
Chapter 6

ONTOLOGY ALIGNMENTS

An ontology management perspective

Jérôme Euzenat
1
, Adrian Mocan

2
 and François Scharffe

2

1INRIA Rhône-Alpes & LIG,655 avenue de l’Europe, F-38330 Montbonnot Saint-Martin,

France, Jerome.Euzenat@inrialpes.fr; 2Innsbruck Universität, 21a Technikerstrasse, A-6020

Innsbruck, Austria, Adrian.Mocan@deri.at, Francois.Scharffe@deri.at

Abstract: Relating ontologies is very important for many ontology-based applications

and more important in open environments like the semantic web. The relations

between ontology entities can be obtained by ontology matching and

represented as alignments. Hence, alignments must be taken into account in

ontology management. This chapter establishes the requirements for alignment

management. After a brief introduction to matching and alignments, we justify

the consideration of alignments as independent entities and provide the life

cycle of alignments. We describe the important functions of editing, managing

and exploiting alignments and illustrate them with existing components.

Key words: alignment management; alignment server; mapping; ontology alignment;

ontology matching; ontology mediation

1. RELATING ONTOLOGIES: FROM ONTOLOGY

ISLANDS TO CONTINENT

In many applications, ontologies are not used in isolation. This can be

because several ontologies, representing different domains have to be used

within the same application, e.g., an ontology of books with an ontology of

shipping for an on-line bookstore, or because different ontologies are

encountered dynamically, e.g., different ontologies from different on-line

bookstores to choose from.

These ontologies must be related together for the ontology-based

application to work properly. In the context of ontology management, these

relations may be used for composing at design time the different ontology

178 Chapter 6

parts that will be used by the applications (either by merging these

ontologies or by designing data integration mechanisms), for dealing with

different versions of ontologies that may be found together at design time, or

for anticipating the need for dynamically matching encountered ontologies at

run time.

We call “ontology matching” the process of finding the relations between

ontologies and we call alignment the result of this process expressing

declaratively these relations.

In an open world in which ontologies evolve, managing ontologies

requires using alignments for expressing the relations between ontologies.

We have defended elsewhere the idea that for that purpose the use of

alignments is preferable to using directly mediators or transformations

(Euzenat, 2005). We go one step further here by proposing that ontology

management involves alignment management.

In the remainder we first briefly present what ontology matching is and

where it is used (Section 2). Then, we consider some requirements and

functions for alignment management addressing the alignment life cycle

(Section 3). Following this life cycle we present in more details how to

address these requirements in what concerns alignment editing (Section 4),

alignment storing and sharing (Section 5) and finally alignment processing

(Section 6). We then consider existing systems that feature to some extent

ontology management capabilities (Section 7).

2. ONTOLOGY MATCHING AND ALIGNMENTS

We present in deeper details what is meant by an alignment and provide

some vocabulary as it will be used in this chapter (Section 2.1). Then we

discuss the different applications that can take advantage of matching

ontologies (Section 2.2). We identify some characteristics of these

applications in terms of exploitation of the alignments. Finally, we provide

an overview of the various matching techniques available (Section 2.3).

Complete coverage of these issues can be found in (Euzenat and

Shvaiko, 2007).

When we talk about ontologies, we include database schemas and other

extensional descriptions of data which benefit from matching as well.

2.1 Alignments for expressing relations

The ontology matching problem may be described in one sentence: given

two ontologies each describing a set of discrete entities (which can be

classes, properties, rules, predicates, or even formulas), find the

6. Ontology Alignments 179

correspondences, e.g., equivalence or subsumption, holding between these

entities. This set of correspondences is called an alignment.

Given two ontologies o and o', alignments are made of a set of

correspondences (called mappings when the relation is oriented) between

(simple or complex) entities belonging to o and o' respectively. A

correspondence is described as a quadruple <e, e', r, n> such that:

• e and e' are the entities, e.g., formulas, terms, classes, individuals,

between which a relation is asserted by the correspondence.

• r is the relation declared to hold between e and e' by the correspondence.

This relation can be a simple set-theoretic relation (applied to entities

seen as sets or their interpretation seen as sets), a fuzzy relation, a

probabilistic distribution over a complete set of relations, a similarity

measure, etc.

• n is a degree of confidence associated with that correspondence (this

degree does not refer to the relation r, it is rather a measure of the trust in

the fact that the correspondence is appropriate—“I trust 70% the fact that

the correspondence is correct, reliable, etc.”—and can be compared with

the certainty measures provided by meteorological agencies). The trust

degree can be computed in many ways, including user feedback or log

analysis.

So, the simplest kind of correspondence (level 0) is:

URI1 = URI2

while a more elaborate one could be:

employee(x,y,z) <=.85 empno(x,w) & name3(w,concat(y,' ',z))

The first one expresses the equivalence (=) of what is denoted by two

URIs (with full confidence). These URI can be the denotations of classes,

properties or instances. The second one is a Horn-clause expressing that if

there exists a w such that empno(x,w)—w’s identifier is x—and

name(w,concat(y,' ',z))—the name of w is the result of the concatenation of

string y, ' ' and z—are true in one ontology then employee(x,y,z) must be true

in the other one (and the confidence is here quantified with a degree equal to

.85). Of course, in this last example, functions and predicates can also be

identified by URIs.

As can be observed from these two examples, alignments in themselves

are not tied to a particular language. But in order to use complex alignments

1 http://www.foaf-project.org

180 Chapter 6

like the second one, systems must be able to understand the language in

which formulas and relations are expressed. This is supported through the

definition of a particular subtype of alignment.

Since everyone does not share the same terminology, we define below,

according to (Euzenat and Shvaiko, 2007), the various terms used in this

chapter:

• alignment is the result of the matching task: it is a set of

correspondences;

• bridge axioms are formulas in an ontology language that expresses the

relations as assertions on the related entities. They are used when

merging ontologies.

• correspondence is the relation holding (or supposed to hold according

to a particular matching algorithm or individual) between two entities of

different ontologies. These entities can be as different as classes,

individuals, properties or formulas. Some authors use the term

“mapping” or “mapping rule” that will not be used here;

• matching is the task of comparing two ontologies and finding the

relationships between them;

• mediator a mediator is a software module (Wiederhold, 1992),

providing interoperability between heterogeneous knowledge sources. In

query application it is a dual pair of translations that transforms the

query from one ontology to another and that translate the answer back.

• merging ontologies consists of creating a new ontology out of two or

more ontologies. Ontology merging first involves the definition of an

alignment between the ontologies to be merged.

• transformation is a program that transforms an ontology from one

ontology expression language to another;

• translation is a program that transforms formulas with regard to some

ontology into formulas with regard to another ontology (translation can

be implemented by a set of translation rules, an XSLT stylesheet or a

more classical program).

2.2 Applications

Several classes of applications can be considered (they are more

extensively described in (Euzenat and Shvaiko, 2007), we only summarize

them here). They are the following:

• Ontology evolution uses matching for finding the changes that have

occurred between two ontology versions. See Chapter 5 of this book.

2 http://www.w3.org/TR/vcard-rdf

6. Ontology Alignments 181

• Schema integration uses matching for integrating the schemas of

different databases under a single view;

• Catalog integration uses matching for offering an integrated access to

on-line catalogs;

• Data integration uses matching for integrating the content of different

databases under a single database;

• P2P information sharing uses matching for finding the relations

between ontologies used by different peers;

• Web service composition uses matching between ontologies describing

service interfaces in order to compose web services by connecting their

interfaces;

• Multiagent communication uses matching for finding the relations

between the ontologies used by two agents and translating the messages

they exchange;

• Context matching in ambient computing uses matching of application

needs and context information when applications and devices have been

developed independently and use different ontologies;

• Query answering uses ontology matching for translating user queries

about the web;

• Semantic web browsing uses matching for dynamically (while

browsing) annotating web pages with partially overlapping ontologies.

It is clear, from the above examples, that matching ontologies is a major

issue in ontology related activities. It is not circumscribed to one area of

ontology, but applies to any application that communicates through

ontologies.

These kinds of applications have been analysed in order to establish their

requirements with regard to matching systems. The most important

requirements concern:

• the type of available input a matching system can rely on, such as schema

or instance information. There are cases when data instances are not

available, for instance due to security reasons or when there are no

instances given beforehand. Therefore, these applications require only a

matching solution able to work without instances (here schema-based

method).

• some specific behaviour of matching, such as requirements of (i) being

automatic, i.e., not relying on user feed-back; (ii) being correct, i.e., not

delivering incorrect matches; (iii) being complete, i.e., delivering all the

matches; and (iv) being performed at run time.

• the use of the matching result as described above. In particular, how the

identified alignment is going to be processed, e.g., by merging the data or

182 Chapter 6

conceptual models under consideration or by translating data instances

among them.

In particular, there is an important difference between applications that

need alignments at design time and those that need alignments at run time.

Ontology evolution is typically used at design time for transforming an

existing ontology which may have instances available. It requires an

accurate, i.e., correct and complete, matching, but can be performed with the

help of users. Schema, catalogue and data integration are also performed off-

line but can be used for different purposes: translating data from one

repository to another, merging two databases or generating a mediator that

will be used for answering queries. They also will be supervised by a human

user and can provide instances.

Other applications are rather performed at run time. Some of these, like

P2P information sharing, query answering and semantic web browsing are

achieved in presence of users who can support the process. They are also

less demanding in terms of correctness and completeness because the user

will directly sort out the results. On the other hand, web-service

composition, multiagent communication and context matching in ambient

computing require matching to be performed automatically without

assistance of a human being. Since, the systems will use the result of

matching for performing some action (mediating or translating data) which

will be feed in other processes, correctness is required. Moreover, usually

these applications do not have instance data available.

The difference between design time and run time is very relevant to

ontology management. On the one hand, if alignments are required at design

time, then ontology developers will need support in creating, manipulating

and using these alignments. They should be supported in manipulating

alignments during the whole ontology life cycle (see Chapter 3 of this book).

On the other hand, if alignments are required at run time, then one way of

ensuring timely and adequate response may be to find some existing

alignment in an alignment store. Alignments stored there should be carefully

evaluated and certified alignments. They thus require alignment management

on their own.

2.3 Matching ontologies

The matching operation determines the alignment A' for a pair of

ontologies o and o'. There are some other parameters that can extend the

definition of the matching process, namely:

1. the use of an input alignment A, which is to be completed by the process;

6. Ontology Alignments 183

2. the matching parameters, p, e.g., weights, thresholds; and

3. external resources used by the matching process, r, e.g., common

knowledge or domain specific thesauri.

So, the matching process can be seen as a function f which, from a pair of

ontologies o and o', an input alignment A, a set of parameters p and a set of

resources r, returns an alignment A' between these ontologies:

A' = f(o, o', A, p, r)

Figure 6-1. The ontology matching process: it establishes an alignment (A) from two

ontologies (o and o') and optionally an input alignment (A'), parameters and external

resources.

There have already been many reviews of ontology matching algorithms

(Rahm and Bernstein, 2001; Wache et al., 2001; Kalfoglou and

Schorlemmer, 2003, Euzenat and Shvaiko, 2007)3 so we will be brief and

refer the reader to these presentations.

Ontology matching consists of generating an alignment from two (or

more) ontologies. There are many different features of ontologies that are

usually used for providing matching:

• terminological techniques are based on the text found within ontologies

for identifying ontology entities (labels), documenting them (comments)

or other surrounding textual sources (related element labels). These

techniques come from natural language processing and information

retrieval. They can use the string structure themselves, e.g., string

distances, the ontology as corpus, e.g., statistical measures based on the

frequency of occurrence of a term, or external resources, such as

dictionaries.

3 In fact, the ontology matching builds on previous research done in databases and information

integration.

184 Chapter 6

• structural techniques are based on the relations between ontology

entities. These can be relations between entities and their attributes,

including constraints on their values, or relations with other entities.

These techniques take advantage of type comparison techniques or more

elaborate graph techniques, e.g., tree distances, path matching, graph

matching.

• extensional techniques compare the extension of entities. These

extensions can be made of other entities, e.g., instances, as well as related

resources, e.g., indexed documents. They differ depending on if the two

ontologies share resources, e.g., they index the same set of documents, or

not (in which case a similarity between the extensions may be

established). These techniques can come from data analysis and statistics.

• semantic techniques are based on the semantic definition of ontologies.

They use extra formalised knowledge and theorem provers for finding

consequences of a particular alignment. This can be used for expanding

the alignment or, on the contrary, for detecting conflicting

correspondences.

Of course, most of the systems combine several techniques in order to

improve their results. The techniques can be combined by aggregating

distance results (Van Hage, 2005), by using selection functions for choosing

which one to use in the present case (Jian et al., 2005; Tang et al., 2006), or

by deeply involving them all in global distance computation (Euzenat and

Valtchev, 2004, Melnik et al., 2002).

Moreover, there is a difference when training sets are available or not

(this is most often useful when a matching algorithm is needed for

recognising instances). When available, one can apply machine learning

techniques such as Bayes learning, vector support machines or decision

trees.

As a conclusion, many applications need ontology matching for many

different purposes. Ontology matching can, in turn, be obtained by many

different techniques that can be combined in many different ways. Currently,

matching systems are not usable automatically on real scale ontologies.

Their results loss in accuracy as the ontologies gain in size, complexity and

heterogeneity. They are usable in particular contexts such as databases for

which common identifiable data exists or evolutionary versions of

ontologies. Consequently, matching systems are currently used interactively

or semi-automatically so that users control and improve the quality of the

result. In this context, the help of matching algorithms is as powerful as the

ontologies grow in size and complexity.

Current scale of using such systems is not known otherwise than from

their providers. However, some commercial systems are available, especially

6. Ontology Alignments 185

in the area of database and directory integration showing serious interest. A

good way to approach the performances of matching algorithms is to follow

the yearly Ontology Alignment Evaluation Initiative campaigns4.

This difficulty of obtaining usable alignments calls for proper alignment

management beside ontology management. We consider this in the next

section.

3. TOWARDS ALIGNMENT MANAGEMENT

We first identify why alignments should be considered in isolation

(Section 3.1). We then present what should be an alignment life cycle from

the standpoint of ontology management (Section 3.2) and elicit the

requirements for supporting this life cycle (Section 3.3). Finally we describe

a set of services and tools that can be provided for fulfilling these

requirements (Section 3.4). The further sections will present in more details

possible implementations of these services.

3.1 Why supporting alignments?

The reasons for supporting alignments have been provided in Section 2:

many applications use them for different purposes using various matching

algorithms combined in multiple ways.

As heterogeneous ontologies are a global problem for many applications,

this calls for an infrastructure able to help these different applications to deal

with it. In such a way, the effort of interoperating ontologies does not need

to be solved for each kind of use.

Moreover, given the difficulty of the matching task, there are few

algorithms available and when good alignments are available, they are worth

sharing.

Supporting alignments has notable advantages over supporting other kind

of matching results such as transformations, mediator implementations or

merged ontologies. There are several reasons for this:

• Sharing matching algorithms: Many different applications have

matching needs. It is thus appropriate to share the solutions to these

problems, the matching algorithms and systems, across applications.

• Sharing alignments: Alignments are quite difficult to provide. There is

no magic algorithm for quickly providing a useful alignment. Once high

4 http://oaei.ontologymatching.org

186 Chapter 6

quality alignments have been established—either automatically or

manually—it is very important to be able to store, share and reuse them.

• Sharing exploitation means: Matching results, once expressed as

alignments, may be used for different purposes. Hence, a good matching

algorithm does not have to be reimplemented for merging ontologies or

for transforming new data: the same implementation will be reused

together with mediator generators for exploiting the alignment in

different mediation scenarios.

• Combining matchers: If one wants to combine several matching

systems in a particular application, this is easier if all the systems can

exchange their results in a pivot language. This is illustrated in Figure 6-

2.

Figure 6-2. Alignment passing from tools to tools. Two matchers (m and m') are first run in

parallel from the given ontologies, their resulting alignments are aggregated (a) resulting in

another alignment which will be improved by another method (m'') before generating (g) a

transformation program from it.

So, considering ontology alignments as first class citizens, has several

benefits:

• from a software engineering point of view, as alignments can be passed

from a program to another.

• from an ontology engineering and management point of view, as they

will evolve together with the ontology life cycle.

3.2 The alignment life cycle

Like ontologies, alignments have their own life cycle (see Figure 6-3).

They are first created through a matching process (which may be manual).

Then they can go through an iterative loop of evaluation and enhancement.

Again, evaluation can be performed either manually or automatically, it

consists of assessing properties of the obtained alignment. Enhancement can

be obtained either through manual change of the alignment or application of

6. Ontology Alignments 187

refinement procedures, e.g., selecting some correspondences by applying

thresholds. When an alignment is deemed worth publishing, then it can be

stored and communicated to other parties interested in such an alignment.

Finally, the alignment is transformed into another form or interpreted for

performing actions like mediation or merging.

Figure 6-3. The ontology alignment life cycle.

To this first independent cycle is added the joint life cycle that can tie

ontologies and alignments. As soon as ontologies evolve, new alignments

have to be produced for following this evolution. This can be achieved by

recording the changes made to ontologies and transforming these changes

into an alignment (from one ontology version to the next one). This can be

used for computing new alignments that will update the previous ones. In

this case, previously existing alignments can be replaced by the composition

of themselves with the ontology update alignment (see Figure 6-4).

Figure 6-4 Evolution of alignments. When an ontology o evolves into a new version o1, it is

necessary to update the instances of this ontology (d) and the alignments (A) it has with other

ontologies (o'). To that extent, a new alignment (A') between the two versions can be

established and it can be used for generating the necessary instance transformation (T) and

updated alignments (A•A').

188 Chapter 6

Taking seriously ontology management requires to involve alignment

management with ontology management. However, so far very few tools

offer support for alignment management, let alone, joint ontology-alignment

support.

3.3 Requirements for alignment support

Ontology alignments , like ontologies, must be supported during their life

cycle phases by adequate tools. These required functions can be

implemented by services. The most notable services are:

• Matching two ontologies possibly by specifying the algorithm to use

and its parameters (including an initial alignment).

• Storing an alignment in persistent storage.

• Retrieving an alignment from its identifier.

• Retrieving alignment metadata from its identifier can be used for

choosing between specific alignments.

• Suppressing an alignment from the current alignment pool.

• Finding (stored) alignments between two specific ontologies.

• Editing an alignment by adding or discarding correspondences (this is

typically the result of a graphic editing session).

• Trimming alignments over a threshold.

• Generating code implementing ontology transformations, data

translations or bridge axioms from a particular alignment.

• Translating a message with regard to an alignment.

• Finding a similar ontology is useful when one wants to align two

ontologies through an intermediate one.

For instance, someone wanting to translate a message expressed in

ontology o to ontology o'' can ask for matching the two ontologies and for a

translation of the message with regard to the obtained alignment. A more

extreme scenario involves (1) asking for alignments between o and o'',

maybe resulting in no alignment, (2) asking for an ontology close to o''

which may result in ontology o' , (3) asking for the alignments between o

and o', which may return several alignments a, a' and a'', (4) asking for the

metadata of these alignments and (5) choosing a' because it is certified by a

trusted authority, (6) matching o' and o'' with a particular algorithm, (7)

trimming the result over a reasonable threshold for this algorithm, (8) editing

the results so that it seems correct, (9) storing it in the server for sharing it

with other people, (10) retrieving alignment a' and this latter one as data

translators, (11) finally applying these two translations in a row to the initial

message.

6. Ontology Alignments 189

Most of these services correspond to primitives provided by the

Alignment API (Euzenat 2004). They require, in addition, several features

extending traditional matching frameworks:

• The ability to store alignments, whether they are provided by automatic

means or by hand;

• Their proper annotation in order for the clients to evaluate the

opportunity to use one of them or to start from it (this starts with the

information about the matching algorithms, and can be extended to the

justifications for correspondences that can be used in agent

argumentation);

• The ability to generate knowledge processors such as mediators,

transformations, translators, rules as well as to apply these processors if

necessary;

• The possibility to find similar ontologies and to contact other such

services in order to ask them for operations that the current service

cannot provide by itself.

There is no constraint that the alignments are computed on-line or off-

line, i.e., they are stored in the alignment store, or that they are processed by

hand or automatically. This kind of information can however be stored

together with the alignment in order for the client to be able to discriminate

among them.

3.4 Example scenario: data mediation for semantic web

services

The remainder of this chapter presents in more depth the functions of

editing (Section 4), communicating (Section 5) and processing (Section 6)

alignments. We will neither consider the alignment creation which has been

the subject of much literature, nor the evaluation. Each of these functions

will be illustrated through a common example related to Semantic Web

services.

Web services represent one of the areas where data mediation is the most

required. Services are resources usually developed independently which

greatly vary from one provider to another in terms of the used data formats

and representation. By adding semantics to web services, heterogeneity

problems do not disappear but require more intelligent dynamic and flexible

mediation solutions. Ontologies which carry most of these explicit semantics

become the crucial elements to support the identification and capturing of

semantic mismatches between models.

190 Chapter 6

Web Services Execution Environment (WSMX) is a framework that

enables discovery, selection, invocation and interoperation of Semantic Web

services (Mocan et al., 2006a). Ontology-based data mediation plays a

crucial role in enabling all the above mentioned service operations. Different

business actors use ontologies to describe their services internal business

logic, and, more importantly in this case, their data. Each of these actors uses

its own information system, e.g., WSMX, and tries to interact with other

actors, part of other (probably more complex) business processes (Figure 6-

5). A specialized component or service is needed to transform the data

expressed in terms of a given ontology (the source ontology) in the terms of

another ontology (target ontology), allowing the two actors to continue using

their own data representation formats. Being part of a run time process the

data (i.e. instances) transformation has to be performed completely

automatically. Also, due to the fact that such a mediator has to act in a

business environment, the result of the mediation process has to be correct

and complete at all time.

In order to achieve these three requirements (automation, correctness and

completion), the whole process is split in two phases: a design time phase

which covers the correctness and completion by involving the human

domain expert and the run time phase when the mediation is performed in an

automatic manner based on the alignments established at design time.

We will provide further details on these two phases in Section 4 and

Section 6; Section 5 will consider the management of the alignments

between these two phases.

Figure 6-5. Instance transformation scenario.

6. Ontology Alignments 191

4. DESIGN TIME ALIGNMENT SUPPORT

The first place where ontology heterogeneity can be found is while

designing an application. Ontology management environments (see Chapter

3 of this book) must support users in obtaining alignments and manipulating

them. We provide some requirements for such an environment and detail

further the Web Service Modeling Toolkit from this point of view.

4.1 Requirements

Design time alignment support requires first the ability to obtain an

alignment between two ontologies. This can be achieved by retrieving an

existing alignment, running a matching algorithm or creating an alignment

manually.

Retrieving an alignment requires that alignments are stored and

accessible somewhere. This can be done within the current ontology

management environment, either from the local disk or from a remote server.

If alignments are to be of good quality, it is preferable that the environment

provides access to remote servers storing alignments. We will come back to

this point in Section 6.

Running a matching algorithm requires the availability of such an

algorithm. Having several such algorithms available in an ontology

management environment seems highly desirable. Some tools provide

support for finding the correspondences, like Protégé through the Prompt

suite (Noy and Musen, 2003).

An often overlooked functionality of matching algorithms is their ability

to provide explanation for the provided alignments. Explanations can be

obtained by interacting with the matcher or by accessing metadata about a

stored alignment. (Shvaiko et al., 2005) explores the first alternative.

These alignments may also need to be manipulated. Most common

manipulations involve trimming correspondences under a threshold or

aggregating several alignments obtained on the same two ontologies.

Finally, creating an alignment manually requires an alignment editor. The

same alignment editor can be used for manipulating more precisely the

obtained alignments. They should provide a convenient display of the

currently edited alignments and the opportunity to discard, modify or add

correspondences. Ideally, from the alignment editor, all the design time

functions should be available. Since ontologies and alignments can be very

large, it is very challenging to offer intuitive alignment editing support.

The VisOn tool, developed by University of Montréal, is such a tool that

can be used for editing alignments in the Alignment API format. Prompt also

192 Chapter 6

offers such facilities. Other tools developed for database schema matching

could be adapted.

The Web Service Modeling Toolkit is an Integrated Development

Environment (IDE) for Semantic Web services which also provides ontology

engineering capabilities. Among other capabilities, WSMT offers a set of

tools for creating, editing and storing ontology alignments. In the following

section these WSMT features will be described in more details.

4.2 Example design-time tool: Web Service Modeling

Toolkit

As mentioned above, data mediation within a semantic environment such

as WSMX is a semi-automatic process where alignments between two

ontologies are created at design time and then applied at run time in order to

perform instance transformation in an automatic manner. Approaches for

automatic generation of ontology alignments do exist but their accuracy is

usually unsatisfactory for business scenarios and it is necessary for business

to business integration to have an engineer involved in creating and

validating the correspondences between ontologies. This is a non-trivial task

and the user should be guided through the process of creating these

alignments and ensuring their correctness.

Web Service Modeling Toolkit (WSMT) (Kerrigan et al., 2007) is a

Semantic Web service and ontology engineering toolkit, also featuring tools

capable of producing alignments between ontologies based on human user

inputs. It offers a set of methods and techniques that assist domain experts in

their work such as different graphical perspectives over the ontologies,

suggestions of the most related entities from the source and target ontology,

guidance throughout the matching process (Mocan et al., 2006b). The tools

and the domain expert work together in an iterative process that involves

cycles consisting of suggestions from the tool side and validation and

creation of correspondences from the domain expert side.

Within WSMT, alignments are expressed by using the Abstract Mapping

Language (AML) (Scharffe and de Bruijn, 2005) which is a formalism-

neutral syntax for ontology alignments. WSMT includes several tools and

editors meant to offer all the necessary support for editing and managing

such ontology alignments:

Alignment Validation: WSMT provides validation for the AML syntax

useful especially when alignments created in various tools need to be

integrated into the same application.

Alignment Text Editor: It provides a text editor for the human readable

syntax of AML. It provides similar features to that of a programming

language editor, e.g., a Java editor, including syntax highlighting, in line

6. Ontology Alignments 193

error notification, content folding and bracket highlighting. This editor

enables the engineer to create or modify correspondences through textual

descriptions. Such a tool is normally addressed to experts familiar with both

the domain and the alignment language.

Alignment View-based Editor: The View-based Editor provides

graphical means to create correspondences between ontologies. Such a tool

is addressed to those experts that are capable of understanding the problem

domain and who can successfully align the two heterogeneous ontologies but

they are not specialists in logical languages as well. Additionally, even if

domain experts have the necessary skills to complete the alignment by using

a text editor, a graphical mapping tool would allow them to better

concentrate on the heterogeneity problems to be solved and in principle to

maximize the efficiency of the overall mapping process. All the advantages

described above, have been acknowledged by other approaches as well

(Maedche et al., 2002; Noy and Musen, 2003). The View-based Editor

includes some of well-established classical methods, e.g. lexical and

structural suggestion algorithms, iterative alignment creation processes.

Additionally, this particular approach provides several new concepts and

strategies aiming to enhance the overall automation degree of the ontology

matching tool (Mocan and Cimpian, 2005). Three of the most important

features of this tool (views, decomposition and contexts) are presented

below.

A view (also referred to as a perspective in (Mocan et al., 2006b))

represents a viewpoint in displaying the entities defined in a particular

ontology; each view displays entities from the ontology in a two-level tree

structure. The graphical viewpoint adopted to visualize the source and the target

ontologies is important to simplify the design of the correspondences according

to their type. By switching between combinations of these views on the source

and the target ontologies, certain types of correspondences can be created using

the same operations, combined with mechanisms for ontology traversal and

contextualized visualization strategies.

Each view specifies what ontological entities should appear as roots or as

children in these trees, by switching the focus between various relationships

existing in the ontology. Views can be defined and grouped in pairs in such a

way to solicit specific skill sets, offering support for users profiling.

Currently, three types of views are available, namely PartOf (concepts as

roots and their attributes as children), InstanceOf (concepts as roots and their

attributes together with the values they can take as children) and RelatedBy

(attributes as roots and their domain or range as children); Figure 6-6

illustrates the creation of alignments by using combinations of these

perspectives.

194 Chapter 6

Figure 6-6 Mapping views in the AML View-Based Editor.

Decomposition is the process of bringing into focus the descriptive

information of the root items presented in the view tree by exploring their

children. A successful decomposition is followed by a context update. That

is, instead of displaying the whole ontology at a time, only a subset (the one

determined by decomposition) can be presented. Such subsets form the

source and target contexts. If views can be seen as a vertical projection over

ontologies, contexts can be seen as a horizontal projection over views.

Decomposition and contexts aims to improve the effectiveness of the

matching process by keeping the domain expert focused on the exact

heterogeneity problem to be solved and by assuring that all the problem-

related entities have been explored.

Mappings Views: The Mappings Views provide a light overview on the

alignment created either by using the Text Editor or the View-based Editor.

Instead of seeing the full description of an alignment (as quadruples in AML

syntax or grounded rules in an ontology language) the domain expert can

choose to see a more condensed version of this information: which are the

entities in the source and in the target that are matched and if there are some

special conditions associated with them.

Once a satisfying alignment has been designed, it can be stored and

managed so that it is available to whoever needs it.

6. Ontology Alignments 195

5. ONTOLOGY ALIGNMENT MANAGEMENT AND

MAINTENANCE

As mentioned in our requirements, the alignments should be stored and

shared adequately. In particular, if alignments between widely accepted

ontologies are required, they will have to be found over and over again. An

infrastructure capable of storing the alignments and of providing them on

demand to other users would be useful.

Alignment support can be implemented either as a component of an

ontology management tool and even being specific to each particular

workstation (see Section 7). However, in order to optimize sharing, which is

an important benefit of using alignments, it is better to store the alignments

in an independent alignment server. Such a server can be either used for

sharing alignments among a particular organization or open to the semantic

web at large.

5.1 Alignment server for storing

Alignment servers are independent software components which offer a

library of matching methods and an alignment store that can be used by their

clients. In a minimal configuration, alignment servers contribute storing and

communicating alignments. Ideally, they can offers all the services identified

in Section 3 and in particular alignment manipulation.

Alignment servers serve two purposes: for design time ontology

matching, they will be components loosely coupled to the ontology

management environment which may ask for alignments and for exploiting

these alignments. For run time matching, the alignment servers can be

invoked directly by the application. So, alignment servers will implement the

services for both design time and run time matching at once.

These servers are exposed to clients, either ontology management

systems or applications, through various communication channels (Agent

communication messages, web services) so that all clients can effectively

share the infrastructure. A server may be seen as a directory or a service by

web services, as an agent by agents, as a library in ambient computing

applications, etc.

 Alignment servers must be found on the semantic web. For that

purpose they can be registered by service directories, e.g., UDDI for web

services. Services or other agents should be able to subscribe some particular

results of interest by these services. These directories are useful for other

web services, agents, peers to find the alignment services.

In addition, servers can be grouped into an alignment infrastructure

which supports them in communicating together. They can be able to

196 Chapter 6

exchange the alignments they found and select them on various criteria. This

can be useful for alignment servers to outsource some of their tasks. In

particular, it may happen that:

• they cannot render an alignment in a particular format;

• they cannot process a particular matching method;

• they cannot access a particular ontology;

• a particular alignment is already stored by another server.

In these events, the concerned alignment server will be able to call other

servers. This is especially useful when the client is not happy with the

alignments provided by the current server, it is then possible to either deliver

alignments provided by other servers or to redirect the client to these servers.

Moreover, this opens the door to value-added alignment services which

use the results of other servers as a pre-processing for their own treatments

or which aggregates the results of other servers in order to deliver a better

alignment.

5.2 Sharing alignments

The main goal of storing alignments is to be able to share them among

different applications. Because, these applications have diverse needs and

various selection criteria, it is necessary to be able to search and retrieve

alignments on these criteria. Alignment metadata used for indexing

alignments are thus very important. So far, alignments contain information

about:

• the aligned ontologies;

• the language in which these ontology are expressed;

• the kind of alignment it is (1:1 or n:m for instance);

• the algorithm that provided it (or if it has been provided by hand);

• the confidence in each correspondence.

This information is already very precious and helps applications selecting

the most appropriate alignments. It is thus necessary that ontology matchers

be able to generate and alignment servers be able to store these metadata.

Oyster (Palma and Haase, 2005), a peer-to-peer infrastructure for sharing

metadata about ontologies that can be used in ontology management, has

been extending for featuring some metadata about alignments.

However, metadata schemes are extensible and other valuable

information may be added to alignment format, such as:

• the parameters passed to the generating algorithms;

6. Ontology Alignments 197

• the properties satisfied by the correspondences (and their proof if

necessary);

• the certificate from an issuing source;

• the limitations of the use of the alignment;

• the arguments in favor or against a correspondence (Laera et al., 2007).

All such information can be useful for evaluating and selecting

alignments and thus should be available from alignment servers.

5.3 Evolving and maintaining ontology alignments

Like ontologies, alignments are not cast in stone once and for all. In

particular, as ontologies evolve, it is necessary to evolve alignments

accordingly. However, it can be quite hard for the engineer to be aware of

the effects that these constant changes have. It is thus particularly important

to provide support for alignment evolution and maintenance in alignment

management environments.

Some tools, such as PrompDiff (Noy and Musen, 2003), are already

particularly good at finding alignments between versions of ontologies.

When such an alignment is made available, it is possible, as displayed in

Figure 6-4, to provide by composition new versions of the alignment tied to

the previous version and to migrate data.

WSMT offers a MUnit Testing View for the Abstract Mapping Language

which gives the engineer support to ensure that instances are being correctly

transformed. Users can define pairs of sources and targets, specifying that

the result of transforming the sources, using the existing alignments, should

be the targets. These tests can then be incrementally run by engineers when

alignment validation is required.

6. ALIGNMENT PROCESSING

Finally, once alignments are obtained, either using a graphical tool, as the

output of a matching algorithm, or retrieved from an alignment store, they

can be processed in concrete mediation scenarios. The following techniques

all require an alignment between the source and target ontologies in order to

be achieved.

• Query rewriting: a query addressed to a source ontology needs to be

rewritten in terms of a query for a target ontology.

• Instance transformation: a set of instances described under a source

ontology needs to be transformed into terms of a target ontology.

198 Chapter 6

• Ontology merging: a set of source ontologies need to be merged into a

one ontology.

The scenario determines the operation that must be processed: a web

service data mediator, as the one presented in Section 3.5, requires

transformation of instances, while on-line catalog integration may require

query rewriting in order to query the various catalogs.

When applying instance transformation or query rewriting, the resulting

sets of instances may contain duplicates. For example, two similar products

sold by different vendors. In the case of ontology merging, it might also be

necessary to merge instances described by the merged ontologies. Again,

duplicates have to be identified in order to avoid their duplication in the

newly created ontology. The technique of merging similar instances is

known as instance identification and unification.

We describe these techniques in detail in the remaining of this section.

Their application often requires preprocessing of the alignment in order to

make it executable for the mediation system. Section 6.3 presents how

alignments are transformed between various formats, motivating the use of a

common alignment format for exchange between applications, algorithms

and tools.

6.1 Query rewriting and instance transformation

Applying query rewriting techniques consists, as the name suggests, of

rewriting a query in terms of a source ontology Os into terms of a target

ontology Ot. The rewriting engine takes as input the original query qs, the

alignment between Os and Ot, and returns a query qt in terms of Ot. Figure 6-

7 illustrates this process. Query rewriting has been largely studied in

database integration (Dushka and Genesereth, 1997).

Once the rewritten query addressed to the target ontology, the instances

eventually returned are described in terms of Ot. They might have to be

transformed to instances of Os in order to be further processed by the system.

Instance transformation is done by taking a set of instances described

under a source ontology Os, and transforming it to instances of a target

ontology Ot using the alignment between the two ontologies. New instances

of Ot classes are described, and attribute values are transformed (Scharffe

and de Bruijn, 2005) according to the alignment. This process may lead to

the creation of multiple target instances for one source instance, or,

inversely, to combine some source instances into one target instance.

Instance transformation, illustrated in Figure 6-7, is used in the example

scenario in Section 3.5.

6. Ontology Alignments 199

Figure 6-7. Query mediation (from (Euzenat and Shvaiko, 2007)). From two matched

ontologies o and o', resulting in alignment A, a mediator is generated. This allows the

transformation of queries expressed with the entities of the first ontology into a query using

the corresponding entities of a matched ontology and the translation back of the results from

the second ontology to the first one.

The two former techniques result in two sets of instances described

according to a single ontology. The different origin of these instances may

lead to duplicates. For instance, in a web application integrating various on-

line catalogs, each described as an ontology, once the catalogs queried and

the results adapted to the reference ontology, it is likely that some products

are sold by many vendors. Similar products have to be identified in order to

be presented under the same one (eventually with the different prices kept

separated). Instance unification techniques are used to merge similar

instances by analyzing their attributes values, as well as the relations they

share with other instances.

Instance unification is also necessary after two ontologies have been

merged into one. Instances of the source ontologies then also need to be

merged, and duplicates removed. The next section presents the ontology

merging technique.

6.2 Merging

 There are cases where the ontologies are not kept separate but need to be

merged into a single new ontology. As an example, we can consider the case

of one vendor acquiring another; their catalog will probably be merged into a

single one. Ontology merging is realized by taking the two ontologies to be

merged and an alignment between these two ontologies. It results in a new

ontology combining the two source ontologies. The ontology merging

process can be fully automatized if an adequate alignment is provided

(Scharffe, 2007), but usually requires human intervention in order to solve

200 Chapter 6

conflicts and choose a merging strategy. Figure 6-8 illustrates the ontology

merging process.

Figure 6-8. Ontology merging (from (Euzenat and Shvaiko, 2007)). From two matched

ontologies o and o', resulting in alignment A, articulation axioms are generated. This allows

the creation of a new ontology covering the matched ontologies.

The techniques presented in the previous two subsections require only the

alignment as an input (they interpret it). As we will see in the next section,

this alignment may require a further step in order to be usable. This step is

tightly linked to the format in which the alignment is expressed.

6.3 Semantic data mediation

The mediation of the heterogeneous semantic data can be achieved

through instance transformation. Data represented by ontology instances has

to be transformed either by the sender or transparently by a third party in the

format required by the receiver, i.e., instances expressed in the target

ontology.

In order to accommodate such a mediation scenario, the alignments

generated by using the techniques described in Section 4 have to be

processed by an engine able to perform instance transformation. If the

alignments are expressed in an abstract form, e.g., using AML, an extra step

has to be performed: the correspondences in the alignment must be

expressed in a concrete ontology specification language which can be

interpreted.

6. Ontology Alignments 201

Figure 6-9. Run time Data Mediator Usage Scenario (from (Mocan and Cimpian, 2007)).

Figure 6-9 shows how such an instance transformation engine (the Data

Mediation Run-Time Component in WSMX) can be deployed and used in

various scenarios. A straightforward way is to integrate it in an Information

System (in this case WSMX) which needs mediation support in order to

facilitate the exchange of heterogeneous data.

Another possibility is to encapsulate this engine in a (Semantic) Web

service and to allow external calls having as inputs the source instances and

optionally the alignments to be applied. As output, the corresponding target

instances are returned.

Additionally, such an engine can be used for testing the correctness of the

alignments been produced, either by using it as a test module in the design-

time matching tool (see the WSMT MUnit) or by providing a Web interface

that would allow domain experts to remotely send source instances to be

transformed in target instances.

7. SOFTWARE AND TOOLS

Most of the work on general organisation of alignments is tied to some

kind of application, e.g., C-OWL for peer-to-peer applications, WSMX for

web services, Edutella for emerging semantics. There are, however, a few

systems which are autonomous enough for being used as independent

alignment management support.

Model management has been promoted in databases for dealing with data

integration in a generic way. It offers a high-level view to the operations

202 Chapter 6

applied to databases and their relations. Rondo5 is such a system (Melnik et

al., 2002). It offers operators for generating the alignments, composing them

and applying them as data transformation. It is currently a standalone

program with no editing functions.

MAFRA6 (Mädche et al., 2002) proposes an architecture for dealing with

“semantic bridges” that offers many functions such as creation,

manipulation, storing and processing such bridges. MAFRA has

transformations associated with bridges: it does not record alignments in a

non processable format. MAFRA does not offer editing or sharing

alignments.

Protégé is an ontology edition environment (see Chapter 3 of this book)

that offers design time support for matching. In particular it features Prompt7

(Noy and Musen, 2003), an environment that provides some matching

methods and alignment visualisation. Since alignments are expressed in an

ontology, they can be stored and shared through the Protégé server mode.

Prompt can be extended through a plug-in mechanism.

Foam8 (Ehrig, 2007) is a framework in which matching algorithms can be

integrated. It mostly offers matching and processor generator. It does not

offer on-line services nor alignment editing, but is available as a Protégé

plug in and is integrated in the KAON2 ontology management environment.

COMA++ is another standalone (schema) matching workbench that

allows integrating and composing matching algorithms. It supports

matching, evaluating, editing, storing and processing alignments.

The Alignment Server, associated with the Alignment API9

(Euzenat, 2004), offers matching ontologies, manipulating, storing and

sharing alignments as well as processor generation. It can be accessed by

clients through API, web services, agent communication languages ot HTTP.

It does not support editing.

WSMT10, which has been taken as example within these pages is a design

time alignment creator and editor. It manipulates the AML format and can

generate WSML rules. It also works as a standalone system.

The NeOn11 project ambitions to produce a toolkit for ontology

management which features run time and design time ontology alignment

support.

5 http://infolab.stanford.edu/~modman/rondo/
6 http://mafra-toolkit.sourceforge.net
7 http://protege.stanford.edu/plugins/prompt/prompt.html
8 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
9 http://alignapi.gforge.inria.fr
10 http://wsmt.sourceforge.net
11 http://www.neon-project.org

6. Ontology Alignments 203

8. FURTHER READINGS

The topic of alignment management is relatively new so there is no

specifically dedicated publications. A recent extensive reference on ontology

matching is (Euzenat and Shvaiko, 2007). ontologymatching.org is a web

site collecting information about ontology matching.

9. CONCLUSIONS

Applications using ontologies face the problem of ontology heterogeneity

whenever they want to communicate with each others or evolve. Hence,

ontology management must take ontology heterogeneity into account.

Dealing with ontology heterogeneity involves finding the alignments, or sets

of correspondences, existing between ontology entities and using them for

reconciling the ontologies.

Because, this problem occurs in many applications and is solved in many

different ways, it is better dealt with in a general way. This involves

managing alignments together with ontologies.

We have presented alignment management through the life cycle of

alignments and the associated support functions: creating, selecting, editing,

maintaining, sharing and processing alignments. We have presented a few

systems which implement part of this alignment support and in particular the

notion of alignment server which can be used for storing and sharing

alignment at both run time and design time.

Alignment management is not as advanced as ontology management and

much remains to be developed for fully supporting and sharing alignments

on a wide scale. Challenges for alignment management include adoption

challenges and research problems. The important challenge is to have a

natural integration of alignment management with most of the ontology

engineering and ontology management systems. If alignment sharing and

management is to become a reality, then there should not be one proprietary

format with each tool that cannot be handled by other tools. Another

challenge is the easy finding of available alignments. For this purpose,

proper alignment metadata and web-wide search support have to be set up.

There remains difficult research problems in the domain of alignment

management such as:

• The identification of duplicate alignments or evolutions from a particular

alignment;

• Aggregating, composing and reasoning usefully with a massive number

of alignments;

204 Chapter 6

The design of ever better user interaction systems for both interacting

with matching systems and editing alignments.

ACKNOWLEDGEMENTS

This work has been partly supported by the European network of

excellence Knowledge Web (IST-2004-507482). The first author has also

been supported by the European integrated project NeOn (IST-2005-027595)

and the RNTL project WebContent.

The first author thanks Pavel Shvaiko for many fruitful discussions

related to this chapter.

REFERENCES

Christoph Bussler, Dieter Fensel, and Alexander Mädche. A conceptual architecture for

semantic web enabled web services. ACM SIGMOD Record, 31(4):24–29, 2002.

Oliver Duschka and Michael Genesereth. Infomaster - an information integration tool. In

Proceedings of the International Workshop on Intelligent Information Integration,

Freiburg, Germany, 1997.

Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap. Semantic Web and Beyond:

Computing for Human Experience. Springer, New-York (NY US), 2007.

Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in OWL-Lite. In

Proceedings of 16th European Conference on Artificial Intelligence (ECAI), Valencia

(ES), pages 333–337, 2004.

Jérôme Euzenat. Alignment infrastructure for ontology mediation and other applications. In

Proceedings of the 1st ICSOC International Workshop on Mediation in Semantic Web

Services, pages 81–95, Amsterdam, Netherlands, December 2005

Jérôme Euzenat. An API for ontology alignment. In Proceedings of the 3rd International

Semantic Web Conference (ISWC-2004), pages 698–712, Hiroshima, Japan, 2004

Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer Verlag, Berlin, 2007

Michael Genesereth, Arthur Keller, and Oliver Duschka. Infomaster: An Information

integration system. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, Tucson, 1997.

Ningsheng Jian, Wei Hu, Gong Cheng, and Yuzhong Qu. Falcon-AO: Aligning ontologies

with Falcon. In Proceedings of K-CAP Workshop on Integrating Ontologies, pages 87–93,

Banff, CA, 2005.

Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the art. The

Knowledge Engineering Review, 18(1):1–31, 2003

Mike Kerrigan, Adrian Mocan, Martin Tanler, Dieter Fensel: The Web Service Modeling

Toolkit - An Integrated Development Environment for Semantic Web Services. In

Proceedings of the 4th European Semantic Web Conference (ESWC), System Description

Track, June 2007, Innsbruck, Austria.

Loredana Laera, Ian Blacoe, Valentina Tamma, Terry Payne, Jérôme Euzenat, and Trevor

Bench-Capon. Argumentation over Ontology Correspondences in MAS. In Proceedings of

6. Ontology Alignments 205

the 6th International conference on Autonomous Agents and Multiagent Systems

(AAMAS), Honolulu , USA, 2007

Holger Lausen, Jos de Bruijn, Axel Polleres, and Dieter Fensel: WSML—A Language

Framework for Semantic Web Services. W3C Workshop on Rule Languages for

Interoperability, April 2005

Aexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz: MAFRA—A Mapping

Framework for Distributed Ontologies. In Proceedings of the 13th European Conference

on Knowledge Engineering and Knowledge Management (EKAW-2002), pages 235–250,

Siguenza, Spain, September 2002.

Sergey Melnik, Erhard Rahm, and Philip Bernstein. Rondo: A programming platform for

model management. In Proceedings of the 22nd International Conference on Management

of Data (SIGMOD), pages 193–204, San Diego (CA US), 2003

Adrian Mocan and Emilia Cimpian: Mapping creation using a view based approach. In

Proceedings of the 1st International Workshop on Mediation in Semantic Web Services

(Mediate-2005), volume 168, pages 97–112, Amsterdam, The Netherlands, December

2005.

Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the Gap -

Extending Service Oriented Architectures with Semantics. In Proceedings of the IEEE

International Conference on e-Business Engineering (ICEBE-2006), pages 594–601,

Shanghai, China, October 2006.

Adrian Mocan, Emilia Cimpian, and Mike Kerrigan: Formal Model for Ontology Mapping

Creation. In Proceedings of the 5th International Semantic Web Conference (ISWC-2006),

pages 459–472, Athens, Georgia, USA, November 2006.

Natalia F. Noy and Mark A. Musen: The PROMPT Suite: Interactive Tools for Ontology

Merging And Mapping. International Journal of Human-Computer Studies, 6(59):983–

1024, 2003.

Raúl Palma, Peter Haase, Oyster: Sharing and re-using ontologies in a peer-to-peer

community. In Proceedings of the 4th International Semantic Web Conference, pages

1059–1062, Galway, Ireland, 2005

Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema matching.

The VLDB Journal, 10(4):334–350, 2001

François Scharffe and Jos de Bruijn: A language to specify mappings between ontologies. In

Proceedings of the IEEE Conference on Internet-Based Systems SITIS6, Yaounde,

Cameroon, December 2005.

François Scharffe: Dynamerge: A Merging Algorithm for Structured Data Integration on the

Web. In Proceeedings of the DASFAA 2007 International Workshop on Scalable Web

Information Integration and Service (SWIIS 2007), 2007.

Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva, and Deborah McGuinness. Web

explanations for semantic heterogeneity discovery. In Proceedings of the 2nd European

Semantic Web Conference (ESWC), pages 303–317, Hersounisous, Greece, May 2005

Jie Tang, Juanzi Li, Bangyong Liang, Xiaotong Huang, Yi Li, and Kehong Wang. Using

Bayesian decision for ontology mapping. Journal of Web Semantics, 4(1):243–262, 2006

Willem Robert van Hage, Sophia Katrenko, Guus Schreiber. A Method to Combine

Linguistic Ontology-Mapping Techniques. In Proceedings of the 4th International

Semantic Web Conference (ISWC-2005), pages 732–744, Galway, Ireland, 2005

Holger Wache, Thomas Voegele, Ubbo Visser, Heiner Stuckenschmidt, Gerhard Schuster,

Holger Neumann, and Sebastian Hübner. Ontology-based integration of information—a

survey of existing approaches. In Proceedings of the IJCAI Workshop on Ontologies and

Information Sharing, pages 108–117, Seattle, USA, 2001

206 Chapter 6

Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Computer,

25(3), 1992.

