
Aligning Class Hierarchies with Grass-roots Class Alignment

Baoshi Yan
Information Sciences Institute, University of Southern California

4676 Admiralty Way, Suite 1001, Marina Del Rey, California 90292
baoshi@isi.edu

Abstract

The performance of an ontology alignment technique
largely depends on the amount of information that can be
leveraged for the alignment task. On the Semantic Web,
end-users may explicitly or implicitly generate ontology
alignments during their use of the semantic data. This kind
of end-user-generated ontology alignment, which we call
grass-roots ontology alignment, is an important source of
information that is yet to be taken into account by current
ontology alignment techniques. Grass-roots ontology align-
ment, often generated as a side effect of other data ma-
nipulations, could be user-specific, task-specific, approxi-
mate, or even contradictory. This paper reports our work
on reusing grass-roots class alignment for aligning class
hierarchies. A grass-roots class alignment, though approx-
imate, still reveals some facts about relationships between
different classes. We formalize facts about class relation-
ships that can be inferred from an alignment under differ-
ent cases. We then apply forward-chaining inference to the
facts knowledge base to infer more facts. The facts KB is
then leveraged for ontology alignment purposes. To deal
with uncertainty and inconsistency, each fact is associated
with an evidence that tells how the fact is obtained. The ev-
idences are used to select better-supported facts in case of
inconsistency.

1 Introduction: Grass-roots Ontology Align-
ment

Ontology alignment is a key problem when dealing with
heterogeneous data. It is even more important for the Se-
mantic Web that is all about structured data in different on-
tologies. Many techniques (see [19] for a survey) have been
proposed for aligning ontologies (or mapping schemas in
database community’s term). The performance of an ontol-
ogy alignment technique largely depends on the amount of
information that can be leveraged for the alignment task.

On the Semantic Web, end-users may explicitly or im-

plicitly generate ontology alignments during their use of the
semantic data. This kind of end-user-generated ontology
alignment, which we call grass-roots ontology alignment,
is an important source of information that is yet to be taken
into account by current ontology alignment techniques.

Suppose a user’s PDA and mailer (e.g., Outlook) are
Semantic-Web-empowered, but are using different ontolo-
gies. When the user copy an address from her PDA’s ad-
dress book to the Outlook’s address book, the user implic-
itly claims alignments between related classes and proper-
ties of the PDA ontology and those of the Outlook ontol-
ogy. These alignments are valuable information and should
be leveraged for future alignment purposes.

For another example, an auto-buyer may check the price
of a car with KBB.com and look up its registration infor-
mation with CarFax.com, the implied alignment between
the “Auto” class of KBB ontology and the “Car” class of
CarFax ontology (Suppose these two sources are Semantic-
Web-empowered) could then be used by intelligent infor-
mation agents to integrate information from both sources.

Tim Berners-Lee, in his vision for the Semantic Web[4],
also discussed the power of this kind of end-user-generated
alignments. He talked about how one could compose a busi-
ness card out of an e-mailed invoice and how the implicitly
generated alignment could then help other users: “I might
be the first to establish that mapping ... but now anyone who
learns of those links can derive a business card from an e-
mailed invoice.” and “If I publish the relationships ... as a
bit of RDF, then the Semantic Web as a whole knows the
equivalence”.

An interesting application demonstrating the idea of
grass-roots alignment is WebScripter [20]. Users build a re-
port by extracting content from heterogeneous sources and
pasting that content into what looks like an ordinary spread-
sheet. What users implicitly do in WebScripter (without ex-
pending extra effort) is to generate some ontology equiva-
lency statements. The resulting equivalency statements are
then reused by WebScripter to help (other) users find and
align related ontologies and data.



2 Objective: Aligning Classes with Grass-
roots Alignment

Grass-roots ontology alignment is a useful source of in-
formation that should help us with future alignment tasks.
In this paper we focus on the problem of aligning classes
by reusing grass-roots class alignment. To be more precise,
the information we have is a set of grass-roots alignments
between the classes of a set of ontologies. Now given two
ontologies in the same domain that might not be among the
aforementioned set of ontologies, our objective is to align
the classes of the two ontologies.

From now on we sometimes use alignment as shorthand
for grass-roots alignment when it is not ambiguous.

3 Difficulties: Properties of Grass-roots
Class Alignment

Grass-roots class alignment is a useful source of infor-
mation that should help us with future alignment tasks.
When one user (implicitly) aligns “O1:PhDStudent”1 with
“O2:DoctoralStudent”, it should help other users align
these classes when they see ontologies O1 and O2. Fur-
thermore, it should help us with our future alignment
tasks when these terms appear in other ontologies again.
That is, it should help us align “O3:PhDStudent” with
“O4:DoctoralStudent”.

However, not all grass-roots alignments are that univer-
sal. Grass-roots ontology alignment, often generated as
a side effect of other data manipulations, could be user-
specific, task-specific, approximate, or even contradictory.
A university secretary, when counting the number of univer-
sity personnel, may put together all “Professors”, “Staffs”
and “Students” from different sources, thus implying that
“Professor”, “Staff” and “Student” are aligned. These
classes, however, cannot be aligned in many other cases.

Since alignment is often generated implicitly, it could be
erroneous when users perform mistaken data manipulations.

Approximateness of alignment often comes from the
lack of corresponding concepts. For example, in one on-
tology there might be a “GraduateStudent” class, while in
another one there might be only a “MasterStudent” class.
Thus a person building a report of all graduate students will
simply put all “GraduateStudent” and “MasterStudent” in-
stances together, which will implicitly produce alignment
that “GraduateStudent” is aligned with “MasterStudent”.

Alignment is not transitive. If we regard alignment as
transitive, in extreme cases everything would be aligned
with everything else. As depicted in Figure 1 (Different

1The notation of O:C defines a class with term C in ontology O, C is a
meaningful string representing the class, such as a class label.

color blocks represent different ontologies; arrows repre-
sent subclass relationships), every alignment (represented in
dashed double line) is the best possible alignment between
the two ontologies. All classes in Figure 1 will be aligned
with each other if we regard alignment as transitive.

Figure 1. Alignment is not transitive

Therefore, to reuse grass-roots alignment for ontology
alignment purposes, we must deal with the approximateness
or even erroneousness of those alignments.

4 Approach: Class Alignment by Reusing
Grass-roots Class Alignment

As discussed above, reusing grass-roots class align-
ment for other class alignment tasks is not straightforward.
“GraduateStudent” and “MasterStudent” are aligned in one
case does not mean they can be aligned in other cases. Fur-
thermore, the non-transitivity of alignment limits our ability
to reuse previous alignments. We cannot align A and C just
because A and C are both aligned to B.

In the ideal world, there is a complete class hierarchy
covering every class in every ontology. Class alignment
then becomes easy. For every class in one ontology, its
best alignment candidate in the second ontology can be
determined based on their respective positions in the all-
encompassing class hierarchy.

Unfortunately such a class hierarchy does not exist in
most cases. It is even less probable to exist on the Semantic
Web. A less ambitious goal, thus, is to construct an approx-
imate class hierarchy based on grass-roots class alignment
that may be approximate or inconsistent.

To make the task easier, note that we actually don’t need
to explicitly construct a single class hierarchy. All the un-
certainties and inconsistencies may lead to a collection of
candidate class hierarchies with different confidence mea-
sures. All we need is the relationships (e.g., superclass,
subclass, sibling) between different classes. Given these re-
lationships, it is still possible to determine how well two



classes can be aligned.
Therefore, our goal is to obtain as many class relation-

ships as possible from grass-roots alignment, and then use
such relationships for future class alignment tasks.

4.1 Observations and Assumptions

Notations:
Before we proceed, let’s first define some notations.

Given two terms A and B, there are four kinds of relation-
ships between them:

1. A is more general than B, i.e., B is the subclass of A,
which can be represented asA > B. We also call this A is
an ancestor of B and B is a descendant of A.

2. B is more general than A, represented asB > A.
3. A and B are parallel (A ‖ B), that is, neither of A and

B is more general than the other one but they are related via
class subsumptions. For example, A and B are siblings.

4. A and B are not related via class subsumptions, e.g., a
“Movie” and a “Person”.

For the sake of brevity, we useA • B to represent the
situation when there is ancestor/descendant relationship be-
tween A and B but we are not sure which one is more gen-
eral.

We useA∗B to represent that A and B are related (either
via >, • or ‖).

Although grass-roots alignment seems rather arbitrary
because users might align two classes for their own pur-
poses, we can still make some observations regarding grass-
roots alignments.

Observation 1:
Our first observation is that: when users align two

classes, the aligned classes tend to describe same “kind”
of things. For example, users might align “MasterStudent”
with “Student”, or even “MasterStudent” with “Person”.
But they rarely align “MasterStudent” with “Project”. In
other words, aligned classes are highly likely related via a
series of class subsumption relationships.

Observation 2:
Our second observation is that when facing several ap-

proximate alignment candidates, users tend to select the one
that is semantically closer.

Take Figure 2(a) for example, we all know that
Student > GraduateStudent > MasterStudent. If
Student > GraduateStudent appears in one ontology
O1 whileMasterStudent appears in another ontology O2,
out of Student andGraduateStudent users tend to pick
GraduateStudent to alignMasterStudent with. Similar
observation can be made on the case depicted in Figure 2(b).

Figure 2(c) suggests another situation. For exam-
ple, we know thatMasterStudent and PhDStudent
are both subclasses ofGraduateStudent. When
GraduateStudent > MasterStudent appear in ontology

O1 andPhDStudent appears in ontology O2, users tend
to alignO2 : PhDStudent with O1 : GraduateStudent.
This is reasonable because B and C are not directly related.
From the perspective of set theory,A ∩ C containsB ∩ C.
B ∩ C is ∅ when B and C are mutually exclusive.

Figure 2(d) is actually a rare case compared with case
(a) (b) and (c). It basically says that givenO1 : Student >
O1 : FemaleStudent and O2 : Female users tend to
alignO2 : Female with O1 : FemaleStudent.

Figure 2. Observations on Grass-roots Align-
ment

The assumption our approach based on is the validity of
above observations. We assume that most users tend to align
according to our observations. Note that in Figure 2 class
hierarchies are on the left side and alignments are on the
right side. Given the validity of the observations, the right
side (alignments) gives hints on how the left side should
look like. Such hints are then combined to infer the class
hierarchies on the left side.

4.2 The Class Alignment Algorithm

The first step of our class alignment algorithm is to get
an initial set of facts about relationships between different
classes. Such facts come from two sources: the subclass
relationships explicitly specified in the original ontologies,
and other facts implied by alignments.

Step 1: Subclass Relationship Specified in the Ontol-
ogy:

Given an ontology O1, if it is specified in O1 that O1:B
is a subclass of O1:A, we represent such a fact in a form:
(A > B, e = O1), which means that term A is more general
than term B, the evidence for this claim is ontology O1.
Similarly, if in ontology O2 it is also specified that O2:B is
subclass of O2:A, then we get(A > B, e = O1 + O2).

Step 2: Relationships Implied by Grass-roots Align-
ments: For simplicity reason, let’s assume here that there
is no multiple inheritance in the class hierarchies we are



working on. Our experiences with many class hierarchies
suggest that multiple inheritance occurs relatively infre-
quently. The algorithm presented below can be extended
for multiple-inheritance cases as well with slight adaptions.

Case 1:Suppose an alignment exists as on the left side
of Figure 3 (the double dash line stands for alignment), that
is, A is a superclass of B and B is aligned with C. Such an
alignment implies that C cannot be a superclass of A, other-
wise C should be aligned with A, not B. Thus the possible
relationship between A and C isA > C or A ‖ C. Sim-
ilarly the alignment implies that B and C are not parallel,
otherwise C is better aligned with A. Thus the possible re-
lationship between B and C isC > B or B > C. Take all
A, B and C into account, there are four kinds of combina-
tion:

1. A ‖ C andB > C: this combination is invalid be-
causeB > C combined withA > B will lead to A > C,
conflicting withA ‖ C.

2. A ‖ C andC > B: in this case B inherits from both
A and C, thus it is pruned because of our single-inheritance
assumption.

3. A > C andC > B, or
4. A > C andB > C.
We can combine 3 and 4 andA > B to get (A > B

AND A > C AND B •C). For brevity we can also rewrite
it in a shorter formA > B • C.

Add in the evidence we will get(A > B•C, e = align1)
where align1 is the alignment that links the O1:B class in the
first ontology to O2:C class in the second ontology.

Figure 3. Case 1

Case 2: Suppose an alignment exists as on the left side
of Figure 4, that is, A is a superclass of B and A is aligned
with C. Such an alignment implies that B cannot be a su-
perclass of C, otherwise C should be aligned with B, not A.
Further analysis will lead to (NOT(B > C) AND A ∗ C).
The relationship between A and C can be arbitrary.

Similar to case 1, add in the alignment as evidence we get
(NOT (B > C) AND A ∗ C, e = align2) where align2 is
the alignment that links the O1:A class in the first ontology
to O2:C class in the second ontology.

Case 3: This is actually not a separate case (Figure 5).
It is an aggregation of two case 1’s. Therefore, we have:

Figure 4. Case 2

(A > B AND B ∼ C) => A > B • C

(D > C AND B ∼ C) => D > B • C

where∼ stands for alignment.
Since we are dealing with single-inheritance case, the

last two can be combined intoA •D > B • C.
Add in the algnment evidence align3 we will have(A •

D > B • C, e = align3). Similarly, for the case(A > B
AND D > C AND A ∼ D) we will get (NOT (B > D)
AND NOT (C > A) AND A ∗D).

Figure 5. Case 3

Step 3: Forward-chaining Inference:
After we get all the facts from the subclass relation-

ships in the ontologies and from the alignments, we apply
forward-chaining inference to the facts knowledge base to
obtain more facts. The inference rules used here are propo-
sitional rules. Some sample rules include:

(A > B OR A < B) and NOT(A > B) will lead to
B > A (Unit Resolution).

A > B andB > C will lead to A > C (Transitivity of
Class Subsumption).

NOT(A > B) and NOT(A ‖ B) will lead toB > A.
The computation of evidence is as following:
When a new factf is obtained from several other facts,

(f1, e1)AND(f2, e2)...AND(fi, ei) => (f, e), its evi-
dencee = e1∗ e2∗ ..∗ ei. When a fact can be obtained sev-
eral times with different evidencese1, e2, ..ei, its evidence
is updated ase = e1+e2+ ...+ei. Also note that same ev-
idence doesn’t count twice, that is,e1 + e1 = e1, e1 ∗ e1 =
e1.

We do not use backward-chaining inference. The facts
knowledge base is very likely to be inconsistent because



users may assert contradictory alignments. Thus everything
you want the KB to prove will be proven.

With the forward-chaining inference, we try to infer as
many facts as possible along with evidences for each fact.
The evidences will be used to pick out better-supported facts
in case of fact contradictions.

Quantifying Evidences: We want to quantify evidences
for comparison reason. The value of an evidence is a nu-
merical value between (0, 1). Let V(e) be the numerical
value of evidence e. The computation of evidence value is
according to the following:

V(e1+e2) = 1-(1-V(e1))*(1-V(e2))
V(e1*e2) = V(e1)*V(e2)
The value of primitive evidences can be determined sep-

arately, for example, they can be based on user authority or
ontology quality. In our experiment, for simplicity we as-
sign each ontology evidence a value of 0.6 and each align-
ment evidence a value of 0.3.

Note that evidence values are not probabilities. A fact
with evidence value 0.8 does not mean it has a probability
of 0.8 to be true. It’s rather a measure of confidence which
is only meaningful for comparison purposes.

Step 4: Class Alignment Using Facts KB:
The facts obtained from the inference step above will be

used for the next class alignment task. Given a class A from
ontology O1, we try to find a class B from the second on-
tology O2 such that B is the best alignment candidate for
A.

Note that one desirable side effect of our algorithm is that
it takes only a one-step query to get all superclasses or sub-
classes of a class because of the application of subsumption
transitivity rule in Step 3.

Let’s define three class sets as following:
Sup(A) is the set of superclasses of A as in facts KB.
Sub(A) is the set of subclasses of A as in facts KB.
Ind(A) is the set of all classesA′ such that(A > A′

OR A′ > A) but there is no fact in KB specifying either
A > A′ or A′ > A. That is,A′ and A are indistinguishable
according to facts KB.

To deal with possible inconsistencies, for eachA′ from
Sup(A), if there is a better-supported factA > A′,
NOT(A′ > A) or A′ ‖ A, removeA′ from Sup(A). Do
the same to Sub(A).

We then determine the alignment candidate for class A
in the following order:

If there are one or more classes from O2 that belong to
Ind(A), choose the best-supported one as the alignment can-
didate for A.

If there are one or more classes from O2 that belong to
Sup(A), choose the one closest to A, that is, out of B and C
choose B ifC > B. If the order between B and C cannot
be determined, pick the better-supported one.

If there is one or more classes from O2 that belong to
Sub(A), choose the one closest to A, that is, out of B and C
choose B ifB > C. If the order between B and C cannot
be determined, pick the better-supported one.

Otherwise there is no alignment candidate for A in O2.
Example: Let’s use the ontologies and alignments in

Figure 6 as an example to illustrate how to obtain facts
about class relationships. Using the obtained facts for align-
ing classes is straightforward and thus not elaborated here.
All the obtained facts are listed in Table 1. In order to
(implicitly) integrate the three small class hierarchies into
a bigger one, it is useful to determine the relationship be-
tween “Graduate” class and “UnivStudent” class. Note that
since alignment does not mean equivalence,(Student >
Graduate,O2) and the alignment between “UnivStudent”
and “Student” do not immediately implyUnivStudent >
Graduate. However, we will show that by combining facts
obtained from different alignments and ontologies , we will
still be able to inferUnivStudent > Graduate. As listed
in Table 1, Facts 0 to 5 are directly obtained from respective
ontologies, Facts 6 to 13 are obtained from the two align-
ments, the rest of facts are obtained with forward-chaining
inference. From align2 we get Fact 9: NOT(Graduate >
UnivStudent), which is Case 2 as depicted in Figure 4.
From align1 we get Fact 8:(Graduate > UnivStudent
OR UnivStudent > Graduate), which is case 3 as de-
picted in Figure 5. Applying unit resolution on Facts 8 and
9 results inUnivStudent > Graduate.

Figure 6. Example 1

Dealing With Multiple Inheritance :
We only need to make small adjustments to our algo-

rithm when dealing with multiple-inheritance class hierar-
chies. For the case 1 scenario as depicted in Figure 3,
the following facts are implied from the alignment instead:
NOT(C > A), NOT(B ‖ C), ((C > B AND A ‖ C)
OR (A > C AND (B > C OR C > B))). The case



Fact# Fact Evidence
0 Graduate> MasterStudent O1
1 Graduate> DoctoralStudent O1
2 Student> Graduate O2
3 UnivStudent> Undergraduate O2
4 UnivStudent> MSStudent O3
5 UnivStudent> PhDStudent O3
6 UnivStudent> MasterStudent align1
7 Graduate> MSStudent align1
8 Graduate> UnivStudent align1

OR UnivStudent> Graduate
9 NOT (Graduate>UnivStudent) align2
10 Student∗ UnivStudent align2
11 NOT (MSStudent>Student) align2
12 NOT (PhDStudent>Student) align2
13 NOT (Undergraduate>Student) align2
14 UnivStudent> Graduate align1*align2

/*from 8 and 9*/
15 Student> UnivStudent O2*align1*align2,

OR UnivStudent> Student /*from 2 and 14,
single-inheritance*/

... ... ...

Table 1. Facts Knowledge Base

2 scenario remains the same while the case 3 is not used.
In the multiple-inheritance case we make less bold assump-
tions and introduce more uncertainties than in the single-
inheritance case.

5 Evaluation

To evaluate the feasibility of our approach, we performed
an experiment in the university student domain. We re-
trieved and downloaded 26 ontologies about university stu-
dents with the help of swoogle[1] ontology search engine.
The part of class hierarchy related to university student in
each ontology consists of 5 classes on average. We found
a high redundancy in class names, with about 3 different
names for each class. An ideal evaluation would be to mea-
sure the alignment results between all possible ontologies
in the same domain, which is theorectically determined by
the quality of facts inferred. Therefore, a much simplified
but roughly equivalent evaluation is to measure the preci-
sion and recall of inferred facts against the ideal fact set. As
a reference set, we manually constructed a complete class
hierarchy covering all related classes in the 26 ontologies.
We then measure the precision and recall of inferred facts
against the reference set. As shown in Figure 7, grass-roots
alignments increase the recall with a good precision. The
single-inheritance case has a higher recall than the multiple-
inheritance case with roughly the same precision. This is
understandable because the class hierarchies in the exper-

iment are all single-inheritance hierarchies. We expect to
perform more experiments in other domains.

Figure 7. Precision and Recall of Obtained
Facts

6 Survey of Current Alignment Tools and
Techniques

Ontology alignment has been studied extensively in the
ontology and semantic web community, as well as the
database community, often under different names.

ONION [17] and PROMPT [18] [16] use name similarity
and structure similarity between ontologies as hints to guess
matching between terms. Later on, people realized that
data instances are an import source of information as well,
and proposed alignment techniques (LSD [6] GLUE[7] Au-
tomatch [3] SemInt[11]) that take data instances into ac-
count. Different techniques are good at dealing with differ-
ent kinds of information. To further improve matching per-
formance, systems that integrate different matching tech-
niques were also proposed (CUPID [14],LSD [6], COMA
[5]).

The idea of reusing previous alignments was stated in
[19] and further developed in COMA[5]. In order to match
S1 andS2, COMA[5] requires the existence ofS that has
been already matched withS1 andS2, which makes it un-
usable for schemas unseen before. Alon Halevy [8] [12]
proposed to use a corpus of schemas and schema mappings
to help schema matching. [13] defines a representation for
schema mapping and its associated semantics. But they
didn’t deal with the approximateness or inconsistency of the
reused alignments.

The MOBS Project[15] tries to minimize the schema
mapping effort of the data integration system builder by ex-
plicitly asking users of the system to answer schema map-
ping questions. The questions may not be of interest to



users; they are rather users’ “payment” for using other ser-
vices provided by the system. This is very different from
our approach where end users generate alignments on on-
tologies of their own interests for their own purposes.

Unlike other ontology alignment techniques that take
two ontologies as input, [9] [10] takes a set of ontologies
as input and tries to align them with holistic approaches.
Their approaches are based on the mutual exclusiveness of
equivalent terms to appear in the same ontology.

Ontology alignment is unlikely to be fully automatic.
User interaction is inevitable. Aslan et.al.[2] proposed an it-
erative process for resolving semantic heterogeneity in fed-
erated databases by leverage user input for stepwise seman-
tic evolution. Yan et.al.[21] proposed an interactive tool
that uses instance data to guide users in data navigation and
schema mapping.

The biggest difference between our alignment algorithm
and others is the information used by the algorithm. The
grass-roots alignments, which are generated explicitly or
implicitly by end users and could be approximate or erro-
neous, are not taken into account by other alignment algo-
rithms.

7 Summary

End-user-generated ontology alignment, which we call
grass-roots ontology alignment, is an important source of
information that is yet to be taken into account by current
ontology alignment techniques. Grass-roots ontology align-
ment might be approximate or erroneous. We discussed our
work on dealing with the approximateness and inconsisten-
cies of grass-roots class alignment in order to reuse them
for class alignment purposes. Our preliminary results show
a high precision and promising recall of our algorithm.

8 Acknowledgments

We gratefully acknowledge the support of National
Science Foundation under Award No. IIS-0324955 and
DARPA DAML program funding for WebScripter under
contract number F30602-00-2-0576.

References

[1] Swoogle. http://swoogle.umbc.edu/.
[2] G. Aslan and D. McLeod. Semantic Heterogeneity Resolu-

tion in Federated Databases by Metadata Implantation and
Stepwise Evolution.VLDB Journal, 8(2):120–132, 1999.

[3] J. Berlin and A. Motro. Database schema matching using
machine learning with feature selection. InProceedings
of the 14th International Conference on Advanced Informa-
tion Systems Engineering, pages 452–466. Springer-Verlag,
2002.

[4] T. Berners-Lee. Machines and the web. InWeaving the Web,
page 187.

[5] H. Do and E. Rahm. Coma - a system for flexible combina-
tion of schema matching approaches. InVLDB, 2002.

[6] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning ap-
proach. InSIGMOD Conference, 2001.

[7] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learn-
ing to map ontologies on the semantic web. InThe Eleventh
International World Wide Web Conference, 2002.

[8] A. Halevy, O. E. A. Doan, Z. Ives, and J. Madhavan. Cross-
ing the structure chasm. Inthe First Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[9] B. He and K. C.-C. Chang. A Holistic Paradigm for Schema
Matching. SIGMOD Record, 33(3):120–132, September),
year = 2004.

[10] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. InProceedings of the 2003
ACM SIGMOD international conference on Management of
data, pages 217–228. ACM Press, 2003.

[11] W.-S. Li and C. Clifton. Semint: a tool for identifying at-
tribute correspondences in heterogeneous databases using
neural networks.Data Knowl. Eng., 33(1):49–84, 2000.

[12] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy.
Corpus-based schema matching. InICDE, 2005.

[13] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y.
Halevy. Representing and reasoning about mappings be-
tween domain models. InEighteenth national conference
on Artificial intelligence, pages 80–86. American Associa-
tion for Artificial Intelligence, 2002.

[14] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. InThe VLDB Journal, pages 49–58,
2001.

[15] R. McCann, A. Kramnik, W. Shen, V. Varadarajan, O. Sob-
ulo, and A. Doan. Integrating data from disparate sources:
A mass collaboration approach. InICDE, pages 487–488,
2005.

[16] S. Melnik, H. Molina-Garcia, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm. Inthe In-
ternational Conference on Data Engineering (ICDE), 2002.

[17] P. Mitra and G. Wiederhold. An algebra for semantic in-
teroperability of information sources. In2nd Annual IEEE
International Symposium on Bioinformatics and Bioengi-
neering, pages 174–82, Bethesda, MD, USA, November 4-6
2001.

[18] N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool
for automated ontology merging and alignment. In17th Na-
tional Conference on AI, 2000.

[19] E. Rahm and P. Bernstein. On matching schemas automati-
cally. Technical report, Microsoft Research, Redmon, WA,
2001. MSR-TR-2001-17.

[20] B. Yan, M. Frank, P. Szekely, R. Neches, and J. Lopez. Web-
scripter: Grass-roots ontology alignment via end-user report
authoring. Inthe Second International Semantic Web Con-
ference, Octor 2003.

[21] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-
driven understanding and refinement of schema mappings.
SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 30(2):485–496, 2001.


