28 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

ZHANG, K., R. STATMAN AND D. SHASHA [1992]. “On the editing distance between unordered
labeled trees” Information Processing Letters 42, pp.133-139.

14.8. REFERENCES 27

JianGg, T., L. WANG AND K. ZHANG [1994]. “Alignment of trees - an alternative to tree edit”,
Proceedings of the Fifth Symposium on Combinatorial Pattern Matching, pp. 75-86.

KILPELAINEN, P. AND H. MANNILA [1991]. “Ordered and unordered tree inclusion”, To appear
SIAM J. on Computing.

KosAarAJU, S.R. [1992]. “Efficient tree pattern matching”, Proceedings of the 30th annual IEEE
Symposium on Foundations of Computer Science, pp. 178-183.

LANDAU, G.M. AND U. VISHKIN [1989]. “Fast parallel and serial approximate string matching”,
J. Algorithms, 10, pp.157-169.

Lu, S.Y. [1979]. “A tree-to-tree distance and its application to cluster analysis”, IEEE Trans.
PAMI 1, pp.219-224.

SELKOW, S.M. [1977]. “The tree-to-tree editing problem”, Information Processing Letters, 6,
pp-184-186.

SHAPIRO B.A. AND K. ZHANG [1990]. “Comparing multiple RNA secondary structures using
tree comparisons”, Comput. Appl. Biosci. 6, (4), pp.309-318.

SHASHA, D., J.T.L. WANG AND K. ZHANG [1994]. “Exact and approximate algorithms for
unordered tree matching”, IEEE Trans. Systems, Man, and Cybernetics, 24, (4), pp.668-
678.

SHASHA, D. AND K. ZHANG [1990]. “Fast algorithms for the unit cost editing distance between
trees”, J. Algorithms, 11, pp.581-621.

Tar, K.C. [1979]. “The tree-to-tree correction problem”, J. ACM, 26, pp.422-433.

TaNAKA, E. AND K. TANAKA [1988]. “The tree-to-tree editing problem”, International Journal
of Pattern Recognition and Artificial Intelligence, 2, (2), pp.221-240.

THORUP, M. [1994]. “Efficient Preprocessing of Simple Binary Pattern Forests”, Proceedings of

the 4th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science,
824, pp. 350-358.

UKKONEN, E. [1985]. “Finding approximate patterns in strings”, J. Algorithm, 6, pp.132-137.

Wanga, J.T.L., K. ZHANG, K. JEONG AND D. SHASHA [1994]. “A system for approximate tree
matching”, IEEE Trans. Knowledge and Data Engineering, 6, (4), pp.559-571.

YANG, W. [1991]. “Identifying syntactic differences between two programs”, Software — Practice
and Ezperience, 21, (7), pp.739-755.

ZHANG, K. [1994]. “A constrained editing distance between unordered labeled trees”, To appear
Algorithmaca.

ZHANG, K. AND T. JIANG [1994]. ”Some MAX SNP-hard results concerning unordered labeled
trees”, Information Processing Letters, 49, pp.249-254.

ZHANG, K. AND D. SHASHA [1989]. “Simple fast algorithms for the editing distance between
trees and related problems”, SIAM J. Computing 18, (6), pp.1245-1262.

ZHANG, K., D. SHASHA, AND J.T.L. WANG [1994]. “Approximate tree matching in the presence
of variable length don’t cares”, J. of Algorithms, 16, pp.33-66.

26 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

8. Suppose we have a pair of ordered rootless trees T} and T;. Define the edit distance between
those two trees to be the edit distance between the rooted trees R; and R, where R; is
isomorphic to T} and Rj; is isomorphic to Ty and the distance between R; and R, is the
minimum edit distance of any pairs of rooted trees R| and R/, where R is isomorphic to
Ty and R} is isomorphic to 7;. Hint: Use the algorithm you developed for the previous
question as a subroutine.

14.7 Bibliographic notes

The first attempt to generalize string edit distance to ordered trees was due to Selkow [1977]. He
gave an tree edit algorithm in which the insertions and deletions are restricted to the leaves of
the trees. The edit distance between ordered trees was introduced by Tai [1979]. Another edit
base distance was introduced by Lu [1979]. Lu treated each subtree as a whole entity and did not
allow one subtree to match more than one subtrees in the other tree. Tanaka and Tanaka [1988]
introduced the strongly structure preserving mapping and gave an algorithm based on this kind
mapping. Their algorithm is the same as Lu’s algorithm. Yang [1991] gave an algorithm based
on a mapping where two nodes in the mapping implies their parents are in the mapping. Edit
distance between unordered tree was considered by Zhang, Statman and Shasha [1992]. Jiang,
Wang and Zhang [1994] considered the tree alignment distance problem. Tree inclusion problem
was introduced by Kilpelainen and Mannila.

The algorithm for edit distance presented in this chapter is due to Zhang and Shasha. The
alignment distance algorithm is due to Jiang, Wang and Zhang. It is open whether the time
complexity of these algorithm can be improved. There is no non-trivial lower bound result for
these problems.

The parallel algorithm for unit cost edit distance discussed in this chapter is due to Shasha
and Zhang. It is open whether the restriction of unit cost can be removed or not.

The approximate tree match was considered by Zhang and Shasha. This was later extended to
handle the case where pattern tree can have variable length don’t cares. The algorithm presented
is due to Zhang, Shasha and Wang.

The NP-completeness results for edit distance between unordered trees is due to Zhang, Stat-
man and Shasha. The MAX SNP-hard result is due to Zhang and Jiang. It is open whether these

problems can be approximated within a constant.

14.8 References

Car, J., R. PAIGE AND R. TARJAN [1992]. “More efficient bottom-up multi-pattern matching
in trees”, Theoretical Computer Science, 106, pp. 21-60.

CHAsE, D. [1987]. “An improvement to bottom-up tree pattern matching”, Proceedings of the
14th Annual CM Symposium on Principles of Programmaing Languages, pp. 168-177.

DUBINER, M., Z. GALIL AND E. MAGEN [1994]. “Faster tree pattern matching”, JACM, 14,
(2), pp. 205-213.

HorrmaN, C. AND J. O’DONNEL [1982]. “Pattern matching in trees”, JACM, 29, (1), pp. 68-95.

14.6. EXERCISES 25

appears possible — certainly not for unordered trees (because of the NP-completeness result) and
we conjecture not for ordered trees.

Besides pursuing new applications and letting them lead us to new algorithms, we are currently
working on the problem of tree pattern discovery. The philosophy of this work is best shown by
distinction to the work we have described so far. Our work to date has consisted primarily of
finding the distance between a given pattern tree and a given data tree given a pattern metric.
By contrast, tree pattern discovery consists of producing a pattern tree that, according to a given
distance metric, is close to a collection of data trees. Such tree “motifs” could characterize a
collection of trees representing some phenomenon in nature. We are currently working on the
secondary structure of viruses.

14.6 Exercises

1. A counter-diagonal in a dynamic programming matrix extends from location (i,0) to (0,i).
For trees as well as for strings, all elements in a counter-diagonal can be computed in
parallel. Design a parallel version of Algorithm EDIT? Hint: The complexity should be
O(|Ta| + | T2)).

2. Suppose you were only interested in the editing distance between two trees assuming they
differed by no more than d. That is, your algorithm would return the exact distance if it is
less than or equal to d, but would return “very different” otherwise. What would the time

complexity be in that case? Hint: The complexity should be proportional to the square of
d.

3. Pruning a tree at node n means removing all its children, but not removing n itself. Define
the optimal pruning distance between a pattern tree P and a data tree T' to be the minimum
distance between P and tree T’ where T" is T followed by pruning. Hint: The algorithm
should be a variant of the algorithm with cuts.

4. Consider the Procedure tree_vlde in which eliminating a path was free if it is matched to a
variable length don’t care. Consider a metric in which all inserts, deletes and replacements
cost one and in which deletions of paths in the text tree along with their subtrees also had
unit cost. Design an algorithm to compute that cost.

5. Prove Lemma 14.4.1 to Lemma 14.4.1.

6. Try to show the MAX SNP-hardness result mentioned in section 14.4 by reduction from
Maximum Bounded Covering by 3-sets.

7. Geographical data structures such as quadtrees are not rotation-invariant, but suppose we
wanted to find the editing distance between two trees where we allow rotations among the
children of the roots. That is, given two ordered rooted trees T and T3, find the distance
between Ry and R,, where Ry is 77 but perhaps with a rotation among the children of the
root of T1; Ry is T3 but perhaps with a rotation among the children of the root of 75, such
that the distance is minimum among all such rotations of 77 and 7. Hint: If the degree of
the root of the trees is no greater than the depth of the trees, then the complexity should
be no greater than Algorithm EDIT.

24 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Algorithm: ALIGN(T},T3)

begin
for : :=1 to |T}]
for j :=1 to |T3|

A(F1[2], Fp[j]) »= min{ ~y(t[iz],) + A(F1[e2], F2[g]) + A(Th[u], 0),
Y(tiaa], A) + A(Fi[a], F25]) + A(Th[i2], 6),
(A talg2]) + ACRL[], Fa72]) + A6, T [51]),
(A ta2[1]) + AR], Fa[5a]) + A6, To[52]),
A(Ti 4], To[51]) + A(Th[22], Ta[s2]),
A(Ti[i], Talga]) + A(Th[22], Ta[]) +

A(T1 1], T3[7]) »== min{ ~(t:1[e], t2[5]) + A(F1[e], F2[5]),
v(tile], A) + A(Th[u], Tely]) + A(Th[e2], 0),
v(tile], A) + A(Th[e2], Tels]) + A(Th], 0),
(A, t2[5]) + A(Th[e], Ta[]) + A8, T2 [52]),
YA talg]) + A(Th[e], Talye]) + A8, Tal]) 1

end

Output: A(Ti[|Th]], T2[|T2[]).

Figure 14.12: Aligning unordered binary trees.

14.5 Conclusion

As we have discovered since making our tree comparison software generally available,®> many
applications require the comparison of trees. In biology, RNA secondary structures are topological
characterizations of the folding of a single strand of nucleotides. Determining the functionality of
these structures depends on the topology and therefore comparing different ones based on their
topology 1s of interest. In neuroanatomy, networks of connections starting at a single point often
describe trees. Comparing them may give a hint as to structure. In genealogy, unordered trees are
of interest and may give hints about the origins of hereditary diseases. In language applications,
comparing parse trees can be of interest. Finally, we are currently developing a package to
enable users to compare structured documents based on tree edit distance. This should be more
informative than utilities such as UNIX diff.

Algorithmically, tree comparison bears much similarity to string comparison. Tree comparison
uses dynamic programming, suffix trees, and, in parallel versions, counter-diagonals. We often
reason by analogy to stringologic work when developing new algorithms. For this reason, we
believe that treeology may be a good discipline to study for talented stringologists who are tired
of one dimensional structures. But the tree and string problems are different and no reduction

3Send us email if you’re interested.

14.4. ALGORITHMS AND HARDNESS RESULTS FOR UNORDERED TREES 23

Lemma 11 Let M be a mapping between Ty and Ty. If there are d > 0 nodes of T, not in
mapping M, then y(M) > 3n — 2k + d.

Lemma 12 treedist(Ty,T:) > 3n — 2k.
Lemma 13 If there is an exact 3-cover, then treedist(Ty,Tz) = 3(n — k) + k = 3n — 2k.

Lemma 14 If treedist(Ty,Tz) = 3n — 2k, then there exists an exact 3-cover.

In fact there are stronger results concerning the hardness of computing the edit distance
and alignment distance for unordered labeled trees. Computing the edit distance between two
unordered labeled trees is MAX SNP-hard even if the two trees are binary. Computing the
alignment distance between two unordered labeled trees is MAX SNP-hard when at least one of
the trees is allowed to have an arbitrary degree. The techniques for these proofs are similar to
the one we just presented. The reduction is from Maximum Bounded Covering by 3-sets which
is an optimization version of Exact Cover by 3-sets.

14.4.2 Algorithm for tree alignment and a heuristic algorithm for
tree edit

When the degrees are bounded, we can compute the alignment distance using a modified version
of Algorithm ALIGN. Lemmas 8 and 9 still work. The only difference is in the computation of
D(Fi[t], Fz[j]). We have to revise the recurrence relation in Lemma 10 as follows: for each (forest)

C C{Ti[i1],...,T1[tm,]} and each (forest) D C {Ty[j1], ..., To[jn,]},

minT1[ip]€C,T2[jq]€D A(C - {Tl [%]}7 D — {TQ [Jq]}) + A(Tl [ip]v T2 [JQ])7
A(C, D) = min ¢ mingj;jec,ocp AC — {Ti[ip]}, D — D) + A(Fi[1,], D') + v(ta[ip], A),
minC’QC,Tﬂjq]ED A(C - Clv D — {TQ[Jq]}) + A(Cla FQ[.]Q]) + 7(/\7 tQ[jQ])

Since m; and n; are bounded, A(C, D) can be computed in polynomial time. If 7} and T, are
both in fact binary trees, the algorithm can be much simplified, as shown in Figure 14.12 It is
easy to see that the time complexity of this algorithm is O(|T1| - |T3]).

For the edit distance, we have an efficient enumerative algorithm. The algorithm runs in
polynomial time when one of the trees has a bounded number of leaves.

For the more general cases, we have developed heuristic algorithms based on probabilistic hill-
climbing. Another way to deal with the hardness results is to add more constraints on the way
in which we transform one tree to the other. This leads to a constrained edit distance between
two unordered trees. The complexity of this algorithm is O(|T1| x |T3| x(deg(Th) + deg(T3))
x log,(deg(Ty) + deg(T2))).

22 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

such applications, it would be useful to compare unordered labeled trees by some meaningful
distance metric. The editing distance metric, used with some success for ordered labeled trees, is
a natural such metric. The alignment distance is another metric. This section presents algorithms
and complexity results for these metrics.

14.4.1 Hardness results

We reduce Exact Cover by 3-Sets to the problem of computing the edit distance between unordered
labeled trees. This means that computing the edit distance between unordered labeled trees is
NP-hard. We assume that each edit operation has unit cost, i.e. v(a — b) =11if a # b.
Exact Cover by 3-Sets
INSTANCE: A finite set S with |S| = 3k and a collection T' of 3-element subsets of S.
QUESTION: Does T contain an exact cover of S, that is, a subcollection 77 C T such that
every element of S occurs in exactly one member of 77
Given S = {s1, 82, ... }, where m = 3k and T = 11, T3, ...T,, where T; = {t;1,t:2,ti3}, tij € S,

we construct the two trees as in Figure 14.11.

T, R

11 12 13

Figure 14.11: The reduction

The following lemmas show that treedist(Ty,T) = 3n — 2k if and only if there exists an exact
3-cover. Since the problem is clearly in NP, the lemmas show that the problem is NP-complete.
The proofs of these lemmas are left as exercises.

14.4. ALGORITHMS AND HARDNESS RESULTS FOR UNORDERED TREES 21

|71 |72
< O{(deg(Ty) + dea(T,) x Lmex Lom) < OUT; | x T (dea(Ty) + dea(T3))

If both 7T} and T3 have degrees bounded by some constant, the time complexity becomes O(|T7 |-
|T3|). Note that the algorithm actually computes A(T4[t], T2[5]), A(Filz], F2[7]), A(Filis, 1], F2[7])
and A(Fi[1], F2[Js, j¢]). With these data, materializing an optimal alignment can be found using
back-tracking. The complexity remains the same.

14.3.6 Tree pattern discovery problem

We briefly discuss the pattern discovery problem. In matching problems, we are given a pattern
and need to find a distance between the pattern and one or more objects; in discovery problems,
by contrast, we are given two objects and a “target” distance d and are asked to find the largest
portions of the objects that differ by at most that distance. Specializing the discovery problem
to a pair of trees, we want to find the largest connected component from each tree such that the
distance between them is under the target distance value.

Let us consider the connected component in one of the trees. Since it is connected, it must be
rooted at a node and is generated by cutting off some subtrees. This means that a naive algorithm
for tree pattern discovery would have to consider all the subtree pairs and for each subtree pair
all the possible cuts of its subtrees. Since the number of such possible cuts is exponential, the
naive algorithm is clearly impractical.

Instead we use a compound form of dynamic programming. By compound, we mean that
dynamic programming is applied (1) to compute sizes of common patterns between two subtree
pairs given a set of cuts; (2) to find the cuttings that yield distances less than or equal to the
target one; (3) to compute the optimal cuttings for distance k, 1 < k < d, given the optimal
cuttings for distances 0 to k — 1.

In the computation of an optimal solution for distance value k, we also have to solve a problem
which is unique for trees. Consider a pair of subtrees s; and s; whose roots map to one another
in the optimal solution for distance value k. Then, in general, there are several subtree pairs of
s1 and sy that map to one another. We have to determine how the distance value k should be
distributed to these several subtree pairs so that we can obtain the optimal solution. We solve
this problem by partitioning the subtrees of sy, respectively s;, into a forest and a subtree. We
then compute the distance and size values from forest to forest and from subtree to subtree.

Using this general framework, we can solve the tree pattern discovery problem for edit and
alignment distance measures. Given a target distance value d, the time complexity of the algo-
rithm for edit distance measure is (d* x| Ty | x| Ty | x min(depth(Ty), leaves(Ty)) x min(depth(Ty), leaves(Ty)
and the time complexity of the algorithm for alignment distance measure is O(d? x |T1| x |T| x

(deg(Ty) + deg(Ty))?).

14.4 Algorithms and hardness results for unordered trees

Recall that unordered labeled trees are rooted trees whose nodes are labeled and in which only
ancestor relationships are significant (the left-to-right order among siblings is not significant).
Such trees arise naturally in genealogical studies, for example, or in parts explosions. For many

20 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Algorithm: ALIGN(T},T3)

begin
A(6,6) :=0;
for : :=1 to |T1|
Initialize A(T1[¢],0) and A(Fi[i],0) as in Lemma 8;
for j :=1 to |T3|
Initialize A(6,T5[7]) and A(6, F3[j]) as in Lemma §;
for : := 1 to |T1|
for j :=1 to |T3|
for s :=1 to m;
Call Procedure forest_align on Fi[is,i,,,] and Fy[j];
fort:=1ton;
Call Procedure forest_align on Fii] and Fy[jq, i,];
Compute A(T1[¢], T2[j]) as in Lemma 9.
end

Output: A(Ti[e], Tz[e]), where 1 < < |Ti| and 1 < j < |T3].

Figure 14.10: Computing A(T1,T3).

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 19

IHPUt: Fl[isa Lmz] and FQUHj%]'
Procedure: forest_align()

begin
A(F1[is,i5-1], Fole, Je-a]) := 0;
for p:=Ss to m;
A(Fl[i57 ip]’ F?[jt,jt_l]) = A(Fl[ib’) ip—1]7 F?[jta.jt—l]) —I_ A(Tl [ip]a 9)7
fOI‘ q = t to n]
A(Fl[i57 is_l]’ FQ[jt’-jQ]) = A(Fl [isv Z.5—1]7 FQ[jtvjq—l]) + A(97 TQ[JQ])7
for p:=s to m;
fOI‘ q = t to n]
Compute A(F}[iy,7,], Fajs, j,]) as in Lemma 10.
end

Output: A(Fi[is, 1], F2[jt, Jq]), where s <p < m; and t < ¢ < n;}.

Figure 14.9: Computing { A(Fi[is, 0], F2lje, Jo))|s < p < my,t < g < n;} for fixed s and ¢.

Algorithm

It follows from the above lemmas that, for each pair of subtrees T1[¢] and T3[j], we have to compute
A(F[t], Fyljs, gi)) for all 1 < s <t < n;, and A(Fi[is, 1], F2[y]) for all 1 < s <t < m;. That is,
we need align Fi[:] with each subforest of Fy[j], and conversely align F,[j] with each subforest of
Fi[i]. Note that we do not have to align an arbitrary forest of Fj[¢] with an arbitrary forest of
F,[j]. Otherwise the time complexity would be higher.

For each fixed s and ¢, where either s =1lort=1,1<s <m; and 1 <t < n;, the procedure
in Figure 14.9 computes {A(Fi[is,i,), Faljt, Jql)ls < p < myt < ¢ < n;}, assuming that all
A(Fi[ik], F2lip, 74)) are known, where 1 < k < m; and 1 < p < ¢ < nj, and all A(Fi[ip, 4], F2[jk])
are known, where 1 <p < ¢ <m; and 1 <k < n;.

Hence we can obtain A(Fi[i], F3[js, j¢)) for all 1 < s <t < n; by calling Procedure forest_align
n; times, and A(Fi[is,], F3[j]) for all 1 < s <t < m; by calling Procedure forest_align m; times.
Our algorithm to compute A(77,75) is given in Figure 14.10.

For an input Fi[is, 0] and Fy[jy, jp,], the running time of Procedure forest_align is bounded
by

O((m; —s) X (nj—t) X (m; —s+mn; —t)) = 0(m; X nj X (m; +n;j)).
So, for each pair ¢ and j, Algorithm ALIGN spends O(m; x n; x (m; + n;)?) time. Therefore, the
time complexity of Algorithm ALIGN is

|71 |12 |70 |2

Y2 O(mi xnj x (mi+n;)*) < Y3 0(m; x nj x (deg(Ty) + deg(T3))*)

=1 j=1 =1 7=1

18 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Lemma 9

A(0, T3[5]) + miny <<y {A(TA[2], Tolgr]) — A(6, T2[5:])}
A(T[i], Tolj]) = min { A(T3[i], 6) + mini <, < {A(D[ir], Toli]) — A(Tair], 6))
A(F[d], Falg]) 4+ 7 (i, 1[5])

Proof: Consider an optimal alignment (tree) A of T} [¢] and T3[j]. There are four cases: (1) (#1]7], t2[j])
is a label in A, (2) (¢1[¢], A) and (t1[k], t2[j]) are labels in A for some k, (3) (t1]7], t2[k]) and (A, t2[7])
are labels in A for some k, (4) (t1[¢], A) and (A, , t3[j]) are labels in A. We actually need not consider
Case 4 since in this case we can delete the two nodes and then add (t1[7],¢2[j]) as the new root,
resulting in a better alignment.

Case 1. The root of A must be labeled as (t1]7],t2[j]). Clearly, A(T1[¢], T2[j]) =
AL Fl]) + (0], 03]

Case 2. The root of A must be labeled as (¢1[¢],A). In this case k& must be a node in
Ti[i,] for some 1 < r < m;. Therefore, A(T1[¢], To[j]) = A(T\[e], 6)+ mini<,<pm, { A(T1[2r], T2[J]) —
A(Ti[4,],6)}.

Case 3. Similar to Case 2. O

Note, the above implies that A(Fi[¢], F3[j]) is required for computing A(7T[¢], T2[7])-

Lemma 10 For any s,t such that 1 < s <m; and 1 <t < n;j,

A(Fl[h,ls 1], Fali1, 7¢)) + A(T4[is)], 0)

A(F1[iv, 05), Falgn, je—1]) + A0, To[j4])

A(F[iv,is—1], Fa[g1, Ji—1]) + A(T1[is], Ta[j¢])

(A, t2le]) + ming<pcs {A(F 11, th—1], F2lJ1. Je—1]) + A(F1 [0k, 1s], Folge]) }
Y(ta[is], A) + miny<p i { A(F1 i1, 05-1], Foldt, Je—1]) + A(F1[és], Falik, Ji)}

A(Fi[i1, 1], Folg1, Je]) = min

Proof: Consider an optimal alignment (forest) A of F[i1, ¢5] and F3[j1,j¢]). The root of the rightmost
tree in A is labeled by either (t1[is], ta[j¢]), (t1[is], A), or (A, t2[74])-
Case 1: the label is (t1[i5], t2[j¢]). In this case, the rightmost tree must be an optimal alignment
of T1[is] and Ty[j:]. Therefore A(Fi[i1, 5], FQ[Jl,Jt]) = A(Fi[i1,ts5-1], Fa[g1, Je—1)) A(TA[2s], T2[5:)).-
Case 2: the label is (#1[¢5], A). In this case, there is a k, 0 < k < ¢, such that Ti[i,] is aligned
with the subforest Fy[j;—x+1,J:]- A key observation here is the fact that subtree T5[j;_r41] is not
split by the alignment with 7}[i5]. There are three subcases.

1 (k=0) Le., F5[ji—k+1,Jt) = 6. Therefore,
A(F[i1,3,), Faliv, i) = A(Fi[in, i), Falju, i)+ AT 3, 0)

22 (k=1) Le., F3[Jt—k+1,7t) = T2[j¢]. This is the same as in Case 1.

2.3 (k > 2) This is the most general case. It is easy to see that

A(F[i1,05], Folg1, 5¢]) = v(t1[es], A) + min {A(Fl[llals 1]; Folj1, Jr—1]) + A(FL], Falie, Jd)) }-

1<k<

Case 3: the label is (A, t2[j¢]). Similar to Case 2. O

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 17

Definitions

Let 77 and T, be two labeled trees. An alignment A of T and T3 is obtained by first inserting
nodes labeled with A into 77 and 75 such that the two resulting trees 7] and 7 are topologically
isomorphic, i.e., they are identical if the labels are ignored, and then 7] is overlaid on T,;. An
example alignment is shown in Figure 14.8. An edit cost is defined for each pair of labels. The
value of alignment A is the sum of the costs of all pairs of corresponding labels. An optimal
alignment is one that minimizes the value over all possible alignments. The alignment distance
between 7} and T, is the value of an optimal alignment of 7} and 75.

a a (aa)

b c c d (b,b) (c,A) (A0 (d,d)

€Y (b) (c)

Figure 14.8: (a) Tree T;. (b) Tree T3. (c) The optimal alignment of 7} and Ts.

It is easy to see that in general the edit distance is smaller than the alignment distance for
trees. The reason is that each alignment of trees actually corresponds to a restricted tree edit
in which all the insertions precede all the deletions. Note that, the order of edit operations
is not important for sequences. Also, it seems that alignment charges more for the structural
dissimilarity at the top levels of the trees than at the lower levels, whereas edit treats all the
levels the same.

The notion of alignment can be easily extended to ordered forests. The only change is that
it is now possible to insert a node (as the root) to join a consecutive subsequence of trees in the
forest. Denote the alignment distance between forests Fy and Fy as A(Fy, Fy). Let 6 denote the
empty tree, and v(a,b) denote the cost of the opposing letters a and b. Let 77 and T, be two
fixed ordered labeled trees throughout this section.

Formulas

Let t1[¢] be a node of Ty and t3[j] a node of T,. Suppose that the degrees (number of children) of

t1[¢] and t3[j] are m; and n;, respectively. Denote the children of t1[¢] as t1[t1],. .., t1[tm,] and the
children of t,[j] as t2[j1], ..., t2[jn,]. For any s,t, 1 < s <t < my, let Fi[is, 1] represent the forest
consisting of the subtrees Ti[is],. .., T1[t;]. For convenience, Fi[i1,1,,,] is also denoted Fi[i]. Note

that Fi[i] # Fi[e,1]. F3[js, j¢] and Fy[j] are defined similarly.

The following lemmas form the basis of our algorithm. The first lemma is trivial.

Lemma 8 A(6,60) = 0; A(F[i],0) = S, A(Ta[ix]. 0); A(Ti[i].6) = ACF[i),6) + 7(0[i], V)
A6, Bylj]) = Sty A6, Tulji)); A6, Tolj]) = A6, Balj]) 4+ 7(A, t2l5]).

16

CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Procedure: tree_vlde(i, j)

begin

for ¢y :=I(z) to ¢ do
for j; :=1(y) to y do

end

if [(i1) # 1(¢) or I(j1) # I(j)then
Calculate forest_vlde(Ti[l(2)..11], To[l(7)..J1
else begin [* (i) =1(2) and 1(51) = 1(J)
if (p[in] # | or jr = 1)) then
Calculate forest_vlde(Ty[l(2)..11], T2[I(7)..J1]) as in Lemma 6;
if (plia] = | and jy # 1(j)) then
Calculate forest_vlde(Ty[l(¢)..11], T2[I(7)..J1]) as in Lemma T;
tree_vlde(iy, j1) = forest_vlde(Ty[1(7)..¢1], T2[l(7)..J1]);

end

as in Lemma 5;

)
*/

Figure 14.7: Computing tree_vlde(t,).

is that preserving ancestor relationships in the mapping between trees prevents the analogous

implication from holding. In addition, to compute the distance between two forests at stage k
sometimes requires knowing whether two contained subtrees are distance k apart.

We overcome these problems by studying the relationship between identical subforests and

distance mappings. We find the relevant identical forests by using suffix trees corresponding to

different traversals.

The preprocessing time complexity is dominated by the cost of constructing suffix trees. It is

bounded by O(log(|T1|+ |T3])) < O(log(2 x min(|T1|, |T2|) + k)) < O(log(min(|T4], |T3|)) + log(k)).

The time complexity of the algorithm is: O(k x log(k) x log(min(|T1|, |T%|))) where k is the actual

distance between 7} and 75.

14.3.5 Tree alignment problem

It 1s well known that edit and alignment are two equivalent notions for sequences. In particular,
for any two sequences x; and x,, the edit distance between x; and z; equals the value of an
optimal alignment of z; and z,. However, edit and alignment turn out to be very different for
trees, see Figure 14.8. Here, we introduce the notion of alignment of trees as another measure of
similarity of labeled trees. The notion is a natural generalization of alignment of sequences.

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 15

replaced by t[j1], in which case forest_vlde(l(z)..11,1(j)..51) = forest_vlde(l(2)..t7 — 1,1(5)..51 — 1)
+ v(p[e1] — t[71]). The distance is the minimum of these two cases.

Since j1 = I(j), forest_vlde(l(i)..i1,1(j)..71 — 1) + v(A — t[j1]) = forest_vlde(P[l(¢)..11],0) +
Y(A = t[j1]) > forest_vlde(P[l(i)..i1],0) = forest_vlde(P[l(7)..i1 — 1],0) = forest_vlde(1(7)..1; —
1,1(5)..51—1) + v(p[i1] — t[j1]). Thus, we can add an additional item forest_vide(I(2)..t1,1(5)..51—
1)+ v(A — t[j1]) to the minimum expression, obtaining the formula asserted by the lemma. O

Lemma 7 If p[i1] = | and j1 #1(y), then

forest_vlde

(i, (Z))v
forest_vlde(
(

)
1(1)..i1 = 1,1(5)-.51) + v(plia] — A),
forest_vlde(l(i)..i1,1(j)..71) = ming forest_vldc(l(z)..¢41,1(j)..51 — 1) + v(A — t[1]),
forest_vlde(l(i)..0n — 1,1(3)..71 — 1) + ~v(plir] — t[j1]),
ming, {tree_vlde(iy, tx)|1 <k <nj}

?
?

)..
)..
)..
)..

where t, 1 < k <mn;, , are children of j;.

Proof: Again, if T[j;] is cut, the distance should be forest_vlde(l(7)..i1,0). Otherwise, let M be a
minimum-cost mapping between P[I(7)..:1] and T[l(7)..j1] after performing an optimal removal of
subtrees of T[l(j)..71]. There are three cases.

(1) In the best substitution, p[i1] is replaced by an empty tree. So, forest_vide(l(2)..01,1(7)..J1)
= forest_vldc(l(2)..t1 — 1,1(3)..71) + v(plt1] = A).

(2) In the best substitution, p[i1] is replaced by a nonempty tree and ¢[j1] is not touched by a
line in M. So, forest_vlde(l(¢)..11,1(7)..J1) = forest_vlde(l(z)..11,1(5)..51 — 1) + v(A = t[j1])-

(3) In the best substitution, p[¢;] is replaced by a nonempty tree and t[j;] is touched by a
line in M. So, p[t1] must be replaced by a path of the tree rooted at t[j;]. Let the path end at
node t[d]. Let the children of #[j;] be, in left-to-right order, t[t1],¢[ts],. .., t[t,;]. There are two
subcases.

(a) d = j1. Thus, |isreplaced by t[j1]. So forest_vlde(l(z)..11,1(5)..71) = forest_vlde(l(7)..i1—
L)1~ 1) + 2(plia] — 1)),
(b) d # j1. Let t[tz] be the child of ¢[j;] on the path from t[j1] to t[d]. We can cut all subtrees
on the two sides of the path. So, forest_vlde(l(7)..i1,1(3)..j1) = tree_vlde(i1,t;). The value of k
ranges from 1 to n;,. Therefore, the distance is the minimum of the corresponding costs. O
These lemmas suggest the following algorithm. We omit the initialization steps.

14.3.4 Fast parallel algorithms for small differences

In our research, we have often imported technology developed for strings to develop fast tree
algorithms. A particularly blatant example is our algorithm for the unit cost edit distance (unit
cost means that node deletions, node relabellings, and node insertions all have the same cost).
The algorithm starts from Ukkonen’s 1983 technique of computing in waves along the center
diagonals of the distance matrix. At the beginning of stage k, all distances up to k¥ — 1 have been
computed. Stage k then computes in parallel all distances up to k. We use suffix trees as Landau
and Vishkin to perform this computation fast.

In the string case, if Si[i..i + h] = S3[j..7 + R], then the distance between S;[1... — 1] and
Sa[1..7 —1] is the same as between Si[1..i + k] and S3[1..57 4+ h]. The main difficulty in the tree case

14 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Proof: Trivial. O
We compute tree_vlde(i,j) for 1 < i < |P|land 1 < j < |T|. In the intermediate steps, we
need to calculate forest_vlde(l(7)..i1,1(7)..51) for {(z) < i3 < ¢ and I(j) < j1 < j. The algorithm
considers the following two cases separately: (1) P[I(2)..t1] or T[I(j)..71] is a forest; (2) both are
trees. The overall strategy is to try to find a best substitution for the VLDCs in P[l(7)..71], and ask
whether or not T'[j;] is cut. (Note that in the algorithm, v(p[i;] — A) = 0 and v(p[i1] — t[j1]) =0
when plir] = |.)

Lemma 5 If P[l(2)..t1] or T[l()..71] s a forest, then

forest_vldcglgig..il,Z(j) ((J)l))1) i .

o . forest_vlde(l(2)..t; — 1,1 + — A

forestvlde(l(i)..ir, 1(j)-.j1) = min forest_vlde(l(2)..11,1(7).. . —J 1)+ z(/\ — t[51]),
forest_vlde(l(2)..1(i1) — ,Z(). A(j1) — 1) + tree_vlde(s,t)

Proof: If T[ji] is cut, then forest_vlde(l(¢)..11,1(7)..j1) = forest_vlde(l(2)..i11,1(5)..1(j1) — 1). Oth-
erwise, consider a minimum-cost mapping M between P[l(¢)..71] and T[l(j)..71] after performing
an optimal removal of subtrees of T'[I(j)..j1]. The distance is the minimum of the following three
cases.

(1) p[e1] is not touched by a line in M. (This includes the case where p[i;] = | is replaced by
an empty tree.) So, forest_vlde(l(2)..01,1(j)..J1) = forest_vlde(l(i)..ts — 1,1(7)..1) +v(p[t1] — A).

(2) t[j1] is not touched by a line in M. So, forest_vlde(l(7)..i1,1(3)..71) = forest_vldc(l(2)..11,
1(7)n — 1) + 77— 1lj2]).

(3) pli1] and t[j1] are both touched by lines in M. (This includes the case where p[i;] =
| is replaced by a path of nodes in 7.) By the ancestor and sibling conditions on mappings,
(1,71) must be in M. By the ancestor condition on mapping, any node in P[i;] (the subtree of
P rooted at i1) can be touched only by a node in T[j1]. Hence, forest_vlde(l(7)..i1,1(5)..71) =
forest_vlde(l(2)..1(11) — 1,1(5)..1(j1) — 1) +tree_vlde(iy, j1). O

Lemma 6 If p[i1] # | or j1 =1(7), then

forest_vlde(
forest_vlde(
forest_vlde(
forest_vlde(

[(7)..i1,0),
N I(i)..ir — 1,1(3)..1) + v(p[i1] = N),
forest_vlde(l(2)..11,1(7)..71) = min 0] ll,l(j)..jjl —Jl) + z(]; S),
(1)

a1 = 1,0(7)..51 = 1) +v(pla] — t[5])

Proof: If T[j;] is cut, then the distance should be forest_vide(l(i)..i1,#). Otherwise, consider a
minimum-cost mapping M between P[l(z)..t1] and T'[I(7)..j1] after performing an optimal removal
of subtrees of T[l(j)..71]. There are two cases.

(1) p[t1] # |. Depending on whether p[i;] or ¢[j1] is touched by a line in M, we argue similarly
as in Lemma 5.

(2) p[t1] = | and j1 = I(j). Then, in the best substitution, either | is replaced by an empty tree,
in which case forest_vlde(1(7)..i1,1(5)..71) = forest_vlde(l(¢)..ts —1,1(3)..51) + v(p[i1] — A), or | is

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 13

Approximate tree matching with variable length don’t cares

Approximate tree matching is a generalization of approximate string matching. Given two trees,
we view one tree as the pattern tree and the other as the data tree. We want to match, approxi-
mately, the pattern tree to the data tree. In the match, we allow the pattern tree to match only
part of the data tree. For this purpose we allow subtrees of the data tree to be cut freely. Also
we allow the pattern tree to contain variable length don’t cares indexvariable length don’t cares
to suppress the details of the data tree which are not interested. Intuitively, these VLDC’s match
part of a path with or without the subtrees branching off that path. We now give the formal
definitions for cut, variable length don’t cares, and approximate tree matching.

Cutting at node t[i] means removing the subtree rooted at t[i]. Let C be a set of nodes. We
define C' to be a set of consistent subtree cuts if t[],t[j] € C implies that neither is an ancestor
of the other. We use Cut(T,C) to represent the tree T' with all subtrees in rooted at nodes of
C removed. Let subtree(T) be the set of all possible sets of consistent subtree cuts. The term
approximate tree matching (without VLDC’s) is defined as computing

tree_cut(P,T) = Cesﬁarele(T){treedist(P, cut(T,C))}.
Intuitively, this is the distance between the pattern tree and the cut data tree, where the cut
yields the smallest possible distance.

We consider two VLDC’s: | and A. A node with | in the pattern tree can substitute part of a
path from the root to a leaf of the data tree. A node with A in the pattern tree can substitute
part of such path and all the subtrees emanating from the nodes of that path, except possibly
at the lowest node of that path. At the lowest node, the A symbol can substitute for a set of
leftmost subtrees and a set of rightmost subtrees. We call | a path VLDC and A an umbrella
VLDC, because of the shape they impose on the tree.

Let P be a pattern tree that contains both umbrella-VLDCs and path-VLDCs and let T be a
data tree. A VLDC-substitution s on P replaces each path-VLDC in P by a path of nodes in T
and each umbrella-VLDC in P by an umbrella pattern of nodes in 7. We require that any mapping
from the resulting (VLDC-free) pattern P to T map the substituting nodes to themselves. (Thus,
no cost is induced by VLDC substitutions.) The approximate matching between P and T' w.r.t.
s, is defined as tree_vlde(P,T,s) = tree_cut(P,T,s). Then,

tree_vlde(P,T) = mi‘gl{tree_vldc(P, T,s)}
s€
where § is the set of all possible VLD C-substitutions.

The algorithm

The following lemma shows that the two kinds of VLDCs are the same in the presence of free
subtree cuts.?

Lemma 4 A path-VLDC can be substituted for an umbrella-VLDC or vice versa without changing
the mapping or the distance value when we allow subtrees to be cut freely from the text tree.

2The case for matching without cuttings is much more involved. In that case, we have to consider the two kinds
of VLDCs separately and need an auxiliary suffix forest distance measure when dealing with umbrella-VLDCs.

12 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

The computation of treedist(i, j) makes strong use of the above lemmas. From the algorithm,

Procedure: treedist(, j)

begin
forestdist(6,6) = 0;
for i;:=1(7) to ¢
forestdist(Ty[l(2)..11],0) = forestdist(Ty[I(7)..57 — 1],60)+ ~(t:1][i1] — A)
for j;:=I(y) to
forestdist(0, T5[1(7)..51])= forestdist(0, T2[l(7)..51 — 1]) + v(A — t2[71])
for i;:=I(7) to ¢
for j;:=Il(y) to y
if 1(21) = 1(¢) and I(j1) = I(j) then
Calculate forestdist(T1[1(7)..i1], T2[{(7)..71]) as in Lemma 3 (1).
treedist(iy,71) = forestdist(Ty[1(2)..¢1], T2[l(7)..71])
/* put in permanent array */
else
Calculate forestdist(T1[1(7)..i1], T2[{(7)..71]) as in Lemma 3 (2).
end

Output: treedist(T1[s], Tz[t]), where s € desc(i) and t € desc(y), I(s) = 1(¢) and I(t) = I(7).

Figure 14.6: Computing treedist(z,j).

it is easy to see that for any subtree pair 71[¢] and T3[j] the time complexity for treedist(i,j) is

O(|T1[7]| x |Tz[s]|) provided all the necessary treedist() values are available are available. If we
compute all the treedist() bottom up, we can compute the distance between 7} and T5. Therefore
the time complexity of the algorithm can be bounded by

|T1| |T2 |T1 |T2
O Y ITlill x |Tu[4]]) Z | T [¢]| % Z I T2[5]1) = O(|T1| x |T2| x depth(T1) x depth(T — 2)).
=1 j=1

In fact the complexity is a bit better than this. After more careful analysis, we can show that
the complexity is (|71] x |Tz| x min(depth(T}),leaves(T1)) x min(depth(Tz),leaves(Tz))). where
leaves(Ty) is the number of leaves in T;. One implication is that this algorithm can be used to
compute the distance between two strings in time O(|71| x |Tz|).

14.3.3 Pattern trees with variable length don’t cares

Many problems in strings can be solved with dynamic programming. Similarly, our algorithm

applies not only to tree distance but also to a variety of tree problems with the same time
complexity.

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 11

Algorithm: EDIT(T,T5)

begin
Preprocessing;:
(To compute (), LR_keyroots(Ty)[] and LR_keyroots(Tz)[])
for s := 1 to |LR_keyroots(T})|
for t :== 1 to |[LR_keyroots(T3)|
i = LR_keyroots(Ty)[s);
J = LR _keyroots(Ty)[t];
Compute treedist(i, j);
end

Output: tree_dist(T1[i], T[j]), where 1 < ¢ < |Ti] and 1 < j < |Ty|.

Figure 14.5: Computing treedist(Ty,T3).

Algorithm

Lemma 3 has three important implications.

First the formulas it yields suggest that we can use a dynamic programming style algorithm
to solve the tree distance problem.

Second, from (2) of Lemma 3 we observe that in order to compute treedist(iy,j1) we need in
advance almost all values of treedist(z,7) where ¢ is the root of a subtree containing ¢; and j is
the root of a subtree containing j;. This suggests using a bottom-up procedure for computing all
subtree pairs.

Third, from (1) in Lemma 3 we can observe that when ¢ is in the path from I(i1) to ¢; and j
is in the path from [(j1) to j1, we do not need to compute treedist(z, j) separately. These subtree
distances can be obtained as a byproduct of computing treedist(iq, j1).

These implications lead to the following definition and then our algorithm. Let us define the
set LR _keyroots of tree T' as follows:

LR keyroots(T) = {k | there exists no k' > k such that I(k) = I(k')}

That is, if k is in LR_keyroots(T) then either k is the root of T or I(k) # l(p(k)), i.e. k has a
left sibling. Intuitively, this set will be the roots of all the subtrees of tree T that need separate
computations.

It is easy to see that there is a linear time algorithm to compute the function /() and the set
LR _keyroots. We can also assume that the result is in array [and LR _keyroots. Further in array
LR _keyroots the order of the elements is in increasing order.

We are now ready to present a simple algorithm for computing edit distance.

We use dynamic programming to compute treedist(s, j). The forestdist values computed and
used here are put in a temporary array; that is freed once the corresponding treedist is computed.
The treedist values are put in the permanent treedist array.

10 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

Proof: Trivial. O

Lemma 2 Let i € desc(iy) and j € desc(j1). Then

iorest;hstgggzlg) ;(1,)](]'1) J% + 78\1[4 —>[/\]))
. . o) orestdist(l(zq)..2,1(71)..7 — 1) + — 1,
forestdist(l(i1)..7,1(71)..7) = min Forestdist(I(iy). Z(i)J— 17JZ(J1)Z(J’§ _ 1 J

+ forestdist(l(z)..: — 1,1(5)..7 — 1) + ~v(t1[7] — t2[5])

Proof: We compute forestdist(1(iy)..1,1(j1)..7) for I(31) <@ <4y and I(j1) < j < ji1. We are trying
to find a minimum-cost map M between forest(l(iy)..1) and forest(l(j1)..j). The map can be
extended to t1[i] and t;[j] in three ways.

t1]7] is not touched by a line in M. Then (¢:,A) € M. So, forestdist(l(i1)..¢,1(j1)..7) =
forestdust(l(iy)..t — 1,1(51)..7) +y(t1[t] =).

to[j] is not touched by a line in M. Then (A,j) € M. So, forestdist(l(i1)..i,1(j1)..7) =
forestdist(1(i1)..0,1(j1)..7 — 1) +v(A — t2]5]).

t1]7] and t3[j] are both touched by lines in M. Then (i,5) € M. Here is why. Suppose (i, k)
and (h,j) are in M. if I(i;) < h < 1(1) — 1, then ¢ is to the right of h so k must be to the right
of j by the sibling condition on mappings. This is impossible in forest(l(j1)..j). Similarly, if ¢
is a proper ancestor of h, then k must be a proper ancestor of j by the ancestor condition on
mappings. This too is impossible. So, h = i. By symmetry, k = j and (7,5) € M.

Now, by the ancestor condition on mappings, any node in subtree T1[:] can only be touched by a
node in subtree T3[j]. Hence, forestdist(1(iy)..1,1(j1)..7) = forestdist(l(e1)..1(2)—1,1(j1)..1(5)—1)
+ forestdist(l(e)..i — 1,1(y)..7 — 1)+~(t1e] — tQ[J]).

Since these three cases express all the possible mappings yielding forestdist(1(iy)..2,1(j1)..7),
we take the minimum of these three costs. Thus the lemma is proved. O

Lemma 3 Let i € desc(iy) and j € desc(j1). Then
(1) i 1) = (i) and 1(5) = 1)
forestdist(l(i1)..0 — 1,1(51)..7) + v(t1[¢] = A)
forestdist(l(iy)..1,1(j1)..7) = min< forestdist(l(e1)..2,1(j1)..7 — 1) +v(A — t2[y])
forestdist(l(iy)..1 — 1,1(j1)..J — 1) + y(t1[z] — t2[5])

(2) of I(2) £ (1) or l(5) # (1) (i-e., otherwise)
forestdist(l(i1)..0 — 1 Z(Jl)) (t1]i] = N)

J)+
forestdist(l(v1)..0,1(j1)..7) = min{ forestdist(l(iy)..1, Z(Jl) 1)+ (A — t2[f])
forestdust(1(i1)..1(2) — 1,1(71)..1(3) — 1) + treedist(i, j)

Proof: Immediately from Lemma 2. O

14.3. TREE EDIT AND TREE ALIGNMENT ALGORITHMS FOR ORDERED TREES 9

7 f 7.1
4 A 6\ e 4 4 6\ €
1/a 3\ c 5lg 3]d 51h
2Ib 1/a Nb

Figure 14.4: Mapping

We will use M instead of (M,T3,T3) if there is no confusion. Let M be a mapping from T; to
T, the cost of M is defined as follows:

Y(M)= 3 (] = tl])+ > Y(tli] = A) + > 7(A = ta[g])

(ij)eM {il #J st (G5)eM} {3 7 ¢ st. (i5)eM}

Mappings can be composed. Let M; be a mapping from 77 to 75 and let M, be a mapping
from T to T5. Define My oMy = {(¢,5) | 3 k s.t. (¢,k) € My and (k,j) € My} It is easy to show
that M; o M; is a mapping and y(M; o My) < v(My) + ~(My).

The relation between a mapping and a sequence of edit operation is as follows: given S, a se-
quence sq, ... ,s; of edit operations from T} to 75, there exists a mapping M from T} to T3 such that
Y(M) < ~(S); conversely, for any mapping M, there exists a sequence of editing operations such
that v(S) = ~(M). This implies that v(71,72) = min{y(M) | M is a mapping from T} to T,}.
Specifically, nodes in 7} that are untouched by M correspond to deletions from 77, nodes in T}
connected by M to T correspond to null edits (if the connected nodes have the same label) or
relabelings (if the connected nodes have different labels), and nodes in T3 that are untouched by
M correspond to insertion operations. We will use the mapping idea to design the algorithm in
the next subsection since the concept of mapping is easy to visualize and is order-independent.

General formula

The distance between Ti[¢'..7] and T3[j’..7] is denoted forestdist(Ty[¢'..1],T3[j'..5]) or simply
forestdist(i'..1,5'..7) if the context is clear. We use a more abbreviated notation for certain special
cases. The distance between Ti[i] and T3[j] is sometimes denoted treedist(z,j).

We first present three lemmas and then give the algorithm.

Lemma 1 (i) forestdist(6,6) =0

(it) forestdist(l(i1)..2,0) = forestdist(l(i1)..t — 1,0) +y(t1]i]] = A)
(iw2) forestdist(0,1(j1)..7) = forestdist(6,1(j1)..7 — 1) +~v(A = t2[j])
where 1 € desc(i1) and j € desc(j1)

8 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

and T have the same label, their algorithm tries to embed P into T' by embedding the subtrees
of P as deeply and as far to the left as possible in 7. The time complexity of their algorithm is
O(T;| x IT:).

They showed that the unordered inclusion problem is NP-complete.

14.3 Tree edit and tree alignment algorithms for ordered
trees

14.3.1 Notation

While computing the tree-to-tree edit distance, we must compute, as subroutines, the distance
between certain pairs of subtrees and between certain pairs of ordered subforests. An ordered
subforest of a tree T' is a collection of subtrees of T appearing in the same order as they appear
inT.

Specifically, we use a left-to-right postorder numbering for the nodes in the trees. For a tree T,
t[¢] represents the 1th node of tree T We use T'[¢] to represent subtree of T rooted at t[¢] and F[¢]
to represent the ordered subforest obtained by deleting t[¢] from T[:]. We use desc(i) to denote
the set of descendants of t[i]

We use T'i..j] to denote the substructure of T' induced by the nodes numbered ¢ to j inclusive.
In general T'i..j] is an ordered forest.

Let t[i1], t[t2], ..., t[tn,] be the children of ¢[i]. We use F[i,, 15|, 1 <r < s < n,;, to represent the
forest consisting of the subtrees T[i,],..., T[ts]. Fi1,1,,] = F[t] and Flip, t,] = T[tp] # Flip).

Let I(7) be the postorder number of the leftmost leaf descendant of the subtree rooted at t[7].
When t[7] is a leaf, I(¢) = «. With this notation T[¢:] = T[{(2)..:] and F[:] = T[I(¢)..e — 1].

We use depth(T') to represent the depth of tree T'; leaves(T') to represent the number of leaves
of tree T'; and deg(T) to represent the degree of tree T.

14.3.2 Basic tree edit distance computation
Mapping and edit distance

The edit operations give rise to a mapping which is a graphical specification of which edit oper-
ations apply to each node in the two trees (or two ordered forests). The mapping in Figure 14.4
shows a way to transform 77 to T;. It corresponds to the edit sequence (delete(node with label
¢), change(node with label ¢ to label k), insert(node with label ¢)).

Formally we define a triple (M, T1,T3) to be a mapping from 77 to T3, where M is any set of
pair of integers (¢, j) satisfying:

(D) 1< <|If,1 <5 < |Ty;
(2) For any pair of (i1,71) and (i2,72) in M,

(a) 1=t iff j1=7, (one-to-one)
(b) ti[e1] is to the left of #1[is] iff £5[71] is to the left of ¢5[j2] (sibling order preserved)

(¢) ti[e1] is an ancestor of #;[iy] iff ¢5[j1] is an ancestor of ¢5[j5] (ancestor order preserved)

14.2. PRELIMINARY DEFINITIONS AND EARLY HISTORY 7

3. t1[¢] matches t3[7]. In this case, consider the subtrees t1[i1], t1[22], ..., t1]1,,] and t2[51], t2[72], - .-,
t2[jn,] as two sequences and each individual subtree as a whole entity. Use the sequence edit dis-
tance to determine the distance between #1[i1], t1[ia], ..., t1[0n;] and ty[51], t2[52], .., t2[dn;]-

From the above description it is easy to see the difference between this distance and the edit
distance. This algorithm considers each subtree as a whole entity. It does not allow one subtree
of 77 to map to more than one subtrees of T5. Using the definition of edit distance, we can delete
the root of one subtree and then map the remaining subtrees of this subtree to more than one
subtrees.

T, T

Figure 14.3: Lu’s distance are different from edit distance

Figure 14.3 shows an example. the edit distance is 1 since we only need to delete node b. The
distance according to Lu’s algorithm is 2 since we can delete node a of tree 77 and than replace
node b by a. We cannot directly delete node b since if we map a to a, then subtree rooted at b
can only map to one of the two subtrees of tree T, resulting a distance of 3. For two level trees,
this algorithm does in fact compute the edit distance between two ordered trees, but not for trees
with more levels.

Variants of the problem

Selkow gave the another tree edit algorithm in which the insertions and deletions are restricted
to the leaves of the trees. Only leaves may be deleted and a node may be inserted only as a leaf.

In this case, it is easy to see that if ¢1[i] maps to t3[j] then the parent of ¢;[7] must map to the
parent of #3[7]. The reason is that if #1[¢] is not deleted, its parent can not be deleted or inserted.
This means that if two nodes are matched, then their parents must also be matched. Yang later
give an algorithm to identify the syntactic differences between two programs. His algorithm is
basically a variation of Selkow’s.

It is easy to design an algorithm using string edit algorithm as a subroutine to solve this
problem. The time complexity is O(|T1| x |T3|).

Kilpelainen and Mannila introduced the tree inclusion problem. Given a pattern tree P and a
target tree T', tree inclusions asks whether P can be embedded into to T. An alternative definition
is to get P by deleting nodes of T'. Both ordered trees and unordered trees are considered.

Since there may be exponentially many ordered embeddings of P to 7', they used a concept
called left embedding to avoid searching among these embeddings. Assume that the roots of P

6 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

ta[s]. Furthermore, all the nodes on the path from t;[i] to t1[r] are deleted and all the nodes on
the path from t3[j] to t3[s]| are inserted.

Ta T2

,/O\l Rl

-
-~
-~

- R

Figure 14.2: The difficult case

However in the optimal edit sequence for T3[1..2 — 1] and T3[1..7 — 1] we may not find such
a pair ti[r] and t3[s]. This means that in general we cannot derive D(T3[l..¢],T3[1..5]) from
D,(Th[1... — 1], Tz[1..7 — 1]).

In order to deal with this difficulty, Tai introduces another two measures between trees and
the resulting algorithm is quite complex with a time and space complexity of O(|T1| x |T3| X
depth(Ty)* X depth(Ty)?).

Lu’s algorithm

Another edit distance algorithm between ordered trees is reported by Lu. Lu’s definition of the
edit operations are the same as Tai’s. However the algorithm given by Lu does not compute the
edit distance as it defined. Nevertheless it does provide another edit based distance.

We will briefly discuss this algorithm and show its properties. Let t1[i1],¢1[e2], ..., t1[in;] be
the children of #,[7] and #3[j1],%2[j2], ..., t2[jn,] be the children of #,[j]. the algorithm consider the
following three cases.

1. t1[t] is deleted. In this case the distance would be to match 75[j] to one of the subtrees of
t1[¢] and then to delete all the rest of the subtrees.

2. ty[y] is inserted. In this case the distance would be to match Ti[:] to one of the subtrees of
t2[7] and then insert all the rest of the subtrees.

14.2. PRELIMINARY DEFINITIONS AND EARLY HISTORY)

Suppose each node label is a symbol chosen from an alphabet }_. Let A, a unique symbol not
in), denote the null symbol. We represent an edit operation as a — b, where a is either A or a
label of a node in tree T} and b is either A or a label of a node in tree T,. We call a — b a change
operation if a # A and b # A; a delete operation if b = A; and an insert operation if a = A. Let T
be the tree that results from the application of an edit operation a — b to tree 77; this is written
T, — T, viaa — b.

Let S be a sequence si,...,s; of edit operations. An S-derivation from tree A to tree B is
a sequence of trees Ag,..., Ay such that A = Ay, B = A, and A;_ 1 — A; via s; for 1 <11 < k.
Let v be a cost function which assigns to each edit operation a — b a nonnegative real number
y(a — b).

We constrain v to be a distance metric. That is, i) v(a — b) > 0, v(a — a) = 0; ii)
y(a — b) =~v(b— a); and iii) y(a — ¢) < v(a — b) + y(b — ¢).

We extend 7 to the sequence of edit operations S by letting v(5) = El-i'l v(si).

Edit and alignment distances

The edit distance between two trees is defined by considering the minimum cost edit operations
sequence that transforms one tree to the other. Formally the edit distance between T} and T5 is
defined as:

D.(T1,Ty) = msin {7(S) | S is an ed it operation sequence taking Ty to T }.

The alignment distance between two trees is defined by considering only those edit operation
sequences such that all the insertions precede all the deletions. The reason why this is called
alignment distance will be clear when we discuss it later.

Note that edit distance is in fact a distance metric while alignment distance is not since it does
not satisfy the triangle inequality.

14.2.4 Early history of approximate tree matching algorithms
Tai’s classical

Kuo-Chung Tai gave the definition of the edit distance between ordered labeled trees and the first
non-exponential algorithm to compute it. The algorithm is quite complicated, making it hard to
understand and to implement. The space complexity is too large to be practical. We sketch the
algorithm here.

Tai used preorder number to number the trees. The convenient aspect of this notation is that
for any ¢,1 <17 < |T'|, nodes from T'[1] to T'[¢] is a tree rooted at T'[1].

Given two trees 77 and Ty, let Dy(T1[1..2], T3[1..5]) be the edit distance between T1[1] to Ti[¢]
and T5[1] to Tx[y].

We can now use the same approach as in sequence editing. Assume that D,(7y[1..i—1], T3[1..7—
1]), Dy(Th[1..i — 1], T5[1..5]) and Dy(Ti[1..7], T5[1..7 — 1]) are already known, we would like to extend
them into Dy(Ty[1..¢], T3[1..5]). If either t1[i] or #3]j] is not involved in a substitution, then it is
exactly the same as in sequence editing. That is, we just need to use either D;(T3[1... — 1], T5[1..5])
or Dy(Ty[1..2], T3[1..7 — 1]) plus the cost of deleting ¢;[¢] or inserting #;[7].

The difficult case occurs when we substitute t[¢] by t3[7]. In this case, there must be t;[r] and
ta[s] such that ¢;[r] is an ancestor of t[z], t3[s] is an ancestor of t3[j], and we substitute ¢;[r] by

4 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

The basic algorithm for pattern matching with variables is due to Hoffman and O’Donnell.
Improvements using better data structures or variations of the algorithm have been proposed
by Chase and Cai, Paige and Tarjan. Recent work by Thorup presents a short algorithm
(with a rather subtle amortized analysis) that improves the space complexity and usually the
time complexity for preprocessing simple patterns of size p to O(p logp) time and O(p) space.

14.2.3 Edit operations and edit distance

Edit operations

We consider three kinds of operations for ordered labeled trees. Changing a node n means
changing the label on n. Deleting a node n means making the children of n become the children
of the parent of n and then removing n. Inserting is the complement of deleting. This means that
inserting n as the child of m will make n the parent of a consecutive subsequence of the current
children of m.

g g
a—=Db b
b c de b c de
r r
b a—s=\ b
b e b c de
c d
r r
b A—=a b
b c de e
bcd

Figure 14.1: Edit operations

We can consider the same kind of operations for unordered labeled trees. In this case, in the
insertion operation, we have to change consecutive subsequence to subset.

14.2. PRELIMINARY DEFINITIONS AND EARLY HISTORY 3

The obvious algorithm takes O(nm) time. A classic open problem was whether this bound
could be improved. Kosaraju broke the O(nm) barrier for this problem with an O(nm0'75) algo-
rithm. (Note that O(f(n,m)) = O(f(n, m)polylog(m))) He introduced three new techniques: a
suffix tree of a tree; the convolution of a tree and a string; and partitioning of trees into chains
and anti-chains. More recently, Dubine, Galil and Magen improved this result giving an é(n\/ﬁ)
algorithm. Their result was based on the use of “k-truncated” suffix trees that, roughly speaking,
shorten the representation of paths from the root of the pattern P to descendants of the root to
have length no more than k. They also used periodical strings. (A string « is a period of a string
Bif B is a prefix of a* for some k > 0.)

Dubiner, Galil and Magen first construct a 3y/m-truncated suffix tree, X, in O(my/m) time.

Depending on how many leaves ¥ has, there are two cases:

e Y has at least \/m leaves. They show that there are at most n/\/m “possible roots” in the
target tree. They can find these “possible roots” and then check to see if there is a match

in O(n\/n) time.

e ¥ has at most \/m leaves. They show that by using the properties of periodical strings, a
matching can be found in O(n./m) time. This gives an O(n./m) time algorithm.

Exact pattern matching with variables

Exact pattern matching has many applications in term-rewriting systems, code generation, and
logic programming, particularly as a restricted form of unification. In this application, patterns
are constructed recursively from a single “wild-card” variable v, a constant ¢, or a function
f(p1, ..., pr) where the arguments py, ..., p; are patterns in the language. Thus, v, f(¢), f(f(v),c,v)
are all patterns. The recursion induces a tree: the expression f(pi,...,pr) is the parent of the
arguments py, ..., pr and the p;’s are children or “subpatterns” of f(p1, ..., pr).

Pattern p; matches py if it is “more general” (i.e., >) than p,. This holds if either

1. p1isvor
2. pris f(@1, ., k), p2is f(yr,...,yx) and x; > y; for all ¢ between 1 and k inclusive.

Note that this allows a variable to match an entire subtree, but if p; isn’t a variable, then p; and
p2 must begin with the same function symbol.

Given a set of patterns P and a “subject” pattern ¢, the multi-pattern matching problem is to
find the set of elements in P which match some subpattern (i.e., subtree) in ¢.

There are two approaches to this problem: algorithms that start from the roots of the trees
(top-down) and those that start from the leaves (bottom-up). The bottom-up approaches require
significant preprocessing time of the patterns, but handle each subject faster (in time proportional
to the size of the subject plus the number of matches). In rewriting systems, the subject is
constantly changing, so bottom-up is more attractive. However, in the development of rewriting
systems and in the construction of conventional compilers (which use pattern matching in back-
end code generation phases), patterns change frequently. Once the compiler is constructed, the
patterns become static.

The basic technique in the bottom-up algorithms is to construct the set PF' of all subpatterns
of P. Since this can be exponential in the size of P, the auxilliary space and time requirement
can be large and much effort has gone into finding good data structures to hold this set.

2 CHAPTER 14. APPROXIMATE TREE PATTERN MATCHING

14.2 Preliminary definitions and early history

14.2.1 Trees

A free tree is a connected, acyclic, undirected graph. A rooted tree is a free tree in which one
of the vertices is distinguished from the others and is called the root. We refer to a vertex of
a rooted tree as a node of the tree. An unordered tree is just a rooted tree. We use the term
unordered tree to distinguish it from the rooted, ordered tree defined below. An ordered tree is
a rooted tree in which the children of each node are ordered. That is, if a node has k children,
then we can designate them as the first child, the second child, and so on up to the kth child.

Unless otherwise stated, all trees we consider are either ordered labeled rooted trees or un-
ordered labeled rooted trees.

Given a tree, it is usually convenient to use a numbering to refer to the nodes of the tree. For
an ordered tree T, the left-to-right postorder numbering or left-to-right preorder numbering are
often used to number the nodes of 7" from 1 to |T'|, the size of tree T. For an unordered tree,
we can fix an arbitrary order for each of the node in the tree and then use left-to-right postorder
numbering or left-to-right preorder numbering. Suppose that we have a numbering for each tree.
Let t[¢] be the ¢th node of tree T' in the given numbering. We use T[] to denote the subtree
rooted at t[z].

14.2.2 A brief review of algorithmic results in exact tree matching

We distinguish between exact and approximate matching as follows. A match between two objects
o and o is ezact based on a a matching relation R if o' is a member of R(o0). It is in this sense,
in strings, that w*ing matches both “willing” and “windsurfing” where R is defined so that *
can match any sequence of non-blank characters. A match between two objects o and o given
a matching relation R is inexact or approximate if it isn’t exact. For example, w*ing matches
“widen” only approximately. In the case of an approximate match, the distance is normally based
on some monotonic function of the smallest changes to o and/or o that result in objects p and p’
respectively such that p’ is a member of R(p'). Using edit distance w*ing matches “widen” with
distance three, the number of changes to “widen” to transform it to “wing.”

Most of our work has concerned approximate matching in trees, so our review of the results of
exact matching in trees is extremely brief, serving mostly to give pointers to some of the important
papers with the barest hint of algorithmic idea.

Exact tree matching without variables

Let pattern P and target T be ordered labeled trees of size m and n respectively, P matches T
at node v if there exists a one-to-one mapping from the nodes of P into the nodes of T' such that

1. the root of P maps to v,
2. if & maps to y, then x and y have the same labels, and

3. if x maps to y and z is not a leaf, then the ith child of maps to the ith child of y. (This
does not imply that P maps to the subtree rooted at v, but merely that the degree of y is
no less than the degree of z.)

Chapter 14

Approximate Tree Pattern Matching

Dennis Shasha and Kaizhong Zhang

14.1 Introduction

Most of this book is about stringology, the study of strings. So why this chapter on trees? Why
not graphs or geometry or something else? First, trees generalize strings in a very direct sense: a
string is simply a tree with a single leaf. This has the unsurprising consequence that many of our
algorithms specialize to strings and the happy consequence that some of those algorithms are as
efficient as the best string algorithms.

From the point of view of “treeclogy”, there is the additional pragmatic advantage of this
relationship between trees and strings: some techniques from strings carry over to trees, e.g.,
suffix trees, and others show promise though we don’t know of work that exploits it. So, treeology
provides a good example area for applications of stringologic techniques.

Second, some of our friends in stringology may wonder whether there is some easy reduction
that can take any tree edit problem, map it to strings, solve it in the string domain and then map
it back. We don’t believe there is, because, as you will see, tree editing seems inherently to have
more data dependence than string editing. (Specifically, the dynamic programming approach to
string editing is always a local operation depending on the left, upper, and upper left neighbor
of a cell. In tree editing, the upper left neighbor is usually irrelevant — instead the relevant cell
depends on the tree topology.) That is a belief not a theorem, so we would like to state right at
the outset the key open problem of treeology: can all tree edit problems on ordered trees (trees
where the order among the siblings matters) be reduced efficiently to string edit problems and
back again? !

The rest of this article proceeds on the assumption that this question has a negative response.
In particular, we discuss the best known algorithms for tree editing and several variations having to
do with subtree removal, variable length don’t cares, and alignment. We discuss both sequential
and parallel algorithms. We present negative results having to do with unordered trees (trees
whose sibling order is arbitrary) and a few approximation algorithms. Finally, we discuss the
problem of finding commonalities among a set of trees.

1Since the editing problem for unordered trees is NP-complete, we can say that it is not possible to map it into
a string problem.

