
A Schema Matching-based Approach to XML Schema
Clustering

Alsayed Algergawy, Eike Schallehn, and Gunter Saake
Computer Science Department

Magdeburg University
39106 Magdeburg

Magdeburg, Germany
{alshahat, eike, saake}@iti.cs.uni-magdeburg.de

ABSTRACT
The relationship between XML data clustering and schema
matching is bidirectional. On one side, clustering techniques
have been adopted to improve matching performance, and
on the other side schema matching is the backbone of the
clustering technique. This paper presents a new approach
for clustering XML schema based on schema matching. In
particular, we develop and implement an XML schema match-
ing system, which determines semantic similarities between
XML schemas based on the Prüfer sequence representation
of schema trees. The proposed computation similarity algo-
rithm makes use of the semantic meaning of XML elements
as well as the hierarchical features of XML schemas. The
computed similarities are then exploited by an agglomera-
tive clustering algorithm to group similar schemas. Our ex-
perimental results show that the proposed approach is fast
and accurate in clustering heterogeneous XML schemas.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—clustering

General Terms
Algorithms

Keywords
XML, clustering, schema matching, Prüfer sequences

1. INTRODUCTION
The extensible markup language (XML) has emerged as

a standard for information representation and exchange on
the Web. As a result, a huge amount of information is for-
matted in XML data and several tools have been developed
to deliver, store, integrate, and query XML data [4, 10]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2008, November 24-26, 2008, Linz, Austria.
Copyright 2008 ACM 978 1-60558-349-5/08/0011 ...$5.00.

order to analyze these data efficiently, a possible solution
is to group similar XML data according to their semantics,
content and structures. Grouping similar XML data across
heterogeneous ones is known as XML data clustering. Clus-
tering XML data plays a central role in many data applica-
tion domains such as information retrieval, data integration,
document classification, Web mining, and query processing.

In general there are two types of XML data— XML doc-
uments and XML schemas. An XML schema is the descrip-
tion of the structure and the legal building blocks for an
XML document. A dozen of XML schema languages have
been proposed [13]. Among them, XML DTD and XML
Schema Definition (XSD) are commonly used. An XML doc-
ument (document instance) represents a snapshot what the
XML document contains [16]. Since the document definition
outlined in a schema holds true for all document instances of
that schema. Therefore, the result produced from the clus-
tering of schemas will hold true for all document instances
of those schemas, and can be reused for any other instances.
However, clustering XML schemas is an intricate process and
it differs significantly from clustering of flat data and text.
The difficulties of clustering XML schemas are due to the
following reasons [1]. (1) Clustering algorithms require the
computation of similarity between different XML data. The
computation of similarity among XML data has itself been
known to be a difficult research problem. The heterogene-
ity in XML data presents many challenges to find similarity
among the XML data. (2) The structural behavior of the
XML data increases implicit dimensionality of the clustering
algorithm, which leads to meaningless clusters.

Clustering is a useful technique for grouping data objects
such that objects within a single group/cluster have similar
features, while objects in different groups are dissimilar [12,
3]. Typically data clustering activity involves different steps.
A prominent step is the similarity computation between
pairs of data objects [12]. The similarity computation al-
gorithms between XML data can be broadly classified into
two categories depending on the exploited objects in similar-
ity computation: (1) tree-editing distance, which exploits the
whole XML schema (sub)tree or XML paths without con-
sidering elements’ details [7, 8, 1, 5], (2) schema matching,
which exploits the semantic and structural element’ prop-
erties to determine similarity among XML schemas [14, 17,
16]. The tree-editing approaches have been proposed to clus-
ter XML documents as well as they can be very expensive
rendering them impractical for huge XML data.

Motivated by the above challenges, in this paper, we present

iiWAS 2008 Proceedings of iiWAS2008

131

a new schema matching-based approach to XML schema
clustering. In particular, we develop and implement a clus-
tering framework, which consists of three phases. (1) Pre-
Processing ; XML schemas to be clustered are first parsed
and represented as ordered labeled trees. In order to ac-
celerate the clustering process, sequence representations for
these schema trees are constructed using the Prüfer coding
method [20]. (2) Similarity Computation; Similarity among
XML schemas are determined exploiting both the semantic
and structural information carried by the sequence represen-
tations of schema trees. (3) Clustering ; Nested sets of data
(hierarchies) are produced using a hierarchical clustering al-
gorithm [12]. We carried out a set of experiments utilizing
different real datasets to evaluate the proposed framework.
Our experimental results show that the proposed framework
is fast and accurate in clustering heterogenous XML data.

To summarize, the contributions of our work are:

• investigating the relationship between XML schema
matching and XML data clustering,

• developing an XML schema clustering framework based
on schema matching, and

• conducting a set of experiments using real datasets to
validate the performance of our framework.

The paper is organized as follows. Section 2 introduces
our XML clustering framework. Experiments evaluation is
presented in Section 3. Section 4 discusses related work.
The concluding remarks and open research directions are
presented in Section 5.

2. THE CLUSTERING FRAMEWORK
In this section we shall describe the core parts of the pro-

posed clustering framework. Figure 1 shows our cluster-
ing framework, which consists of three main phases—Pre-
processing, Similarity computation and Clustering.

2.1 Pre-Processing
1 This phase is concerned with the representation of het-

erogeneous XML schemas as sequence representations. To
this end, it contains two steps: Parsing and Prüfer Sequence
Construction. First, each XML schema is parsed using a
SAX parser and represented internally as a rooted ordered
labeled tree called the schema tree, wherein each schema
component (element and/or attribute) is represented as a
node, while edges are used to represent relationships be-
tween components. Each node in the schema tree carries
the associated element properties. In the current implemen-
tation, we make use of the name, type/datatype element
properties.

To efficiently cope with schema trees especially in huge
XML data, we then construct a modified Prüfer sequence,
called Consolidated Prüfer Sequence CPS [22], for each schema
tree. The Prüfer sequence constructs a one-to-one corre-
spondence between schema trees and CPSs. CPS of a schema
tree consists of two sequences Number Prüfer Sequences
NPS and Label Prüfer Sequences LPS. This allows us to
capture schema tree semantic information in LPSs while
tree structure information in NPSs. CPSs are constructed

1This subsection and the next one is based on our previous
work. To keep this paper self contained, we give short notes
about them. More details can be found in [2]

Figure 1: XML clustering framework architecture

by doing a post-order traversal that tags each node in the
schema tree with a unique traversal number. NPS is then
constructed iteratively by removing the node with the small-
est traversal number and appending its parent node num-
ber to the already structured partial sequence. LPS is con-
structed similarly but by taking the node labels of deleted
nodes instead of their parent node numbers.

2.2 Similarity Computation
This phase is concerned with the similarity computation

between every XML schema pairs in order to form the simi-
larity matrix, which will then be used by the clustering algo-
rithm. For this purpose, we employ two different matchers:
(1) the linguistic matcher, which exploits semantic schema
information presented in LPSs; and (2) the structural matcher,
which makes use of structural features of XML schemas car-
ried by NPSs. Then, the two computed similarities are
combined using the similarity combination step.

2.2.1 Linguistic Matcher
This step aims at determining initial similarity values be-

tween schema trees’ nodes based on the semantic properties
of nodes. In the current implementation, we make use both
of the name property and of the type/datatype property. To
compute name similarity between two element’names repre-
sented as two strings s1 and s2, we first break each string
into a set of tokens T1 and T2 using a customizable tokenizer
using punctuation, upper case, special symbols, and digits,
e.g. UnderGradCourses → {Under, Grad, Courses}. We
then determine the name similarity between the two sets of
name tokens T1 and T2 as the the average best similarity of
each token with a token in the other set.

Proceedings of iiWAS2008 iiWAS 2008

132

To measure the string similarity between every two to-
kens, sim(t1, t2), we use two string similarity measures. The

first one is simedit(t1, t2) = max(|t1|,|t2|)−editDistance(t1,t2)
max(|t1|,|t2|) ,

where editDistance(t1, t2) is the minimum number of char-
acter insertion and deletion operations needed to transform
one string to the other. The second is based on the num-
ber of different trigrams in the two strings: simtri(t1, t2) =
2×|tri(t1)

⋂
tri(t2)|

|tri(t1)|+|tri(t2)| , where tri(t1) is the set of trigrams in t1.

To enhance the matching result and to prune some of false
positive candidates, we propose to exploit type/datatype
of nodes. We make use of built-in XML datatypes hier-
archy 2 in order to compute datatype compatibility coeffi-
cients. Based on XML schema datatype hierarchy, we build
a datatype compatibility table as the one used in [15]. After
computing datatype compatibility coefficients, we can adjust
name similarity values. The result of the above process is a
linguistic similarity matrix LinSim.

2.2.2 Structural Matcher
The linguistic matcher considers only the label informa-

tion and ignores the structural information. There can be
multiple match candidates, which differ in structure but
have the same label. The structural matcher prunes these
false positive candidates by considering the structural infor-
mation presented in the NPS sequence.

Our structural matcher is motivated by the fact that the
most prominent feature for an XML schema is its hierar-
chical structure, and is based on the node context, which is
reflected by its ancestors and its descendants. The descen-
dants of an element include both its immediate children and
the leaves of the subtrees rooted at the element. The im-
mediate children reflect its basic structure, while the leaves
reflect the element’s content. In the current implementation,
we consider three kinds of node contexts depending on its
position in the schema tree: child context, leaf context and
ancestor context. The context of a node is the combination
of its ancestor context, its child context, and its leaf con-
text. Two nodes are structurally similar if they have similar
contexts.

To measure the structural similarity between two nodes
from two different XML schemas, we compute respectively
the similarity of their child, leaf, and ancestor contexts.
Both the child context and the leaf context depend on set
comparison while the ancestor context is based on path com-
parison [2].

The child context. The representation of a schema tree
as Prüfer sequence facilitates the determination of struc-
tural properties of the schema tree. Each entry in the
CPS presents an edge from the parent node NPS to
its immediate child node LPS. Therefor, we could eas-
ily obtain the number of immediate children of a non-
leaf node from the NPS sequence by counting its post-
order traversal number in the sequence, and also we
could identify these children. To obtain the child con-
text similarity between two nodes, we compare the two
child context sets for the two nodes. To this end, we
first extract the child context set for each node from
NPS and LPS sequences. Second, we get the linguistic
similarity between each pair of children in the two sets.

2http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/

Third, we select the matching pairs with maximum
similarity values. And finally, we take the average of
best similarity values.

The leaf context. First we notice that nodes whose post-
order numbers do not appear in the NPS sequence
are atomic nodes. From this notice and from the child
context we could recursively obtain the leaf context for
a certain node. To compute the leaf context similarity
between two nodes, we compare their leaf context sets.
To this end, first, we extract the leaf context set for
each node. Second, we determine the gap between
each node and its leaf context set. Third, we apply
the cosine measure between two gap vectors.

The ancestor context. For a non-atomic node, we obtain
the ancestor context by scanning the NPS sequence
from left to right and identifying the numbers which
are greater than post-order number of the node until
the first occurrence of the root node. While scanning
from left to right, we ignore nodes whose post-order
numbers are less than post-order numbers of already
scanned nodes. For a leaf node, the ancestor context
is the ancestor context of its parent union the parent
itself. To compute the ancestor similarity between two
nodes n1 and n2, first we extract each ancestor context
from the NPS sequence, say path P1 for n1 and path
P2 for n2. Second, we compare two paths. To compare
two paths, we use three of four scores established in [6].

The result of the structural matcher is a structural simi-
larity matrix StrSim.

2.2.3 Schema Similarity Matrix
Given a set of XML schemas S = {S1, S2, ..., Sn}, we con-

struct an n × n schema similarity matrix SSimMat. Each
entry in the matrix SSimMat[i][j] represents the similar-
ity between schema Si and schema Sj . For every schema
pairs, we sum up (weighted sum) all element similarity val-
ues computed by the linguistic matcher and the structural
matcher.

2.3 Clustering
There are many techniques for clustering algorithms among

them are hierarchical clustering algorithms [12]. Hierarchi-
cal clustering solutions are in the form of trees called dendro-
grams, which provide a view of the data at different levels
of abstraction. The consistency of clustering solutions at
different levels of granularity allows flat partitions of differ-
ent granularity to be extracted during data analysis, making
them ideal for interactive exploration and visualization [11].
Two primary methods to obtain hierarchical clustering solu-
tions: agglomerative algorithms and partitional algorithms.

In agglomerative algorithms, objects are initially assigned
to its own cluster and then the pairs of clusters are re-
peatedly merged until the whole tree is formed. However,
partitional algorithms can also be used via a sequence of
repeated bisections. The partitional algorithms are well-
suited for clustering large datasets due to their relatively
low computational requirements. However, the agglomera-
tive algorithms outperform partitional algorithms. For this,
in our implementation we make use of another hierarchical
clustering algorithm called the constrained agglomerative al-
gorithm [11].

iiWAS 2008 Proceedings of iiWAS2008

133

We use the wCluto3 a web-enabled data clustering appli-
cation for clustering XML schemas. In order to make use of
wCluto, we first perform the similarity computation phase to
obtain the schema similarity matrix, which is used as the in-
put for wCluto. Then, the hierarchical clustering algorithm
is selected and its parameters are tuned.

3. EXPERIMENTAL EVALUATION
In this section we describe the experiments that we have

carried out to evaluate our proposed framework. In the rest
of this section we first describe the used datasets and our
experimental methodology, followed by a description of the
experimental results.

3.1 Dataset
We used a total of six different datasets, whose general

characteristics are summarized in Table 1. The datasets
have been obtained from different domains 4 5 6 and rep-
resent different characteristics. Each domain consists of a
number of different categories that have structural and se-
mantic differences. The XML schemas from the same do-
main also vary in structures and semantics.

Table 1: Data set details
Domain No. of schemas No. of nodes No. of levels
Auction 4 35/39 4/6
Mondial 7 11- 4/8
Financial 2 14/14 3/6
TPC-H 10 8/45 2/6
GeneX 2 75/85 3/8

University 25 8-20 3/7

3.2 Experimental Methodology and Metrics
The different datasets are first extracted and modified to

be ready for the clustering framework. The current imple-
mentation supports only clustering XSD schemas, hence we
transformed DTDs into XSDs. The quality of clustering so-
lutions have been verified using two common measures: (1)
FScore as an external measure, and (2) intra-clustering sim-
ilarity and inter-clustering similarity as internal measures.

FScore is a trade-off between two popular information re-
trieval metrics, precision P and recall R. Precision considers
the rate of correct matches in the generated solution, and
recall considers the rate of correct matches in the model so-
lution. Given a cluster Ci, let TP be the number of XML
data in Ci which are similar (correctly clustered), FP be
the number of documents Ci which are not similar (misclus-
tered), FN be the number of documents which are not in
Ci but should be. The precision and recall of a cluster Ci

are defined as Pi = TP
TP+FP

, and Ri = TP
TP+FN

.
FScore combining precision and recall with equal weights

for the given cluster Ci is defined by, FScorei = 2× Pi×Ri
Pi+Ri

.

The FScore of the overall clustering approach is defined as
the sum of the individual class FScores weighted differently
according to the number of XML data in the class

FScore =

∑k
i=1 ni × FScorei

n
(1)

3http://cluto.ccgb.umn.edu/cgi-bin/wCluto/wCluto.cgi
4http://www.dbis.informatik.uni-goettingen.de/Mondial/
5http://www.cs.washington.edu/research/xmldatasets/
6http://www.cs.toronto.edu/db/clio/testSchemas.html

Figure 2: FScore

where k, ni and n are the number of clusters, the number
of XML data in a cluster Ci, and the number of XML data
respectively. A good clustering solution has the FScore value
closer to one.

The internal clustering solution quality measures are eval-
uated by calculating the average inter and intra-clustering
similarity. The intra-clustering similarity measures the co-
hesion within a cluster, how similar the XML data within
a cluster are. This is computed by measuring the similarity
between each pair of data within a cluster, and the intra-
clustering similarity of a clustering solution is determined
by averaging all computed similarities taking into account
the number of XML data within each cluster

IntraSim =

∑k
i=1 ni × IntraSim(Ci)

n
. (2)

The larger the values of intra-clustering similarity (IntraSim),
the better the clustering solution is. The inter-clustering
similarity measures the separation among different clusters.
It is computed by measuring the similarity between two clus-
ters. A good clustering solution has lower inter-clustering
similarity values.

3.3 Experimental Results
Figure 2 illustrates the FScore of the datasets over 16 dif-

ferent clustering solutions. With k = 2, all the 25 schemas
from the university domain are in one group, while the other
schemas from the other domains are in the second group.
This results in a high FScore at k = 2. As k increase as FS-
core increases until the best FScore occurs at k = 8. When
the process reaches the 12-clustering solutions, the cluster-
ing quality is stabilized. Also, Fig. 2 shows that the quality
(FScore) of our proposed algorithm ranges between 79% and
93%, i. e. it is almost accurate.

The better clustering solution is the one having both higher
intra-clustering similarity and lower inter-clustering similar-
ity. Figure 3 supports this fact, such that the figure shows
that as the clustering process continues, clusters are further
decomposed into smaller sub clusters that contain highly
similar schemas. Figure 3 also illustrates that as the num-
ber of clusters increases, the average intra-clustering simi-
larity increases while the average inter-clustering similarity
decreases.

4. RELATED WORK

Proceedings of iiWAS2008 iiWAS 2008

134

Inter-clustering similarity Intra-clustering similarity

Figure 3: Internal quality measures

The relationship between XML schema clustering and schema
matching is bidirectional. From the view point of using clus-
tering to support schema matching, research in this direc-
tion depends heavily on the fact that it is easier to find
element correspondences between schemas that are contex-
tually similar. [18] develops a clustered-based approach
to schema matching. The approach clusters schemas based
on their contextual similarity, then clusters attributes of
schemas within the same schema cluster. Then attributes
across different schema clusters are clustered using statis-
tical information gleaned from existing attributes clusters
to find attribute correspondences among different schemas.
However, the approach deals only with flat schemas. [21]
proposes a clustered schema matching technique. Cluster-
ing is used to identify clusters in the large schema repository
which are likely to produce mappings for a personal schema.
Other approaches, which make use of clustering to identify
element correspondences in the context of integrating het-
erogeneous data sources, can be found in [23, 19].

From the other side point of view, research on clustering
XML data is gaining momentum. XML data clustering can
be broadly classified into two categories based on the data
to be clustered: clustering XML documents and clustering
XML schemas. Many approaches have been developed in
the context of XML document clustering [9], while a little
work is done in the context of XML schema clustering [14,
17]. [14] proposes an integration strategy, called XClust,
that involves the clustering of DTDs. A matching algorithm,
based on the semantic and structural properties of schema’
elements has been proposed. [17] also develops a frame-
work, called XMine, to cluster XML schemas (both DTTs
and XSDs). XMine makes use of semantic, syntactic and
structural properties of schema’ elements.

Both XClust and XMine, as our proposed framework, rep-
resent XML schemas as rooted (ordered) labeled trees. How-
ever, we extend the tree representation of XML schemas
into sequence representation in order to efficiently deal with
schema elements instead of traversing schema trees many
times. Moreover, the two clustering frameworks make use
of WordNet to determine semantic (synonyms) similarity.
XMine additionally implements a user defined dictionary in
order to identify abbreviations and finally makes use of syn-
tactic string functions (string edit distance) to compare be-
tween element names if no semantic relationships. In con-

trast, we use only simple string functions in order to de-
termine initial similarity values for the structural matcher.
Our structural matcher is similar to the one in [14]. They
both depend on the node context utilizing both ancestor
and descendant contexts of a node. However, our approach
benefits from the sequence representation of schema trees.

5. SUMMARY AND FUTURE WORK
The growing number of heterogeneous XML schemas has

raised a number of issues concerning how to represent and
manage semi-structure data. We developed and implemented
a schema matching-based XML schema clustering frame-
work. The proposed framework consists of three phases:
Pre-processing; to represent XML schemas as sequence rep-
resentations, Similarity computation; to determine the simi-
larity across XML schemas, and Clustering; to group similar
XML schemas into clusters using the hierarchical clustering
algorithm. Experimental evaluation showed that our pro-
posed framework is almost accurate with FScore ranging
between 80% and 93%.

6. REFERENCES
[1] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. J.

Zaki. Xproj: a framework for projected structural
clustering of XML documents. In KDD 2007, pages
46–55, 2007.

[2] A. Algergawy, E. Schallehn, and G. Saake. A prufer
sequence-based approach for schema matching. In
BalticDB&IS2008. Estonia, 2008.

[3] P. Berkhin. Survey of clustering data mining
techniques. In Accrue Software, Inc., pages 1–56, 2002.

[4] E. Bertino and E. Ferrari. XML and data integration.
IEEE Internet Computing, 5(6):75–76, 2001.

[5] E. Bertino, G. Guerrini, and M. Mesiti. Measuring the
structural similarity among XML documents and
DTDs. Intelligent Information Systems, 30(1):55–92,
2008.

[6] D. Carmel, N. Efraty, G. M. Landau, Y. S. Maarek,
and Y. Mass. An extension of the vector space model
for querying xml documents via XML fragments.
SIGIR Forum, 36(2), 2002.

[7] I. Choi, B. Moon, and H.-J. Kim. A clustering method

iiWAS 2008 Proceedings of iiWAS2008

135

based on path similarities of XML data. DKE,
60:361–376, 2007.

[8] T. Dalamagasa, T. Cheng, K.-J. Winkel, and T. Sellis.
A methodology for clustering XML documents by
structure. Information Systems, 31:187–228, 2006.

[9] G. Guerrini, M. Mesiti, and I. Sanz. An Overview of
Similarity Measures for Clustering XML Documents.
Web Data Management Practices: Emerging
Techniques and Technologies. IDEA GROUP, 2007.

[10] M. Hassler and A. Bouchachia. Searching XML
documents: Preliminary work. In INEX2005, pages
119–133, 2005.

[11] Y. B. Idrissi and J. Vachon. Evaluation of hierarchical
clustering algorithms for document datasets. In the
11th International Conference on Information and
knowledge Management, pages 515–524, 2002.

[12] A. Jain, M. Murty, and P. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):264–323, 1999.

[13] D. Lee and W. W. Chu. Comparative analysis of six
XML schema languages. SIGMOD Record, 9(3):76–87,
2000.

[14] M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust:
Clustering XML schemas for effective integration. In
CIKM 2002, pages 292–299, 2002.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In VLDB 2001, pages
49–58. Roma, Italy, 2001.

[16] R. Nayak. Fast and effective clustering of XML data
using structural information. Knowledge and
Information Systems, 14(2):197–215, 2008.

[17] R. Nayak and W. Iryadi. XML schema clustering with
semantic and hierarchical similarity measures.
Knowledge-Based Systems, 20:336–349, 2007.

[18] J. Pei, J. Hong, and D. A. Bell. A novel
clustering-based approach to schema matching. In 4th
ADVIS, pages 60–69, 2006.

[19] C. Pluempitiwiriyawej and J. Hammer. Element
matching across data-oriented XML sources using a
multi-strategy clustering model. Data & Knowledge
Engineering, 48:297–333, 2004.

[20] H. Prufer. Neuer beweis eines satzes uber
permutationen. Archiv fur Mathematik und Physik,
27:142–144, 1918.

[21] M. Smiljanic, M. van Keulen, and W. Jonker. Using
element clustering to increase the efficiency of XML
schema matching. In ICDE Workshops 2006, pages
45–54, 2006.

[22] S. Tatikonda, S. Parthasarathy, and M. Goyder.
LCS-TRIM: Dynamic programming meets XML
indexing and querying. In VLDB’07, pages 63–74,
2007.

[23] H. Zhao and S. Ram. Clustering schema elements for
semantic integration of heterogeneous data sources.
Journal of Database Management, 15(4):88–106, 2004.

Proceedings of iiWAS2008 iiWAS 2008

136

