
LINDA: Distributed Web-of-Data-Scale Entity Matching

Christoph Böhm
Hasso Plattner Institute

Potsdam, Germany
christoph.boehm@
hpi.uni-potsdam.de

Gerard de Melo
ICSI Berkeley

Berkeley, CA, USA
demelo@

icsi.berkeley.edu

Felix Naumann
Hasso Plattner Institute

Potsdam, Germany
felix.naumann@

hpi.uni-potsdam.de

Gerhard Weikum
Max Planck Institute

Saarbrücken, Germany
weikum@

mpi-inf.mpg.de

ABSTRACT
Linked Data has emerged as a powerful way of intercon-
necting structured data on the Web. However, the cross-
linkage between Linked Data sources is not as extensive as
one would hope for. In this paper, we formalize the task of
automatically creating “sameAs” links across data sources in
a globally consistent manner. Our algorithm, presented in
a multi-core as well as a distributed version, achieves this
link generation by accounting for joint evidence of a match.
Experiments confirm that our system scales beyond 100 mil-
lion entities and delivers highly accurate results despite the
vast heterogeneity and daunting scale.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; H.4 [Information Systems Ap-
plications]: Miscellaneous

General Terms
Algorithms

1. (NOT SO) LINKED OPEN DATA
Linked Open Data (LOD) is emerging as a way of in-

terconnecting structured-data sources on the Internet and
creating a “Web of Data”. In total, the Web of Data cur-
rently contains about 30 billion triples. The key point of
LOD is to provide extensive cross-linkage between sources
at the level of entities. For example, two sameAs links suffice
to connect data about the director David Lynch in DBpedia,
Freebase, and the BBC. This way, we can answer join queries
that require biographic data from DBpedia as well as data
about compositions from the BBC. Clearly, this has enor-
mous potential. Unfortunately, this cross-linkage between
LOD sources is not nearly as extensive as one would hope.
Although exact numbers are not known, an estimate for the
number of sameAs links is in the order of 500 million. A
large number of trivial links exist between major knowledge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

bases like DBpedia, Freebase and Yago, which are derived
from Wikipedia and can use article titles as a common de-
nominator. Our aim is to develop fully automated domain-
independent methods that discover high-quality links, while
scaling to the immense proportions of the Web of Data.

At first glance, this seems to be identical to the classical
record linkage task, also known as entity resolution. The
problem has received much attention in the literature [1,
8]. A closer look, however, reveals fundamental differences
between the typical record-linkage setting and our prob-
lem of entity matching in LOD. First, the fine-grained and
loose-schema nature of RDF triples makes it much harder
to identify similarity features. Second, in contrast to the
traditional setting, we are faced with the vast heterogeneity
of LOD sources, spanning many different domains. Third,
we deal with a much larger number of sources. This is an
additional challenge, but also an opportunity, since we can
potentially exploit sameAs transitivity over many sources.
Finally, many billions of triples is a daunting scale that has
not yet been tackled in a joint approach. Recent work geared
towards LOD [5, 6, 9, 14] has either only been applied to
small datasets or has partitioned the entity matching into
separate jobs without accounting for their interactions.

Our approach is based on an optimization model that cap-
tures the joint evidence for entities in one source matching
entities in other sources. The evidence is based on neighbor-
ing nodes of an entity and those of another entity to which
a sameAs link could possibly exist. Consider the example of
the entity David Lynch on LinkedMDB and a candidate en-
tity in Freebase. For inferring equivalence, we consider both
sides’ attributes such as birthplace, awards and relationships
to movies, compositions, etc.

This situation motivates our joint-reasoning approach:
After matching David Lynch correctly, we have more evi-
dence to also choose the right Mulholland Drive in Free-
base, i.e., the movie and not the street in the Los Angeles
area. This reasoning proceeds recursively, i.e., a decision
about equivalence of neighboring entities may in turn affect
further neighboring entities.

This paper makes the following technical contributions:
(1) A new optimization model for joint evidence and con-
sistency of sameAs linkage between LOD entities. (2) An
efficient and scalable algorithm for computing an approx-
imate solution of the optimization problem, with a multi-
core as well as a distributed MapReduce-based version. (3)
Large-scale experiments that demonstrate the viability of
our approach on graphs with > 100 millions of entities.

2. PROBLEM FORMALIZATION
Goal. Given Linked Data RDF triples, we would like to
match entity identifiers that come from different sources and
represent the same real-world entity.
Input. Our input is a set of RDF triples of the form (s, p, o),
i.e., with subject, predicate, and object. These are cast into
an entity graph G, with nodes corresponding to entity URIs,
and edge labels representing triple predicates.
Desired Output. Our output is a square 0-1 matrix X,
stating whether any two URIs represent the same entity or
not. The output is subject to certain constraints. We re-
quire the sameAs relationship to be symmetric and transi-
tive, which corresponds to establishing equivalence classes
of entities. We do not aim to discover sameAs links within a
single data source, as single sources are usually much better
maintained than links across sources. Our entity matching
algorithm makes joint decisions for multiple URI pairs when
producing sameAs links. It is initialized with a prior similar-
ity between entities, based on the immediate neighborhoods
of the URIs. The algorithm iteratively considers similari-
ties between entities to reinforce or invalidate the match-
ing between two URIs. Output matchings are stored in an
assignment matrix X, while the dynamically re-computed
similarity values are tracked in a similarity matrix Y .
Entity Graph and Assignment Matrix. For the graph,
we consider only triples (s, p, o) where s, p, and o are URIs.
Literals are compiled into a set of values L(s). The data
source from which a URI a originates is denoted as S(a).

Definition 1. An entity graph is a directed multigraph
G = (V,E) with a set of nodes V representing URIs and
labeled edges in E capturing their relationships. Given a set
T of triples, we set V = {s | (s, p, o) ∈ T}∪{o | (s, p, o) ∈ T},
and E = {(s, p, o) ∈ T}.

Definition 2. Given an entity graph G = (V,E), an as-
signment matrix X is a symmetric n×n matrix with n = |V |
and xa,b ∈ {0, 1}. An entry xa,b states whether our algo-
rithm outputs “a sameAs b”.

Definition 3. An assignment matrix X is consistent if it
satisfies the following constraints:

1. Reflexivity ∀a ∈ V : xa,a = 1
2. Symmetry ∀a, b ∈ V : xa,b = xb,a
3. Transitivity ∀a, b, c ∈ V : xa,b · xb,c ≤ xa,c
4. optional: Unique mapping per data source

∀a, s 6= S(a) :
∑

b:S(b)=s

xa,b ≤ 1

The entity graph is the data structure that captures our in-
put. The output is gradually built into an assignment matrix
subject to constraints. The optional last constraint states
that an entity a cannot simultaneously match two entities
from the same second source.This constraint allows us to fo-
cus on cross-source links and, in practice, picking only the
best match within a dataset avoids many false positives.
Objective Function. Let sim(a, b,G,X) be a similarity
function between two entities a and b that may depend on
the entity graph G as well as the current X. For constant
G and X, sim should be a semimetric and return scores in
[−∞,+∞]: positive scores for likely entity matches and neg-
ative scores for likely non-matches. To quantify the quality
of the output X, we define the following objective.

Definition 4. Given an entity graph G = (V,E) and a
similarity function sim, the maximum consistent assignment
problem consists in choosing a consistent assignment matrix
X with values xa,b ∈ {0, 1} that maximizes∑

a,b∈V :S(a)6=S(b)

xa,b sim(a, b,G,X).

The sim function often becomes negative and deliberately
depends on the assignment matrix X: For instance, in our
previous example, the similarity of two Mulholland Drive

URIs depends on whether two other (related) URIs both
represent David Lynch. By reduction from the CLIQUE
problem one can show that this problem is NP-hard.

3. ASSIGNMENT ALGORITHMS
We now present an algorithm that computes a consistent

assignment matrix X while attempting to maximize the ob-
jective score. This first algorithm can benefit from multiple
cores during operation on a single machine. For scalability,
our algorithm iteratively adjusts the values in X with care-
fully chosen, greedy improvements in the objective function.
X is initialized with 1s on the diagonal and 0s otherwise. In
addition, we use a similarity matrix Y with pairwise, real-
valued similarity values. Y is initialized with values that
reflect the pair-wise similarity of URIs (see Sec. 4). Given
the previous iteration’s values of X, we compute new simi-
larity values for Y , which is maintained in a priority queue
and used to adjust elements of X. Both X and Y are sparse
symmetric matrices that do not reside entirely in memory.
Y entries need to be materialized only on demand for the
priority queue; negative scores do not need to be retained.
So the Y matrix is a purely conceptual construct only.

Algorithm 1 describes the method more formally. In line
3, the updatable priority queue Q stores the initial similarity
scores ya,b = sim(a, b,G,X). In practice, sim yields negative
scores for most entity pairs. With MapReduce, we can ef-
ficiently determine entity pairs with positive scores without
computing a quadratic number of similarities (see Sec. 4).

The algorithm then repeatedly dequeues the entity pair
a, b with the highest similarity score from Q and sets xa,b to
1. To ensure transitivity, it further considers all equivalents
E(a,X) = {a′|xa,a′ = 1} of a and E(b,X) = {b′|xb,b′ =
1} of b already identified with them. The for-loop (line 7)
essentially merges the equivalence classes of a and b.

Then, the algorithm determines pairs of entities which
may need updating (line 9) due to modifying X. For the
similarity function we define later in Sec. 4, these are the
candidate pairs involving entities in E(a,X) as well as en-
tity graph neighbors of entities in E(a,X). The algorithm
adjusts the scores of these pairs in Y in parallel, making
use of multiple cores. The new similarity scores ya′,b′ com-
puted in line 12 reflect the new Xwith E(a,X) = E(b,X),
highlighting the joint mapping strategy.

For space reasons, we omit the proofs that our algorithm
produces a consistent matrix X and is guaranteed to con-
verge for well-behaved similarity functions. Convergence to
local maxima can be overcome with simple randomization
or stochastic optimizations.

Assignment with MapReduce. The previously de-
scribed Algorithm 1 is bounded by the number of CPU
cores available for parallelism and by memory available to
store X and (parts of) the priority queue Q.

Algorithm 1 Multi-Core Assignment Algorithm

1: procedure linda(G)
2: X ← I|V | . identity matrix

3: Q← initial similarities . with MapReduce
4: while Q non-empty do
5: dequeue (ya,b, {a, b}) with highest ya,b from Q
6: X0 ←X
7: for all a′ ∈ E(a,X0), b′ ∈ E(b,X0) do . assignment
8: xa′,b′ ← 1, xb′,a′ ← 1

9: S ← {(a′, b′) | sim(a′, b′,X, G) 6= sim(a′, b′,X0, G)}
10: for all (a′, b′) ∈ S : xa′,b′ = 0 do in parallel

11: fetch (ya′,b′ , {a′, b′}) from Q
12: y∗ = sim(a, b,GX)
13: if y∗ 6= ya′,b′ then . similarity changed

14: remove (ya′,b′ , {a′, b′}) from Q

15: if y∗ > 0 then enqueue (y∗, {a′, b′}) in Q

16: return X

To overcome these bounds, we report on a MapReduce-
based version of the assignment algorithm that allows scal-
ing our solution to immense amounts of data, since today’s
large cluster sizes range in the thousands. With MapRe-
duce, a problem is divided into independent map tasks that
consume and emit key-value-pairs as well as reduce tasks
that aggregate intermediate output. Fig. 1 illustrates the
workflow of our MapReduce-based approach.

Consider an input entity graph G (Fig. 1, left) distributed
across a cluster. Each node holds a portion Qi of the queue
Q and a respective partition Gi of G. An entity graph parti-
tion Gi comprises all information for vertices in queue parti-
tion Qi. Partitions are stored as sorted lists, which enables
fast merge-join-like access instead of the graph and the queue
being shuffled across the cluster. The only information sent
from mappers to reducers are messages about which pairs of
vertices require similarity score recomputations.

Each mapper reads Qi and stores the top K entries in a
buffer B. We refer to K as the acceptance rate. Mappers
also forward messages from previous phases. After mapper
completion, a procedure accepts all pairs a′, b′ of equivalents
for entries of B for the resulting X (step (1) in Fig. 1).

Remember that the acceptance of a sameAs edge between
vertices a and b induces a series of score adjustments. In our
setup, reducers handle specific graph partitions. Hence, if t
is the number of edge hops to nodes whose sim scores may
change, then the algorithm uses t reducer steps to trigger
the respective score recomputations. For our sim function
(see Sec. 4), a new sameAs edge induces two sorts of recom-
putations, i.e., (1) for the candidate pairs involving entities
in E(a,X) or E(b,X) and (2) for the entity graph neighbors
of entities in E(a,X) or E(b,X). It thus requires two steps:
one to reach the equivalents (notify step in Fig. 1), another
to reach their neighbors in the graph (update step).

After accepting pairs a′, b′ ∈ E(a,X)×E(b,X), the map-
per emits two sorts of notification messages (step (2) in
Fig. 1): notification triggers similarity score updates for
entity graph neighbors of a′ and b′; updateTargets triggers
candidate pair updates for a′ and b′.

A reducer reacts according to the message it receives.
Given notification, it emits update messages for respec-
tive neighbors. It additionally emits updates for all affected
Qi entries. Given an updateTargets message, it emits up-

dates for all affected Qi entries on other compute nodes.
This is step (3) in Fig. 1. The actual update of queue entries

e1 … em

e m
…

 e
1

ei ej y
ei ek y

ek el y
…
…
…
…
… …

ei ej y
…
…

ei ej

…

ek el

Node 1 Node n Input
Queue Q

Result
Matrix X

ei

ej

ek

el

(1) accept

(3) update

Input
Entity Graph G

re
ad

re
ad

Q-part 1

ek el y
…
…

Q-part n (2) notify*

ei ej y‘

ei ek y‘
…

Queue
Updates

di
st

rib
ut

e

(4) register

di
st

rib
ut

e

di
st

rib
ut

e

G-part 1 G-part n

Figure 1: MapReduce Workflow

is triggered when a reducer receives such an update message.
Then, the reducer checks whether the unique mapping con-
straint still holds and computes the new y′ value (step (4)
in Fig. 1).

Note that the round-trip of the effect of a new entry
in X takes two iterations (since we do two edge traversals).
Therefore, the unique mapping constraint may not be ful-
filled when accepting sameAs edges while queue updates for
decisions from previous mappers are still pending.

4. THE LINDA SYSTEM
The LINDA (LINked Data Alignment) system implements

the these two assignment algorithm variants in combination
with judiciously designed similarity functions. LINDA com-
putes two kinds of similarities between entities a, b: (i) a
prior similarity sim0 based on literals and constraints, which
is computed once in advance and used to initialize the sim-
ilarity matrix Y and later as a smoothing prior, and (ii) a
contextual similarity simC, which is recomputed in each it-
eration and considers the current state of the assignment
matrix X. The two similarity measures are combined to
an overall similarity score sim(a, b,G,X). Given an entity
graph G = (V,E), an assignment matrix X, and two pa-
rameters α, θ, the similarity score for entities a, b ∈ V is:

sim(a, b,G,X) = sim0(a, b) + α simC(C(a), C(b), G,X)− θ.

C(a) and C(b) denote the contexts of a, b and are defined
later. The parameter α controls the contextual influence and
θ is used for renormalization to values around 0 – positive
scores should reflect likely mappings and negative scores im-
ply dissimilarities as required by Def. 4. We experimentally
found α = 1.0 to perform well.

Prior Similarities. Prior similarities sim0(a, b) reflect the
direct evidence of two entities matching. Given two entities
a and b and their sets of normalized literal n-grams Na =
N(L(a)), Nb = N(L(b)), the prior similarity sim0(a, b) is set
to −∞ if they stem from the same data source, and to 0 if
they have no common n-grams. In all other cases, sim0(a, b)
is computed as

sim0(a, b) =
|Na ∩Nb|

min(|Na|, |Nb|) + ln(| |Na| − |Nb| |+ 1)
.

Table 1: OAEI benchmark results
System Person1 Person2 Restaur. IIMB-s

Pr. Rec. Pr. Rec. Pr. Rec. Pr. Rec.

LINDA 1.00 1.00 1.00 0.23 1.00 0.63 0.90 0.54

ASMOV 1.00 0.77 0.98 0.14 0.70 0.70 0.86 0.82
RiMOM 1.00 1.00 0.95 0.99 0.86 0.77 0.96 0.83
CODI 0.87 0.96 0.83 0.23 0.72 0.72 0.91 0.84

Contextual Similarities Given an entity graph G =
(V,E), the context C(a) of an entity a is a set of context
tuples (r, n, w), where r is a predicate (edge label in the
entity graph), n is a neighboring entity of a, and w is a nu-
meric weight. The context of an entity a includes objects n
of triples with a as subject and subjects n of triples with a
as object. The weights w = 1

log freq(r,n)
are higher for less

frequent and thus more discriminative context tuples. Given
an entity graph G, an assignment matrix X, and two enti-
ties a, b with contexts Ca = C(a), Cb = C(b), the contextual
similarity simC(Ca, Cb, G,X) is defined as

∑
(ra,na,wa)
∈Ca

max
(rb,nb,wb)
∈Cb

wa · xna,nb · sim(ra, rb) if |Ca| ≤ |Cb|

∑
(rb,nb,wb)
∈Cb

max
(ra,na,wa)
∈Ca

wb · xna,nb · sim(ra, rb) otherwise.

Intuitively, this function finds matching pairs of context
tuples and sums up their similarity values. It determines
the smaller set Cs and then sums up weighted similari-
ties for the best matching context tuples for each tuple
(r, n, w) ∈ Cs. The similarity of individual context tuples
(ra, na, wa), (rb, nb, wb) depends on the current state of the
entity matching and on predicate similarities sim(ra, rb).

5. EXPERIMENTS
All input data is first processed with MapReduce to cre-

ate and store the entity graph, prior similarities as well as
context weights and predicate similarities. The algorithm
itself uses a sparse matrix representation to store X, and a
priority queue to keep relevant entries in Y . The multi-core
version uses a thread pool for parallelization and was run
on a single 80-core server. The distributed version of the
algorithm operated on a 1+9-node-cluster.

Precision and Recall. We compared LINDA with tra-
ditional small-scale instance matching systems using the
OAEI 2010 benchmarks. Table 1 compares LINDA (θ = 0.2)
with all systems that participated for all four datasets ac-
cording to the official website (oaei.ontologymatching.org).
The DI benchmark unfortunately could not be tested, as its
reference alignments included URIs missing in the supplied
input data. Overall, our system delivers very competitive
results although it uses the same set of parameters across
all datasets. Competing systems like RiMOM use different
sets of highly tuned methods and settings for each of the
datasets. LINDA favors precision over recall to ensure high
quality results, but a trade-off is possible by lowering the θ
parameter or by choosing other prior similarity functions.

Large-Scale Experiment. Next, we tested our system on
very large volumes of data by creating an augmented Billion

Triple Challenge Dataset (BTC+). The original BTC 2010
dataset (http://km.aifb.kit.edu/projects/btc-2010) contains
∼3.1 billion RDF quadruples crawled from ∼2,500 differ-
ent sources (624 GB of data). We increased the size of the
dataset by including all triples from the DBpedia dataset.
For this very large dataset, building the database with prior
similarities took 1 day. Removing provenance information,
duplicate triples, RDF blank nodes as well as reification
statements resulted in ∼350 million unique triples describ-
ing ∼95 million different URIs. Computing initial similar-
ities for the algorithm’s queue took 1h, and after that the
algorithm ran for 7.5h using the same server setup as above.

At θ = 1.0, LINDA delivered a total of 2,601,392 sameAs

links, not including identity links, with a sampled precision
of 0.83 ± 0.06. At θ = 0.25, LINDA delivered 12.3 million
links, but the accuracy drops to 66% due to the particularly
noisy nature of this dataset. We observed in particular that
the joint inference strategy of our algorithm allowed us to
infer many new mappings that initially had negative similar-
ity scores. A few initial matches suffice to subsequently find
other matches, and so on. The greedy nature of our algo-
rithm works well in conjunction with our unique mappings
per data source constraint, as it allows our algorithm to se-
lect the most likely mappings, while ignoring other mappings
into the same data source that only coincidentally have pos-
itive similarity scores. Inaccurate mappings often seemed to
result from the noisiness of the BTC dataset, which includes
a lot of metadata entities that all look the same. Note that
we cannot compare our results with those of existing sys-
tems: To the best of our knowledge no existing joint match-
ing system is able to process the same amount of data.

Distributed Web-Scale Experiment. We evaluated the
MapReduce algorithm for LINDA on a web-scale dataset
BTC++, which comprised all triples from the 2011 BTC
data, DBpedia (version 3.6), Freebase, Yago, and Geon-
ames.org (as of mid 2011), in total 566.2 million unique
triples describing 115.5 million URIs. The initial queue com-
prises 154.5 million entity pairs, i.e., 4.07GB of binary data
in HDFS. The BTC++ entity graph amounts to 39.17 GB in
HDFS (including stored overlaps). The degrees of the graph
vertices are very high, sometimes above 100,000.

We conducted experiments for a varying number of com-
pute nodes n as well as varying acceptance rates K. We
measured the time and the number of accepted links per iter-
ation. Also, we kept track of the number of update messages
and queue updates registered. For the number of messages
sent across the cluster, we observed large numbers (dozens
of millions) during early iterations. The message traffic lev-
els out after 10-20 iterations (depending on n and K). As
for the actual updates, we observed thousands of updates
during early iterations, also leveling out later on.

Next, we compare output sizes with respect to runtime.
Figure 2 shows the cumulative runtime (solid lines) and the
number of links (dashed lines) computed by our distributed
approach (K = 100). Clearly, given a specific iteration i as
well as fixed n and K, the output size grows, since i∗n∗K is
its lower bound. However, as the acceptance of a single map-
ping induces the merge of the respective equivalence classes,
the output size increases beyond this. Note that at some
point (iteration 27 for n = 60), this increase is steeper than
the runtime’s increase – essentially leading to more links per
time unit. For n = 40 and n = 60 (K = 100) we ran the

0"

50"

100"

150"

200"

250"

300"

350"

400"

0"

20"

40"

60"

80"

100"

120"

140"

160"

0" 10" 20" 30" 40" 50"

nu
m
be

ro
f)a

cc
ep

te
d)
m
ap

pi
ng
s)

(in
)1
00
0,
)d
as
he

d)
)

cu
m
ul
a9

ve
)9
m
e)
(in

)m
in
ut
es
))

itera9on)

n=20"

n=40"

n=60"
n=40"

n=20"n=60"

Figure 2: #Links vs. runtime over iterations

algorithm until the our output comprised five million links
for the BTC++ data. This takes 500 or 325 iterations, re-
spectively.

6. RELATED WORK

Record Linkage. Classical record linkage typically re-
lies on similarity measures between strings and between
records [8, 1]. Smart blocking techniques are often employed
to reduce similarity comparisons [9, 11, 15]. More recently,
research has shifted to reasoning on entire groups of inter-
related records [4]. The purest approaches employ collective
relational learning, based on probabilistic graphical models
[12, 16]. These work well for highly structured data but are
not yet geared towards web-scale datasets.

Semantic Web. A highly related task to our problem is
ontology alignment (see, e.g., [2]), which focuses on aligning
classes rather than large numbers of instances of classes.
Systems typically rely on ontological constraints that are
often unavailable for Linked Data. Existing systems for
connecting Linked Data sources require humans to specify
data-specific rules or training data and have not been ap-
plied jointly across a broad range of datasets [14, 3, 6, 13].
The sameas.org service provides sameAs links that have been
manually collected. In contrast, our approach aims at auto-
matic unsupervised discovery of links across the LOD cloud.

Distributed Entity Matching. MapReduce paralleliza-
tion has been applied to standard blocking techniques [7].
A recent proposal for scaling up joint inference partitions
the input into neighborhoods, and then parallel computa-
tions per neighborhood are periodically reconciled by mes-
sage passing [10]. This line of work is viable for highly
structured and clearly typed records but does not consider
densely connected Linked Data triples with high heterogene-
ity at Web scale. Recently, MapReduce has been investi-
gated for matching in the Linked Data world [14, 5]. How-
ever, these systems simply distribute independently made
matching decisions. This is different to our joint model,
where decisions in one partition can affect decisions in other
partitions. To the best of our knowledge, there are no re-
ports on joint mapping experiments at the scale of our input
data with more than 110 million unique entity URIs.

7. CONCLUSION
We have presented the first fully automatic system for

joint entity matching in the Web of Data that is able to scale
beyond the size of the Billion Triples data. Unlike previous
approaches, it is designed to operate on all LOD sources to-
gether, without source-specific customization. Our experi-
ments demonstrate that the LINDA system successfully har-
nesses joint evidence and constraints. In our experiments,
we did not use pre-existing sameAs links as additional evi-
dence, but when deploying LINDA in practice it would be
straightforward to exploit such knowledge for higher-quality
output. We anticipate that joint linking approaches that
consider the entire LOD cloud when making decisions will
be crucial as the Web of Data keeps growing.

8. REFERENCES
[1] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.

Duplicate record detection: A survey. TKDE, 19:1–16,
2007.

[2] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, 2007.

[3] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J.
Miller, and M. Wang. A framework for semantic link
discovery over relational data. In Proc. CIKM, 2009.

[4] M. Herschel, F. Naumann, S. Szott, and M. Taubert.
Scalable iterative graph duplicate detection. TKDE,
2011.

[5] A. Hogan et al. Scalable and distributed methods for
entity matching, consolidation and disambiguation
over linked data corpora. J Web Semantics, 10, 2012.

[6] W. Hu, J. Chen, and Y. Qu. A self-training approach
for resolving object coreference on the semantic web.
In Proc. WWW, 2011.

[7] L. Kolb, A. Thor, and E. Rahm. Block-based Load
Balancing for Entity Resolution with MapReduce. In
Proc. CIKM, 2011.

[8] H. Köpcke and E. Rahm. Frameworks for entity
matching: A comparison. DKE, 69:197–210, 2010.

[9] G. Papadakis et al. Beyond 100 million entities:
large-scale blocking-based resolution for heterogeneous
data. In Proc. WSDM, 2012.

[10] V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale
collective entity matching. PVLDB, 4:208–218, 2011.

[11] L. Shu, A. Chen, M. Xiong, and W. Meng. Efficient
spectral neighborhood blocking for entity resolution.
In Proc. ICDE, 2011.

[12] P. Singla and P. Domingos. Entity resolution with
markov logic. In Proc. ICDM, 2006.

[13] F. M. Suchanek, S. Abiteboul, and P. Senellart.
PARIS: Probabilistic alignment of relations, instances,
and schema. PVLDB, 5(3):157–168, 2011.

[14] J. Volz et al. Discovering and maintaining links on the
Web of Data. In Proc. ISWC, 2009.

[15] S. E. Whang and H. Garcia-Molina. Joint entity
resolution. In Proc. ICDE, 2012.

[16] M. L. Wick, A. Culotta, K. Rohanimanesh, and
A. McCallum. An entity based model for coreference
resolution. In Proc. SDM, 2009.

