., IMDB for
movies). However, the number of such databases today is
vast (estimated in the hundreds of thousands), and people do
not know about them. Instead, people’s searches start from
the search box of their favorite engine, and these engines
do a very poor job of indexing deep web content. Hence,
if I create an excellent database of middle-eastern recipes
and put it on the web behind a form, it may remain invis-
ible. Ironically, I'm better off creating a set of web pages
with my recipe contents than creating an easily searchable
database. Finally, it should be noted that enterprise search
faces a somewhat similar problem: many of the interesting
data sources within an enterprise are in databases, and even
providing simple keyword search over this content is quite
challenging.

Merchant Catalog Mapping: A frequent example of se-
mantic heterogeneity occurs in aggregating product catalogs.
Consider an online retailer such as Amazon.com. Such a
retailer accepts feeds of products from thousands of mer-
chants, each trying to sell their goods online. To aggre-
gate the vast number of feeds, online retailers prescribe a
schema: a hierarchy of products and their associated prop-

erties. To sell their products online, the merchants need to
send a feed that adheres to the prescribed schema. How-
ever, on the back-end, the data at the merchant is stored in
their local schema, which is likely quite different from the
one prescribed by the retailer (and typically covers a small
fragment of that schema). Hence, the problem we face here
is creating mappings between thousands of merchants and a
growing number of recognized online retailers (roughly 10
of them in the USA at this time). An interesting point to
note about this scenario is that there is not necessarily a sin-
gle correct semantic mapping from the merchant’s schema to
that of the retailer. Instead, because there are subtle differ-
ences between product categories, and products can often be
mapped to several categories, there are multiple mappings
that may make sense, and the “best” one is the one that ulti-
mately sells more products!

Schema versus Data heterogeneity: Heterogeneity occurs
not only in the schema, but also in the actual data values
themselves. For example, there may be multiple ways of
referring to the same product. Hence, even though you are
told that a particular field in a merchant’s data maps to Pro-
ductName, that may not be enough to resolve multiple ref-
erences to a single product. As other common examples,
there are often multiple ways of referring to companies (e.g.,
IBM vs. International Business Machines), people names
(that are often incomplete), and addresses. To fully inte-
grate data from multiple sources one needs to handle both
the semantic-level heterogeneity and the data-level hetero-
geneity. Typically, different products have addressed these
two parts of the problem in isolation. As one example, sev-
eral of the products for ‘global spend analysis’ have focused
on data-level heterogeneity. This article focuses mostly on
schema heterogeneity.

Schema heterogeneity and semi-structured data: I argue
that the problem of semantic heterogeneity is exacerbated
when we deal with semi-structured data, for several reasons.
First, the applications involving semi-structured data are typ-
ically ones that involve sharing data among multiple par-
ties, and hence semantic heterogeneity is part of the prob-
lem from the start. Second, schemas for semi-structured data
are much more flexible, so we are more likely to see varia-
tions to the schema. Finally, the main advantage of semi-
structured is that attributes can be added to the data at will
(or even simply derived from inspecting the data itself), and
once that flexibility is in place, the number of additional at-
tributes we see is significant, and understanding their exact
meaning becomes crucial. On the flip side, in many applica-
tions involving semi-structured data it is enough to reconcile
only a specific set of attributes, while we can still manip-
ulate and display any other attribute. Specifically, we only
need to reconcile those attributes that are going to be used
for equating data across multiple sources.

k% BizTalk Mapper - UBL 2xCBL.xml *

Eile Edt ‘Wiew Tools Help

- LineExtensionTataldmount
- [B BuyerPary —
PartytNams
= Address
Strest ——
CityMName i e————t
PostalZone
CountrySub-Entity
- BuyerContact
B sellerParty —_
= OrderLineg e
+ LineExtansionAmount =
+ Qirantity
%5 e
= DeliverReguirement
DeliverToAddress
Deliven/Schedule

s = [e & | T m |
| = g uBL *CEL) =
- Oirclar Ircler -
(] OrderHeader -
IssusDate ——— OrderMumber

\ =

4| v Maps /

— ———————— OrdedssueData
OrderParty =
———————————— BuyerParty & =
PamylD (E]
MMameAddress EI -
Mame
— POBox
————— Steet [F
Department g
PostalCode E]
City
State F;'I
— Country
— PrimanyContact +
T T————_ SellerPaty
OrderDetail (& -
HemDetail =
BeseltemDetail [£] =
PricingDetail &] &
DelivenDetal -
= OrderSummany [£] =
OrrcherTotal -
Monstansamount]
Currency E
RateotExchangeDetail

uﬁx_hx‘-——_

Figure 1: Reconciling two disparate schemas.

3. WHY ISIT SO HARD?

The problem of reconciling schema heterogeneity has been
a subject of research for decades, but solutions are few. The
fundamental reason that makes semantic heterogeneity so
hard is that the data sets were developed independently, and
therefore varying structures were used to represent the same
or overlapping concepts. In many cases, we are trying to
integrate data systems that were developed for slightly (or
vastly) different business needs. Hence, even if they model
overlapping domains, they will model them in different ways.
Differing structures are a byproduct of human nature — peo-
ple think differently from one another even when faced with
the same modeling goal. As a simple illustration, one of the
assignments I give in my senior-level database course is to
design an inventory schema based on a one-page English de-
scription of what it should cover. Invariably, the schemas I
get from my students are vastly different [6].

From a practical perspective, one of the reasons that schema
heterogeneity is difficult and time consuming is that it re-
quires both domain and technical expertise: you need a per-
son that understands the business meaning of each of the
schemas being reconciled and people skilled in writing trans-
formations (e.g., SQL or XQuery experts).

While schema heterogeneity is challenging for humans, it
is drastically more challenging for programs. A program is
only given the two schemas to reconcile — but those schemas
are merely symbols. They do not capture the entire meaning
or intent of the schemas — those are only in the minds of the
designers.

Figure 1 illustrates some of the challenges in resolving
semantic heterogeneity. The figure shows a typical manual
schema matching tool in which the designer needs to draw
lines between the matching attributes of the two schemas. As
can be seen in the example, there are several kinds of seman-
tic discrepancies between schemas: (1) the same schema el-
ement in the two schemas are given different names (e.g., Is-
sueDate and OrderlssueDate), (2) attributes in the schema
are grouped into table structures (or XML nesting) in differ-
ent ways (e.g., consider the subtrees of the BuyerParty el-
ement in the two schemas), and (3) one schema may cover
aspects of the domain that are not covered by the other (e.g.,
the left schema does not have anything like OrderSummary
in the right schema).

When reconciling heterogeneity from thousands of web
forms, there are additional sources of heterogeneity. Some
forms are already specialized for a particular domain (used
cars, jobs), while in others the user needs to select a cate-
gory before entering additional attributes. In some cases, the
location is already implicit in the form (e.g., using some hid-
den fields), while in others the user needs to select a city and
state or zip.

It is often argued that the way to resolve semantic hetero-
geneity is though standard schemas. However, experience
has shown that standards have very limited success and only
in domains where the incentives to agree on standards are
very strong. Even then, as the online retailer example il-
lustrated, while data providers may share their data using
a standard, their own data systems still employ their origi-
nal schemas (and the cost of changing those systems is pro-

hibitive). Hence, semantic heterogeneity needs to be re-
solved at the step where the data provider exposes its data
to its counterparts.

As one thinks about resolving schema heterogeneity, it is
important to note several common instances of the problem,
which may shed light on the specific problem at hand:

e One schema may be a new version of the other.

e The two schemas may be evolutions of the same origi-
nal schema.

e We may know that we have many sources modeling
the same aspects of the underlying domain (horizontal
integration).

e We may have a set of sources that cover different do-
mains but overlap at the seams (vertical integration).

4. THE STATE OF THE ART

Resolving schema heterogeneity is inherently a heuristic,
human assisted process. Unless there are very strong con-
straints on how the two schemas you are reconciling are
different from each other, one should not hope for a com-
pletely automated solution. The goal is to reduce the time it
takes a human expert to create a mapping between a pair of
schemas, and enable them to focus on the hardest and most
ambiguous parts of the mapping. For example, the tools that
enabled building the web site at www.everyclassified.com
required that we be able to map the fields of the web form to
our own schema in one minute, on average.1

As would be expected, people have tried building semi-
automated schema matching systems by employing a vari-
ety of heuristics (see [13] for a survey). Below we review a
few of these and their limitations. We note that the process
of reconciling semantic heterogeneity typically involves two
steps. In the first, called schema matching, we find corre-
spondences between pairs (or larger sets) of elements of the
two schemas that refer to the same concepts or objects in
the real world. In the second phase, we build on these cor-
respondences to create the actual schema mapping expres-
sions. The Clio Project at IBM Almaden [15] is a prime
example of work on building the mapping expressions.

The following classes of heuristics have been used for
schema matching.

e Schema element names: element names (e.g., table
and attribute names) carry some information about their
intended semantics. Hence, by looking at the names,
possibly stemming the words first we can obtain clues
for the schema matcher. The challenges involved in
using names are that the use of synonyms is very com-
mon as is the use of hypernyms (words that are spe-
cializations or generalizations). Furthermore, we often

"Mapping web forms also involves challenges beyond semantic
heterogeneity, especially in the age of JavaScript.

see that same word being used with different mean-
ings (homonyms). In addition, we often see abbrevi-
ations and concatenations of words appearing in ele-
ment names.

e Data types: schema elements that map to each other
are likely to have compatible data types, but this is cer-
tainly not a rule. However, in many schemas the data
types are underspecified (e.g., CDATA for XML). In
practice, considering data types is a useful heuristic for
ruling out certain match candidates.

e Data instances: elements from two schemas that match
each other often have similar data values. Similari-
ties can arise in several ways: (1) values drawn from
the same small domain, e.g., makes of cars or names
of countries, (2) significant occurrences of the same
values (e.g., superlatives describing houses for sale),
or (3) patterns of values (e.g., phone numbers, price
ranges). Data instances are extremely useful when avail-
able, but one cannot rely on their availability.

e Schema structure: Matching elements in a schema
are typically related to other related schema elements.
For example, in an object-oriented hierarchy, it’s often
the case that if two classes match each other, then the
children of these classes will also (at least partially)
match. In XML DTDs proximity of attributes in a
DTD (e.g., a Phone field next to Agent may suggest
that it is the phone of the agent). However, relying
on such a heuristic can be very brittle, and one of the
main challenges is to find an initial match that drives
the similarity of its neighbors.

o Integrity constraints: Considering integrity constraints
on single attributes or across attributes can be useful
for generating matches. For example, if two attributes
are known to be keys in their respective schemas, then
that provides additional evidence for their similarity.

While each of these heuristics is useful, experience has
shown that taking any of them in isolation leads to a brittle
schema matching solution. Hence, research has focused on
building systems that combine multiple heuristics [2, 3, 12].

Despite these ideas, commercial products rely on com-
pletely manual specification of semantic mappings. They
help by offering visual interfaces that enable designers to
draw the lines between elements of disparate schemas, while
the nitty gritty details of the mapping can often be gener-
ated on the back end. These tools already save a significant
amount of time, but they do not suggest mappings to the de-
signer.

S. ANEMERGING SOLUTION: LEVERAG-
ING PAST EXPERIENCE

One of the fundamental reasons that the schema matching
solutions described above are brittle is that they only exploit

evidence that is present in the two schemas being matched,
ignoring past experience. These schemas often lack suffi-
cient evidence to be able to discover matches. However,
looking more closely at schema matching tasks, it is evident
that these tasks are often repetitive. Specifically, we often
find that we repeatedly map schemas in the same domain
into a common mediated schema. For example, creating the
engine at www.everyclassified.com involved mapping thou-
sands of web forms in the same domain into a common
schema, the one exposed to the users by the engine itself.
A human expert, after seeing many schemas in a particu-
lar domain, is able to map schemas much faster because she
has seen many variations on how concepts in the domain are
represented in schemas.

The challenge, therefore, is to endow the schema matcher
with the same capabilities: leverage past experience. For ex-
ample, once the system has been given several mappings in
the domain of used cars, it should be able to predict map-
pings for schemas it has not seen before. As it sees more
schemas in a particular domain, its predictions should be-
come more accurate, and it should be more robust in the
presence of variations.

This idea was explored for the past few years in several
academic research settings [3, 7, 9, 10, 11], and has recently
been applied commercially for the first time by Transformic
Inc., the creators of www.everyclassified.com.

The research projects considered the use of Machine Learn-
ing as a mechanism for enabling a schema matcher to lever-
age previous experience. In Machine Learning, the system is
provided a set of training examples, and uses them to learn
models of the domain of interest. In this context, the train-
ing examples are schema mappings that are manually con-
structed by domain experts and given to the system. The
models of the domain enable the system to look at a new
schema and predict a schema map. For example, the sys-
tem can learn that the attribute concerning house descrip-
tions typically involves a long text and include frequent oc-
currences of superlatives. Furthermore, the system can learn
variations on the ways people name this field in practice.

Web-service search engine: Another application of this idea
is search for web services, namely locating web services
(or operations within them) that are relevant to a particular
need. Simple keyword search does not suffice in this con-
text because keywords (or parameter names) do not capture
the underlying semantics of the web service. The Woogle
Search Engine (described in a paper [4], and available at
www.cs.washington.edu/woogle)is based on analyzing a large
collection of web services and clustering parameter names
into semantically meaningful concepts. These concepts are
used to predict when two web service operations have simi-
lar functionality.

What can you learn from the past?

The paradigm of learning from past experience of perform-
ing schema matching tasks is only in its infancy. It is inter-

esting to take a step back and consider what one can learn
from the past in this context.

We assume the past is given to us as a collection of schemas
in a particular domain, mappings between pairs of schemas
in that collection, and to the extent possible, data instances.
The schemas can come from anywhere, and can involve very
closely related domains, not necessarily modeling the same
data. In many cases, such schemas can be obtained from the
Web or resources such as xml.org. In others, they may be
available throughout an enterprise. We often refer to such a
collection of schemas as a corpus, in analogy to the use of
corpora of documents underlying Information Retrieval (IR)
and web-search engines. Of course, while the corpora in IR
involve collections of words, here we are managing seman-
tically richer elements, such as schemas and their instances.

The goal of analyzing a corpus of schemas and mappings
is to provide hints about deeper domain concepts and at a
finer granularity. Looking a bit closer at the approach, the
following are examples of what we can learn from a corpus.

e Domain concepts and their representational varia-
tions: As a first step, we can analyze a corpus to iden-
tify the main concepts in the domain. For example,
in a corpus of book inventory schemas, we may iden-
tify the concept of book and warehouse and a clus-
ter of price-related elements. Even more importantly,
we will discover variations on how these concepts are
represented. The variations may differ on naming of
schema elements, grouping attributes into tables or the
granularity of modeling a particular concept. Knowl-
edge of these variations will be leveraged when we
match two schemas in the domain.

o Relationships between concepts: Given a set of con-
cepts, we can discover relationships between them, and
the ways in which these relationships are manifested in
the representation. For example, we can find that the
Books table typically includes an ISBN column and
a foreign key into an Availability table, but that ISBN
never appears in a Warehouse table. These relation-
ships are useful in order to prune candidate schema
matches that appear less likely. They can also be used
to build a system that provides advice in designing new
schemas.

e Domain constraints: We can leverage a corpus to find
integrity constraints on the domain and its representa-
tions. For example, we can observe that ISBN is a
foreign key into multiple tables involving books, and
hence possibly an identifier for books, or discover likely
data types for certain fields (e.g., address, price). Con-
straints may have to do with ordering of attributes.
For example, in a corpus of web forms about cars for
sale, we may discover that the make attribute is al-
ways placed before the model and price attribute, but
occurs after the new/used attribute.

Typically, constraints we discover in this way are soft
constraints, in the sense that they are sometimes vio-
lated, but can still be taken as rules of thumb about the
domain. Therefore, they are extremely useful in re-
solving ambiguous situations, such as selecting among
several candidate schema matches.

6. LOOKING FORWARD

The need for flexible data sharing systems, within and
across enterprises is only in its infancy. The tools we have
today lag far behind customer needs. The problem is only
exacerbated by the fact that much more of the data we need
to manage is semi-structured, and is often the result of try-
ing to extract structure from unstructured data. Hence, we
need to manage data where the values, attributes names and
semantics are often uncertain.

Going forward, I see two major challenge areas: dealing
with drastically larger schemas and dealing with vastly more
complex data sharing environments. In both of these, I think
we may have to change the way we think about the problem
at hand. I touch on each in turn.

Larger Schemas and Schema Search

The techniques described above deal with small to medium
size schemas (including up to hundreds of elements). To
their credit, it should be noted that the techniques gracefully
handle large numbers of such schemas. It is well known
that many real-world schemas have thousands of schema
elements (tables and attributes), the SAP schemas being a
prime example. The challenge of creating schema mappings
is considerably harder here: you cannot even view the entire
schema on a screen or multiple screens.

I believe there are two principles that need to guide the
work on mapping larger schemas. The first is that the schema
matching tools need to incorporate advanced information vi-
sualization methods (see [14] for an example of such work).
Much of the challenge in designing schema mappings for
large-scale schemas is ensuring that the attention of the de-
signer is constantly directed to the right place, that they can
view hypothetical mappings and remove them easily, and
that they can see effectively how one fragment of the map-
ping may affect other fragments. The system should also
be able to explain why certain match predictions are being
made.

The second principle I would put forth requires changing
the way we think of schema matching. Specifically, I am
proposing a schema search engine. The engine contains a
set of indexes on the elements of a particular schema (or set
of schemas). The engine takes as input schema element (e.g.,
table name, attribute, XML tag), schema fragments, or com-
binations of schema fragments and data instances. The en-
gine returns a ranked list of schema elements in the indexed
schema that are candidate matches. The interface should be
as simple as we see today in search engines. The justification
for such a tool is that much of the work in schema mapping

is simply finding where in a huge schema there are relevant
fragments to the part of the schema that is currently under
consideration, or alternatively, finding a relevant schema in
a large collection of schemas. Hence, instead of focusing on
tools that solve the entire problem, but are inherently brittle,
build robust tools that bring the users closer to their needs.
The Woogle web-service search engine previously described
is an example of such an engine, but searching over web-
service operations rather than schemas and their fragments.

Managing Dataspaces

A much greater challenge facing the data management com-
munity is to raise the abstraction level at which data is man-
aged. Today, we have powerful systems for managing data
at the level of a single database system (whether relational,
XML, or in some other model). However, the data manage-
ment challenges we face are at a much higher level: we need
to manage a dataspace, rather than a database.

A dataspace is comprised of a set of participants and a
set of relationships. Participants are individual data sources:
relational databases, XML repositories, text databases, web
services, data stream systems, sensor deployments, or any
other element that stores or delivers data. Some participants
may be transparent, with a full language for posing queries;
a prime example is a traditional relational DBMS. Other par-
ticipants may be opaque — offering limited interfaces for
posing queries (usually supported by specific programs); ex-
amples are web services, stored procedures, and other soft-
ware packages. In addition, some participants may have no
structure to their data (e.g., text), or only some structure
(e.g., code collections). Examples of dataspaces include: an
enterprise, the desktop, a library, large scientific projects, a
smart home, or a battlefield.

A dataspace should be able to model any kind of rela-
tionship between two (or more) participants. In the extreme
case, a relationship is a full schema mapping that enables ar-
bitrary data exchange and query reformulation among partic-
ipants. In other cases, the relationship can express simple de-
pendencies, where the details are not known precisely (e.g.,
one participant is an evolved version of another). The rela-
tionships can have a temporal aspect, e.g., how frequently
data is exchanged, or that one is a mirror or backup of the
other.

The key distinguishing feature of dataspace management
is that integrations should evolve over time and as needed,
but data should be accessible in some form from the very
start. This means that simple queries (e.g., keyword queries)
should always be supported on every participant in the datas-
pace without any effort. As the owners of the dataspace want
to create more tight integration between sources and support
more complex queries across participants, they can create
more detailed semantic mappings as necessary. In addition,
the management of dataspaces should consider the entire life
cycle of data, including its acquisition, curation, query and
update, evolution and analysis. The initial ideas on manag-

ing dataspaces are described in [5], but are only starting to
intrigue the research community. Practitioners have so far
embraced the idea with enthusiasm.

7. ACKNOWLEDGMENTS

The ideas espoused in this paper have benefited from many
discussions and hard work by my colleagues and students.
In particular, I'd like to thank Phil Bernstein, Anhai Doan,
Luna Dong, Dana Florescu, Zack Ives, and Jayant Madha-
van. The vision of dataspaces is the brainchild of discussions
with Mike Franklin and Jennifer Widom.

8. AUTHOR BIOGRAPHY

Dr. Alon Halevy is a Professor of Computer Science at the
University of Washington. He received his Ph.D in Com-
puter Science from Stanford University in 1993 and then
spent several years at AT&T Bell Labs. Dr. Halevy’s re-
search interests are in data integration, semantic heterogene-
ity, personal information management, management of XML
data, web-site management, peer-data management systems,
and the intersection between Database and Al technologies.
His research developed several systems, such as the Infor-
mation Manifold data integration system, the Strudel web-
site management system, and the Tukwila XML data inte-
gration system. He was also a co-developer of XML-QL,
which later contributed to the development of XQuery stan-
dard for querying XML data.

In 1999, Dr. Halevy co-founded Nimble Technology, one
of the first companies in the Enterprise Information Integra-
tion space. In 2004, Dr. Halevy founded Transformic Inc., a
company that creates search engines for the deep web, con-
tent residing in databases behind web forms.

Dr. Halevy was a Sloan Fellow (1999-2000), and received
the Presidential Early Career Award for Scientists and En-
gineers (PECASE) in 2000. He serves on several journal
editorial boards, and he served as the program chair for the
ACM SIGMOD 2003 Conference. For additional informa-
tion, see www.cs.washington.edu/homes/alon.

REFERENCES

[1] K. Aberer. Peer to peer data management: Introduction to a special
issue. SIGMOD Record, 32(3), September 2003.

[2] H.-H. Do and E. Rahm. COMA - a system for flexible combination
of schema matching approaches. In Proc. of VLDB, 2002.

[3] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: a machine learning approach. In Proc. of
SIGMOD, 2001.

[4] X.L.Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In Proc. of VLDB, 2004.

[S] M. Franklin, A. Halevy, and J. Widom. Dataspaces: a new
abstraction for data management, 2005.

[6] A.Halevy. Learning about data integration challenges from day one.

SIGMOD Record, 32(3):16-17, September 2003.

A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell,

and I. Tatarinov. Crossing the structure chasm. In Proceedings of the

First Biennial Conference on Innovative Data Systems Research

(CIDR), 2003.

[8] A.Y. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka. Enterprise information integration:

[7

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

Successes, challenges and controversies. In Proceedings of the ACM
SIGMOD Conference, 2005.

B. He and K. C.-C. Chang. Statistical schema integration across the
deep web. In Proc. of SIGMOD, 2003.

A. Hess and N. Kushmerick. Learning to Attach Semantic Metadata
to Web Services. In Proceedings of the International Semantic Web
Conference, 2003.

J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based
schema matching. In Proceedings of the International Conference on
Data Engineering (ICDE), 2005.

J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching
with cupid. In Proceedings of the International Conference on Very
Large Databases (VLDB), 2001.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334-350, 2001.

G. G. Robertson, M. P. Czerwinski, and J. E. Churchill. Visualization
of mappings between schemas. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 2005.

L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data Driven
Understanding and Refinement of Schema Mappings. In Proceedings
of the ACM SIGMOD, 2001.

