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To enable information integration, schema matching is a critical step for discovering semantic
correspondences of attributes across heterogeneous sources. While complex matchings are com-
mon, because of their far more complex search space, most existing techniques focus on simple 1:1
matchings. To tackle this challenge, this article takes a conceptually novel approach by viewing
schema matching as correlation mining, for our task of matching Web query interfaces to inte-
grate the myriad databases on the Internet. On this “deep Web,” query interfaces generally form
complex matchings between attribute groups (e.g., {author} corresponds to {first name, last name}
in the Books domain). We observe that the co-occurrences patterns across query interfaces often
reveal such complex semantic relationships: grouping attributes (e.g., {first name, last name})
tend to be co-present in query interfaces and thus positively correlated. In contrast, synonym at-
tributes are negatively correlated because they rarely co-occur. This insight enables us to discover
complex matchings by a correlation mining approach. In particular, we develop the DCM frame-
work, which consists of data preprocessing, dual mining of positive and negative correlations, and
finally matching construction. We evaluate the DCM framework on manually extracted interfaces
and the results show good accuracy for discovering complex matchings. Further, to automate the
entire matching process, we incorporate automatic techniques for interface extraction. Execut-
ing the DCM framework on automatically extracted interfaces, we find that the inevitable errors
in automatic interface extraction may significantly affect the matching result. To make the DCM
framework robust against such “noisy” schemas, we integrate it with a novel “ensemble” approach,
which creates an ensemble of DCM matchers, by randomizing the schema data into many trials
and aggregating their ranked results by taking majority voting. As a principled basis, we provide
analytic justification of the robustness of the ensemble approach. Empirically, our experiments
show that the “ensemblization” indeed significantly boosts the matching accuracy, over automati-
cally extracted and thus noisy schema data. By employing the DCM framework with the ensemble
approach, we thus complete an automatic process of matchings Web query interfaces.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases; H.2.8 [Data-
base Management]: Database Applications—Data Mining

General Terms: Algorithms, Measurement, Experimentation, Performance

Additional Key Words and Phrases: Data integration, schema matching, deep Web, correlation
mining, ensemble, bagging predictors

1. INTRODUCTION

In recent years, we have witnessed the rapid growth of databases on the Web, or the so-
called “deep Web.” A July 2000 survey [Bergman 2000] estimated that 96,000 “search
sites” and 550 billion content pages in this deep Web. Our recent study [Chang et al. 2004]
in April 2004 estimated 450,000 online databases. With the virtually unlimited amount of
information sources, the deep Web is clearly an important frontier for data integration.

Schema matching is fundamental for supporting query mediation across deep Web sources.
On the deep Web, numerous online databases provide dynamicquery-based data access
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(a) amazon.com (b) randomhouse.com (c) bn.com (d) 1bookstreet.com

Fig. 1. Example fragments of web query interfaces.

through theirquery interfaces, instead of static URL links. Each query interface accepts
queries over itsquery schemas(e.g., author, title, subject, ... for amazon.com). Schema
matching (i.e., discovering semantic correspondences of attributes) across Web interfaces
is essential for mediating queries across deep Web sources1.

In particular, matching Web interfaces in the same domain (e.g., Books, Airfares), the
focus of this article, is an important problem with broad applications. We often need to
search over alternative sources in the same domain such as purchasing a book (or flight
ticket) across many online book (or airline) sources. Given a set of Web interfaces in the
same domain, this article addresses the problem of discovering matchings among those
interfaces. Section 2 will discuss some potential applications of our matching work and
the general abstraction of the matching problem. We note that our input, a set of Web pages
with interfaces in the same domain, can be either manually collected [Chang et al. 2003]
or automatically generated [Ipeirotis et al. 2001].

On the “deep Web,” query schemas generally formcomplex matchingsbetween attribute
groups. In contrast to simple 1:1 matching, complex matching matches a set ofm attributes
to another set ofn attributes, which is thus also calledm:n matching. We observe that,
in query interfaces, complex matchings do exist and are actually quite frequent. For in-
stance, in the Books domain,author is a synonym of the grouping oflast name andfirst
name, i.e., {author} = {first name, last name}; in the Airfares domain,{passengers}
= {adults, seniors, children, infants}. Hence, discovering complex matchings is critical
to integrating the deep Web.

Although 1:1 matching has got great attention [Rahm and Bernstein 2001; Doan et al.
2001; Madhavan et al. 2001; He and Chang 2003],m:n matching has not been extensively
studied, mainly due to the much more complex search space of exploring all possible
combinations of attributes (as Section 7 will discuss). To tackle this challenge, we investi-
gate theco-occurrencepatterns of attributes across sources, to match schemasholistically.
Unlike most schema matching work which matchestwo schemas in isolation, we match
all the schemas at the same time2. This holistic matching provides the co-occurrence in-
formation of attributes across schemas and thus enables efficient mining-based solutions.
For instance, we may observe thatlast name andfirst name often co-occur in schemas,
while they together rarely co-occur withauthor, as Figure 1 illustrates. More generally,

1Note that our focus in this article is to match attributes across Web query interfaces. We believe this focus itself
is an interesting and challenging problem to study. Some subsequent and related problems, such as how to map
data between sources after matching, how to decompose a user’s query onto specific sources and how to integrate
query result pages from multiple sources, are also interesting topics to study but are beyond the scope of this
work. Discussions about putting some of these tasks together as complete systems can be found at [Chang et al.
2005] (i.e., the MetaQuerier system) and [Zhang et al. 2005] (i.e., the Form Assistant system), as Section 2 will
briefly discuss.
2We note that, in the literature, the term “matching” was originally intended and also naturally suggests corre-
spondences betweentwoschemas. In this paper, we take a broader view by considering matching, lacking a better
term, as finding semantic correspondences among a set of schemas.
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Fig. 2. From matching to mining: theDCM framework.

we observe thatgrouping attributes(i.e., attributes in one group of a matchinge.g., {last
name, first name}) tend to be co-present and thus positively correlated across sources. In
contrast,synonym attributes(i.e., attribute groups in a matching) are negatively correlated
because they rarely co-occur in schemas.

Note that by matching many schemas together, this holistic matching naturally discovers
a more general type of complex matching – a matching may span across more than two
attribute groups. For instance, in Airfares domain, we may have the matching{adults,
seniors, children, infants} = {passengers} = {number of tickets}, which is a 4:1:1
matching. We name this type of matchingn-ary complex matching, which can be viewed
as a composition of several binarym:n matchings.

These observations motivate us to develop a correlation mining abstraction of the schema
matching problem. Specifically, given extracted schemas from Web query interfaces, this
article develops a streamlined process, theDCM framework, for mining complex match-
ings, consisting ofdata preprocessing, matching discoveryandmatching construction, as
Figure 2 shows. Since the query schemas in Web interfaces are not readily minable in
HTML format, before executing theDCM framework, we assume an interface extractor
to extract the attribute information in the interfaces. For instance, the attribute abouttitle
in Figure 1(c) can be extracted as〈name = “title of book”, domain = any〉, where “do-
main = any” means any value is possible. (In this article, we will also address the impact
of errors made by the automatic interface extractor on our matching algorithm.) Given
extracted raw schema data, we first preprocess schemas to make them ready for mining
as the data preprocessing step (Section 3.3). Next, the matching discovery step, the core
of theDCM framework, explores adual correlation mining algorithm, which first mines
potential attribute groups as positive correlations and then potential complex matchings as
negative correlations (Section 3.1). Finally, matching construction ranks and then selects
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the most confident and consistent matchings from the mining result (Section 3.2). Mean-
while, in the heart of correlation mining, we need to choose an appropriate correlation
measure (Section 4).

Further, to complete an automatic matching process, which starts from raw HTML pages
as Figure 2 shows, we integrate theDCM framework with an automatic interface extrac-
tor [Zhang et al. 2004]. Such “system integration” turns out to be non-trivial– As automatic
interface extraction cannot be perfect, it will introduce “noises” (i.e., erroneous extraction),
which challenges the performance of the subsequent matching algorithm. As Section 5 will
discuss, the errors in the interface extraction step may affect the correlations of matchings
and consequently the matching result. In particular, as we will show in the experiments
(Section 6.2), the existence of noises may affect the matching accuracy up to 30%.

To make theDCM framework robust against noises, we integrate it with anensemble
scheme, which aggregates a multitude of theDCM matchers to achieve robustness, by
exploiting statistical sampling and majority voting. Specifically, we randomly sample a
subset of schemas (as atrial ) to match, instead of using all the schemas. Intuitively, it is
likely that such a trial still contains sufficient attribute information to match while remov-
ing certain noisy schemas. Further, we conduct multiple independent trials. Since errors in
different trials are independent, when noises are relatively few, it is likely that only a mi-
nority of trials are affected. We thus take majority voting among the discovered matching
of all trials to achieve the robustness of holistic matching.

By employing theDCM framework with the ensemble approach, we thus complete an
automatic process of matching Web query interfaces. To evaluate the performance of our
algorithms, we design two suites of experiments: First, to isolate and evaluate the effec-
tiveness of theDCM framework, we test it on manually extracted TEL-8 dataset in the
UIUC Web integration repository [Chang et al. 2003]. The matching result (Section 6.1)
shows that theDCM framework achieves good accuracy with perfectly extracted schemas
as input. Second, we test the ensembleDCM framework over automatically extracted in-
terfaces in two domains, Books and Airfares, of the TEL-8 dataset. The result shows that
the ensemble approach can significantly boost the matching accuracy under noisy schema
input, and thus maintain the desired robustness ofDCM (Section 6.2).

In summary, the contributions of this article are:
• We build a conceptuallynovel connectionbetween the schema matching problem and

the correlation mining approach. On the one hand, we consider schema matching as
a newapplicationof correlation mining; on the other hand, we propose correlation
mining as a newapproachfor schema matching.

• We develop acorrelation measurethat is particularly suitable for negative correlation.
In particular, we identify the problems of existing measures on evaluating negative
correlation, which has special importance in schema matching, and further introduce a
new correlation measure,H-measure.

• We employ anensemble schemeto connect theDCM framework with automatic inter-
face extractor and thus fully automate the process of matching Web query interfaces. In
particular, we identify the need for robust matching and integrate theDCM framework
with an ensemble approach by exploiting sampling and voting techniques.

The rest of the article is organized as follows: Section 2 discusses some potential ap-
plications of our matching work and further abstracts the problem of matching Web query
interfaces. Section 3 develops the baseDCM framework. Section 4 proposes a new correla-
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tion measure. Section 5 motivates the need for robust matching and discusses the ensemble
DCM framework. Section 6 reports our experiments. Section 7 reviews related work and
Section 8 concludes the article.

2. CONTEXT AND ABSTRACTION

We observe that our matching scenario,i.e., discovering matchings across “alternative”
sources in the same domain (e.g., Books, Airfares), is useful with broad applications. In
this section, we first discuss two interesting applications,MetaQuerierandForm Assistant,
in Section 2.1 and then abstract the schema matching problem we are tackling throughout
this article in Section 2.2.

2.1 Context

MetaQuerier: We may build a MetaQuerier [Chang et al. 2005] to integrate dynamically
discovered and selected alternative sources according to user’s queries (http://metaquerier.-
cs.uiuc.edu). As [Chang et al. 2005] describes, the goal of the MetaQuerier project is to
build a middleware system to help users find and query large scale deep Web sources. Two
critical parts of the MetaQuerier system needs the help of the result of matching query in-
terfaces. First, the MetaQuerier needs to build a unified interface for each domain, through
which users can issue queries. As also pointed out in [Chang et al. 2005], our work is the
basis for building the unified interfaces,e.g., by selecting the most representative attribute
among all the attributes that are synonyms of each other. Second, the matchings can be
used for improving the quality of source selection according to user’s search keywords by
expanding the keywords,e.g., author, with semantically related words in the matching
result,e.g., writer. Note that in both usage cases, it is not necessary that the matchings be
100% accurate. Although the higher accuracy the result is, the better quality of service we
can provide, matching errors can be tolerated in the MetaQuerier system.

Form Assistant: As another scenario, instead of developing a complete MetaQuerier sys-
tem, we may build a Form Assistant toolkit [Zhang et al. 2005] to help users translate
queries from one interface to other relevant interfaces. For instance, if a user fills the query
form in amazon.com, the Form Assistant cansuggesttranslated queries for another inter-
ested source such asbn.com. To enable such query translation, the Form Assistant needs
to first find matching attributes between two interfaces. The matching algorithm in [Zhang
et al. 2005] employs adomain thesaurus(in addition to simple syntactic similarity-based
matching) that specifies the correspondences of attributes in the domain. As mentioned
in [Zhang et al. 2005], our matching work can be exploited as an automatic way to con-
struct the domain-specific thesauruses. Note that in this Form Assistant scenario, matching
and translation errors can be tolerated, since the objective is to reduce users’ effort by
providing the “best-effort” query suggestion. Users can correct the errors, if any, before
sending the query.

2.2 Abstraction

These potential application scenarios, as the context of our work, indicate a new abstraction
for schema matching,i.e., discovering semantic correspondences among a set, instead of a
pair, of schemas. As Section 7 will elaborate, existing automatic schema matching works
mostly focus on matchings between two schemas (e.g., [Madhavan et al. 2001; Doan et al.
2001]). Based on this fact, the latest survey [Rahm and Bernstein 2001] abstracts schema
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Fig. 3. The holistic schema matching abstraction.

matching as pairwise similarity mappings between two input sources. In contrast, in large
scale integration scenarios such as the MetaQuerier and the Form Assistant systems, the
schema matching task needs to match many schemas of a domain at the same time and
find all matchings at once. We name this new matching settingholistic schema match-
ing. As Figure 3 shows, holistic schema matching takes a set of schemas as input and
outputs all the matchings among the input schemas. Such a holistic view enables us to ex-
plore thecontextinformation beyond two schemas (e.g., similar attributes across multiple
schemas; co-occurrence patterns among attributes), which is not available when schemas
are matched only in pairs.

Next, we give an abstraction of the sub-tasks of the matching problem. In general,
schema matching can be decomposed into two sequential steps:Matching discoveryand
matching construction. To begin with, matching discovery is to find a set of matching
candidates that are likely to be correct matchings by exploiting some matching algorithms.
This step is often the main focus of schema matching works. Further, matching construc-
tion will select the most confident and consistent subset of candidates as the final matching
result. A simple score-based ranking of matchings and constraint-based selection strategy
is often used in this construction step. Separating our matching problem into the two steps
helps to “modularize” our framework, by defining a clean interface between these mod-
ules, so that alternative matching discovery (i.e., not necessarily correlation mining-based)
or construction techniques can also be incorporated. We will more formally abstract these
two steps below.

Matching Discovery

We view a query interface as a flat schema with a set ofattribute entities. An attribute
entity can be identified by attributename, type and domain(i.e., instance values). Be-
fore matching, the data preprocessing step (Section 3.3) finds syntactically similar entities
among schemas. Each attribute entity is assigned a uniqueattribute identifier, which we
will simply refer to as attribute below. While the matching is over the attribute entities,
for our illustration, we use the attribute name of each entity as the attribute identifier. For
instance, the schema in Figure 1(c) is thus a set of two attribute entities, written as{title,
author}.

Formally, we abstract the matching discovery step as:Given the input as a set of schemas
I = {Q1, ..., QN} in the same domain, where each schemaQi is a set of attributes, find
all the matching candidatesR = {M1, ..., MV }. Each candidateMj is an n-ary com-
plex matchingGj1 = Gj2 = ... = Gjw , where eachGjk

is an attribute group (i.e., a
group of attributes that are semantically equivalent to another attribute or another group
of attributes) andGjk

⊆ ⋃N
t=1 Qi. Semantically, eachMj represents the synonym rela-

tionship of attribute groupsGj1 ,...,Gjw and eachGjk
represents the grouping relationship

of attributes inGjk
.
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Sharing the same abstraction of holistic schema matching, different realizations for the
matching discovery step have been proposed. In this article, we present a dual correlation
mining algorithm for finding matchings as a specific realization. Other approaches include
statistical model discovery based approaches [He and Chang 2003], and clustering-based
approaches [He et al. 2003; Wu et al. 2004], as Section 7 will discuss.

Matching Construction

Given a set of discovered matching candidatesR = {M1, ..., MV }, the matching con-
struction step proceeds with two sub-steps: matchingranking and selection. First, the
matching ranking phase sorts all the candidates with some ranking criterionC. Let us
denote the ranked matchings asRC = {Mt1 , ..., MtV

}. In most schema matching works
for finding pairwise semantic correspondences of two schemas (e.g., [Doan et al. 2001;
Madhavan et al. 2001]), the matching ranking phase is quite straightforward by directly
using the scores computed in the matching discovery step to rank candidates. However, in
our scenario of findingn-ary complex matchings, as Section 3.2 will discuss, we find such
a simple ranking strategy may not work well and thus develop a different scoring strategy
from the one used for finding matching candidates.

Then, the matching selection phase selects a subset of candidates fromRC as the fi-
nal output of the matching process. Most schema matching works, including ours (Sec-
tion 3.2), select candidates based on some consistency constraints,e.g., two matching can-
didates that conflict by covering the same attribute cannot co-exist in the selection. Refer-
ence [Melnik et al. 2002] develops a candidate selection strategy based on not only such
constraints but also some selection metrics, inspired by bipartite-graph matching.

We have discussed the abstraction of the matching discovery and matching construction
steps in our holistic schema matching problem. We will elaborate our realizations of these
two steps in theDCM framework, together with the data preprocessing step, in the next
section.

3. FROM MATCHING TO MINING: THE BASE DCM FRAMEWORK

In this section, we will present technical details of theDCM framework, based on the
abstraction Section 2 described. (Section 5 will motivate and discuss a further enhance-
ment, deploying theDCM framework with an ensemble scheme.) In particular, we first
focus on the core steps– matching discovery and matching construction– in Section 3.1
and Section 3.2 respectively, and then discuss the data preprocessing step in Section 3.3.

3.1 Matching Discovery: Dual Correlation Mining

We first discuss our development for the core ofDCM, i.e., the matching discovery step,
as Section 2 identified. We develop a dual correlation mining algorithm, which discovers
candidates of complex matchings,i.e., R = {M1, ..., MV }, as mining positive and then
negative correlations among attributes across schemas. In particular, the dual correlation
mining algorithm consists ofgroup discoveryandmatching discovery. First,group discov-
ery: We minepositively correlated attributesto form potential attribute groups. A potential
group may not be eventually useful for matching; only the ones having synonym relation-
ship (i.e., negative correlation) with other groups can survive. For instance, if all sources
uselast name, first name, and notauthor, then the potential group{last name, first
name} is not useful because there is no matching (toauthor) needed. Second,matching
discovery: Given the potential groups (including singleton ones), we minenegatively cor-
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related attribute groupsto form potentialn-ary complex matchings. A potential matching
may not be considered as correct due to the existence of conflicts among matchings.

After group discovery, we need to add the discovered groups into the input schemasI
to mine negative correlations among groups. (A single attribute is viewed as a group with
only one attribute.) Specifically, an attribute group is added into a schema if that schema
contains any attribute in the group. For instance, if we discover thatlast name andfirst
name have grouping relationship, we consider{last name, first name} as an attribute
group, denoted byGlf for simplicity, and add it to any schema containing eitherlast name
or first name, or both. The intuition is that although a schema may not contain the entire
group, it still partially covers the concept that the group denotes and thus should be counted
in matching discovery for that concept. Note that we do not remove singleton groups{last
name} and{first name} when addingGlf , becauseGlf is only a potential group and
may not survive in matching discovery.

While group discovery works on individual attributes and matching discovery on at-
tribute groups, they can share the same mining process. We use the term –items– to
represent both attributes and groups in the following discussion of mining algorithm.

Correlation mining, at the heart, requires a measure to gauge correlation of a set ofn
items; our observation indicates pairwise correlations among thesen items. Specifically,
for n groups forming synonyms, any two groups should be negatively correlated, since they
both are synonyms by themselves (e.g., in the matching{destination} = {to} = {arrival
city}, negative correlations exist between any two groups). We have similar observation
on the attributes with grouping relationships. Motivated by such observations, we design
the measure as:

Cmin({A1, ..., An},m) = min m(Ai, Aj), ∀i 6= j, (1)

wherem is some correlation measure for two items. That is, we defineCmin as the minimal
value of the pairwise evaluation, thus requiring all pairs to meet this minimal “strength.”
In principle, any correlation measure for two items is applicable asm (e.g., the measures
surveyed in [Tan et al. 2002]); However, since the semantic correctness of the mining
result is of special importance for our schema matching task, we develop a new measure,
H-measure, which can better satisfy the quality requirements of measures (Section 4).

Cmin has several advantages: First, it satisfies the “apriori” feature and thus enables
the design of an efficient algorithm. In correlation mining, the measure for qualification
purpose should have a desirable “apriori” property (i.e., downward closure), to develop an
efficient algorithm. (In contrast, a measure for ranking purpose should not have this apriori
feature, as Section 3.2 will discuss.)Cmin satisfies the apriori feature since given any item
setA and its subsetA∗, we haveCmin(A, m) ≤ Cmin(A∗, m) because the minimum of a
larger set (e.g., min({1,3,5})) cannot be higher than its subset (e.g., min({3,5})). Second,
Cmin can incorporate any measurem for two items and thus can accommodate different
tasks (e.g., mining positive and negative correlations) and be customized to achieve good
mining quality.

With Cmin, we can directly define positively correlated attributes in group discovery
and negatively correlated attribute groups in matching discovery. A set of attributes{A1,
..., An} is positively correlated attributes, if Cmin({A1, ...,An}, mp) ≥ Tp, wheremp is
a measure for positive correlation andTp is a given threshold. Similarly, a set of attribute
groups{G1, ...,Gm} is negatively correlated attribute groups, if Cmin({G1, ...,Gm}, mn)
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Algorithm: APRIORICORRM INING:
Input: Input SchemasI = {Q1, ..., QN}, Measurem, ThresholdT
Output: Correlated items
begin:
1 X ← ∅
2 /* First, find all correlated two items */
3 /* V: the vocabulary of all items */
4 V ← ∪N

t=1Qi, Qi ∈ I
5 for all Ap, Aq ∈ V, p 6= q
6 if m(Ap, Aq) ≥ T then X ← X ∪ {{Ap, Aq}}
7 /* Then, build correlatedl + 1 items from correlatedl items */
8 /* Xl: correlatedl items */
9 l ← 2
10 Xl ← X
11 while Xl 6= ∅
12 Xl+1 ← ∅
13 for each item groupY ∈ Xl

14 for each itemA ∈ V − Y
15 /* Z: a candidate of correlatedl + 1 items */
16 Z ← Y ∪ {A}
17 /* Verify whetherZ is in fact a correlatedl + 1 items */
18 Zl ← all subsets ofZ with sizel
19 if Zl ⊂ Xl then Xl+1 ← Xl+1 ∪ Z
20 X ← X ∪Xl+1

21 Xl ← Xl+1

21 l ← l + 1
22 return X
end

Fig. 4. Apriori algorithm for mining correlated items.

≥ Tn, wheremn is a measure for negative correlation andTn is another given threshold.
As we will discuss in Section 4, although in principle any correlation measure can be used
asmp andmn, e.g., Lift andJaccard, to make matching result more accurate, we need to
develop a new correlation measure, which satisfies some crucial characteristics.

Leveraging the apriori feature ofCmin, we develop AlgorithmAPRIORICORRM INING

(Figure 4) for discovering correlated items, in the spirit of the classic Apriori algorithm for
association mining [Agrawal et al. 1993]. Specifically, as the apriori feature indicates, if a
set ofl+1 itemsA = {A1, ...,Al+1} satisfiesCmin(A, m)≥ T , then any subset ofA with
size more than one item, denoted asA∗, also satisfiesCmin(A∗, m) ≥ T . It can be shown
the the reverse argument is also true. Further, it can be shown that as long as any subset
of A with sizel, also denoted asA∗, satisfiesCmin(A∗, m) ≥ T , we haveCmin(A, m) ≥
T [Agrawal et al. 1993].

Therefore, we can find all the correlated items with sizel+1 based on the ones with size
l. As Figure 4 shows, to start, we first find all correlated two items (Lines 4-6). Next, we
repeatedly construct correlatedl+1 itemsXl+1 from correlatedl itemsXl(Lines 9-22). In
particular, for each correlatedl itemsY in Xl, we expandY to be a candidate of correlated
l +1 items, denoted asZ, by adding a new attributeA (Line 16). We then test whether any

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



10 ·
Algorithm: DUAL CORRELATIONM INING:
Input: Input SchemasI = {Q1, ..., QN}, Measuresmp,mn, ThresholdsTp, Tn

Output: Potentialn-ary complex matchings
begin:
1 /* group discovery */
2 G ← APRIORICORRM INING(I, mp, Tp)
3 /* adding groups intoI */
4 for eachQi ∈ I
5 for eachGk ∈ G
6 if Qi ∩Gk 6= ∅ then Qi ← Qi ∪ {Gk}
7 /* matching discovery */
8 R ← APRIORICORRM INING(I,mn, Tn)
9 return R
end

Fig. 5. Algorithm for mining complex matchings.

subset ofZ with sizel is found inXl. If so, Z is a correlatedl + 1 items and added into
Xl+1 (Lines 18-19).

Algorithm DUAL CORRELATIONM INING shows the pseudo code of the complex match-
ing discovery (Figure 5). Line 2 (group discovery) callsAPRIORICORRM INING to mine
positively correlated attributes. Lines 3-6 add the discovered groups intoI. Line 8 (match-
ing discovery) callsAPRIORICORRM INING to mine negatively correlated attribute groups.
Similar to [Agrawal et al. 1993], the time complexity ofDUAL CORRELATIONM INING is
exponential with respect to the number of attributes. But in practice, the execution is quite
fast since correlations exist among semantically related attributes, which is far less than
arbitrary combination of all attributes.

3.2 Matching Construction: Majority-based Ranking and Constraint-based Se-
lection

After the matching discovery step, we need to develop ranking and selection strategies
for the matching construction step, as Section 2 described. We notice that the matching
discovery step can discover true semantic matchings and, as expected, also false ones due
to the existence of coincidental correlations. For instance, in the Books domain, the result
of correlation mining may have both{author} = {first name, last name}, denoted by
M1 and{subject} = {first name, last name}, denoted byM2. We can seeM1 is correct,
while M2 is not. The reason for having the false matchingM2 is that in the schema data,
it happens thatsubject does not often co-occur withfirst name andlast name.

The existence of false matchings may cause matching conflicts. For instance,M1 and
M2 conflict in that if one of them is correct, the other one should not. Otherwise, we get a
wrong matching{author} = {subject} by the transitivity of synonym relationship. Since
our mining algorithm does not discover{author} = {subject}, M1 andM2 cannot be both
correct.

Leveraging such conflicts, we select the most confident and consistent matchings to re-
move the false ones. Intuitively, between conflicting matchings, we want to select the more
negatively correlated one because it indicates higher confidence to be real synonyms. For
example, our experiment shows that, asM2 is coincidental, it is indeed thatmn(M1) >
mn(M2), and thus we selectM1 and removeM2. Note that, with larger data size, seman-
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tically correct matching is more possible to be the winner. The reason is that, with larger
size of sampling, the correct matchings are still negatively correlated while the false ones
will remain coincidental and not as strong.

Therefore, as Section 2 abstracted, the matching construction step consists of two phases:
1) Matching ranking: We need to develop a strategy to reasonably rank to discovered
matchings in the dual correlation mining. 2)Matching selection: We need to develop a
selection algorithm to select the ranked matchings. We will elaborate these two phases in
this subsection respectively.

Matching Ranking

To begin with, we need to develop a strategy forranking the discovered matchingsR.
That is, for anyn-ary complex matchingMj in R: Gj1 = Gj2 = ... = Gjw , we have a
scoring functions(Mj ,mn) to evaluateMj under measuremn and output a ranked list of
matchingsRC .

While Section 3.1 discussed a measure for “qualifying” candidates, we now need to
develop another “ranking” measure as the scoring function. Since ranking and qualification
are different problems and thus require different properties, we cannot apply the measure
Cmin (Equation 1) for ranking. Specifically, the goal of qualification is to ensure the
correlations passing some threshold. It is desirable for the measure to support downward
closure to enable an “apriori” algorithm. In contrast, the goal of ranking is to compare the
strength of correlations. The downward closure enforces, by definition, that a larger item
set is always less correlated than its subsets, which is inappropriate for ranking correlations
of different sizes. Hence, we develop another measureCmax, the maximalmn value
among pairs of groups in a matching, as the scoring functions. Formally,

Cmax(Mj ,mn) = max mn(Gjr , Gjt), ∀Gjr , Gjt , jr 6= jt. (2)

It is possible to get ties if only considering theCmax value; we thus develop a natural
strategy for tie breaking. We take a “top-k” approach so thats in fact is a set of sorted
scores. Specifically, given matchingsMj andMk, if Cmax(Mj , mn) = Cmax(Mk, mn),
we further compare their second highestmn values to break the tie. If the second highest
values are also equal, we compare the third highest ones and so on, until breaking the tie.

If two matchings are still tie after the “top-k” comparison, we choose the one with richer
semantic information. We consider matchingMj semantically subsumesmatchingMk,
denoted byMj º Mk, if all the semantic relationships inMk are covered inMj . For
instance,{arrival city} = {destination} = {to} º {arrival city} = {destination} be-
cause the synonym relationship in the second matching is subsumed in the first one. Also,
{author} = {first name, last name} º {author} = {first name} because the synonym
relationship in the second matching is part of the first.

Combining the scoring function and the semantic subsumption, we rank matchings with
following rules: 1) If s(Mj ,mn) > s(Mk,mn), Mj is ranked higher thanMk. 2) If
s(Mj ,mn) = s(Mk,mn) andMj º Mk, Mj is ranked higher thanMk. 3) Otherwise, we
rankMj andMk arbitrarily.

Matching Selection

Given matchingsRC = {M1, ...,MV } ranked according to the above ranking strategy,
we next develop a greedy matching selection algorithm as follows:

1. Among the remaining matchings inRC , choose the highest ranked matchingMt.
ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.
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2. Remove matchings conflicting withMt in RC .
3. If RC is empty, stop; otherwise, go to step 1.

Specifically, we select matchings with multiple iterations. In each iteration, we greed-
ily choose the matching with the highest rank and remove its conflicting matchings. The
process stops until no matching candidate is left. Example 1 illustrates this greedy se-
lection algorithm with a concrete example. The time complexity of the entire matching
construction process isO(V 2), whereV is the number of matchings inRC .

Example 1: Assume runningDUAL CORRELATIONM INING in the Books domain finds
matchingsRC as (matchings are followed by theirCmax scores):

M1: {author} = {last name, first name}, 0.95
M2: {author} = {last name}, 0.95
M3: {subject} = {category}, 0.92
M4: {author} = {first name}, 0.90
M5: {subject} = {last name, first name} , 0.88
M6: {subject} = {last name}, 0.88 and
M7: {subject} = {first name}, 0.86.
According to our ranking strategy, we will rank these matchings asM1 > M2 > M3 >

M4 > M5 > M6 > M7 in descending order. In particular, althoughs(M1, mn) =
s(M2,mn), M1 is ranked higher sinceM1 º M2. Next, we select matchings with the
greedy strategy: In the first iteration,M1 is selected since it is ranked the highest. Then
we need to remove matchings that conflict withM1. For instance,M2 conflicts withM1

onauthor and thus should be removed fromRC . Similarly,M4 andM5 are also removed.
The remaining matchings areM3, M6 andM7. In the second iteration,M3 is ranked the
highest and thus selected.M6 andM7 are removed because they conflict withM3. Now
RC is empty and the algorithm stops. The final output is thusM1 andM3.

3.3 Data Preprocessing

As input of theDCM framework, we assume an interface extractor (Figure 2) has extracted
attribute information from Web interfaces in HTML formats. For instance, the attribute
about title in Figure 1(c) and Figure 1(d) can be extracted as〈name = “title of book”,
domain = any〉 and〈name = “search for a specific title”, domain = any〉 respectively, where
“domain = any” means any value is possible. Section 5 will discuss the incorporation of
an automatic interface extractor [Zhang et al. 2004].

As we can see from the above examples, the extracted raw schemas contain many syn-
tactic variations around the “core” concept (e.g., title) and thus are not readily minable. We
thus perform a data preprocessing step to make schemas ready for mining. The data pre-
processing step consists ofattribute normalization, type recognitionandsyntactic merging.
To begin with, given extracted schema data, we perform some standard normalization on
the extracted names and domain values. We first stem attribute names and domain values
using the standard Porter stemming algorithm [Porter ]. Next, we normalize irregular nouns
and verbs (e.g., “children” to “child,” “colour” to “color”). Last, we remove common stop
words by a manually built stop word list, which contains words common in English, in
Web search (e.g., “search”, “page”), and in the respective domain of interest (e.g., “book”,
“movie”).

We then perform type recognition to identify attribute types. As Section 3.3.1 discusses,
type information helps to identify homonyms (i.e., two attributes may have the same name
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Fig. 6. The compatibility of types.

but different types) and constrain syntactic merging and correlation-based matching (i.e.,
only attributes with compatible types can be merged or matched). Since the type infor-
mation is not declared in Web interfaces, we develop atype recognizerto recognize types
from domain values.

Finally, we merge attribute entities by measuring the syntactic similarity of attribute
names and domain values (e.g., we merge “title of book” to “title” by name similarity). It
is a common data cleaning technique to merge syntactically similar entities by exploring
linguistic similarities. Section 3.3.2 discusses our merging strategy.

3.3.1 Type Recognition.While attribute names can distinguish different attribute enti-
ties, the names alone sometimes lead to the problem of homonyms (i.e., the same name
with different meanings) – we address this problem by distinguishing entities by both
names and types. For instance, the attribute namedeparting in the Airfares domain may
have two meanings: a datetime type as departing date, or a string type as departing city.
With type recognition, we can recognize that there are two different types ofdeparting:
departing (datetime) anddeparting (string), which indicate two attribute entities.

In general, type information, as a constraint, can help the subsequent steps of syntactic
merging and correlation-based matching. In particular, if the types of two attributes are
not compatible, we consider they denote different attribute entities and thus neither merge
them nor match them.

Since type information is not explicitly declared in Web interfaces, we develop atype
recognizerto recognize types from domain values of attribute entities. For example, a list
of integer values denotes an integer type. In the current implementation, type recognition
supports the following types: any, string, integer, float, month, day, date, time and date-
time. (An attribute with only an input box is given an any type since the input box can
accept data with different types such as string or integer.) Two types arecompatibleif
one can subsume another (i.e., the is-a relationship). For instance, date and datetime are
compatible since date subsumes datetime. Figure 6 lists the compatibility of all the types
in our implementation.

3.3.2 Syntactic Merging.We clean the schemas by merging syntactically similar at-
tribute entities, a common data cleaning technique to identify unique entities [Chaudhuri
et al. 2003]. Specifically, we developname-based merginganddomain-based mergingby
measuring the syntactic similarity of attribute names and domains respectively. Syntactic
merging increases the observations of attribute entities, which can improve the effect of
correlation evaluation.

Name-based Merging: We merge two attribute entities if they are similar in names.
We observe that the majority of deep Web sources are consistent on some concise “core”
attribute names (e.g., “title”) and others are variation of the core ones (e.g., “title of book”).
Therefore, we consider attributeAp to bename-similarto attributeAq if Ap’s name⊇Aq ’s
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Ap ¬Ap

Aq f11 f10 f1+

¬Aq f01 f00 f0+

f+1 f+0 f++

Fig. 7. Contingency table for test of correlation.

name (i.e., Ap is a variation ofAq) andAq is more frequently used thanAp (i.e., Aq is the
majority). This frequency-based strategy helps avoid false positives. For instance, in the
Books domain,last name is not merged toname becauselast name is more popular
thanname and thus we consider them as different entities.

Domain-based Merging: We then merge two attribute entities if they are similar in
domain values. For query interfaces, we consider the domain of an attribute as the values
that the attribute can select from. Such values are often presented in a selection list or a
set of radio buttons in a Web form. In particular, we only consider attributes with string
types, since it is unclear how useful it is to measure the domain similarity of other types.
For instance, in the Airfares domain, the integer values ofpassengers andconnections
are quite similar, although they denote different meanings.

We view domain values as a bag of words (i.e., counting the word frequencies). We name
such a bagaggregate values, denoted asVA for attributeA. Given a wordw, we denote
VA(w) as the frequency ofw in VA. The domain similarity of attributesAp andAq is thus
the similarity ofVAp andVAq . In principle, any reasonable similarity function is applicable

here. In particular, we choosesim(Ap, Aq) = ∀w in both VAp and VAq ,VAp (w)+VAq (w)

∀w in either VAp or VAq ,VAp (w)+VAq (w) .

Example 2: Assume there are 3 schemas,S1 to S3, in the Airfares domain.S1 contains
attribute entity〈name = “trip type”, type = “string”, domain ={“round trip”, “one way”}〉,
S2 contains〈name = “trip type”, type = “string”, domain ={“round trip”, “one way”,
“multi-city” }〉 andS3 contains〈name = “ticket type”, type = “string”, domain ={“round
trip”, “one way”}〉.

The attribute entitytrip type (string) occurs inS1 andS2 and thus its aggregate values
Vtrip type = {round: 2, trip: 2, one: 2, way: 2, multi: 1, city: 1}, where each word is followed
by frequency. In particular,Vtrip type(round) = 2 since the word “round” uses in bothS1

andS2. Similarly, Vticket type = {round: 1, trip: 1, one: 1, way: 1}. Then, according to our
similarity function, we havesim(trip type, ticket type) = 3+3+3+3

3+3+3+3+1+1 =0.86.

4. CORRELATION MEASURE

Since we are pursuing a mining approach, we need to choose an appropriate correlation
measure. In particular, to complete our development of theDCM framework, we now
discuss the positive measuremp and the negative measuremn, which are used as the
components ofCmin (Equation 1) for positive and negative correlation mining respectively
(Section 3.1).

As discussed in [Tan et al. 2002], a correlation measure by definition is a testing on the
contingency table. Specifically, given a set of schemas and two specified attributesAp and
Aq, there are four possible combinations ofAp andAq in one schemaSi: Ap, Aq are co-
present inSi, only Ap presents inSi, only Aq presents inSi, andAp, Aq are co-absent in
Si. Thecontingency table[Brunk 1965] ofAp andAq contains the number of occurrences
of each situation, as Figure 7 shows. In particular,f11 corresponds to the number of co-
presence ofAp andAq; f10, f01 andf00 are denoted similarly.f+1 is the sum off11 and
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Fig. 8. Attribute frequencies in the Books domain.

f01; f+0, f0+ andf1+ are denoted similarly.f++ is the sum off11, f10, f01 andf00.
The design of a correlation measure is often empirical. To our knowledge, there is no

good correlation measure universally agreed upon [Goodman and Kruskal 1979; Tan et al.
2002]. For our matching task, in principleanymeasure can be applied. However, since the
semantic correctness of the mining result is of special importance for the schema match-
ing task, we care more the ability of the measures on differentiating various correlation
situations, especially the subtlety of negative correlations, which has not been extensively
studied before. In Section 4.1, we develop a new correlation measure,H-measure, which
is better than existing measures in satisfying our requirements. In Section 4.2, we fur-
ther show thatH-measure satisfies a nice sampling invariance property, which makes the
setting of parameter threshold independent of the data size.

4.1 H-Measure

We first identify the quality requirements of measures, which are imperative for schema
matching, based on the characteristics of Web query interfaces. Specifically, we observe
that, in Web interfaces, attribute frequencies are extremely non-uniform, similar to the use
of English words, showing some Zipf-like distribution. For instance, Figure 8 shows the
attribute frequencies in the Books domain: First, the non-frequent attributes results in the
sparseness of the schema data (e.g., there are over 50 attributes in the Books domain, but
each schema only has 5 in average). Second, many attributes are rarely used, occurring
only once in the schemas. Third, there exist some highly frequent attributes, occurring in
almost every schema.

These three observations indicate that, as the quality requirements, the chosen measures
should be robust against the following problems:sparseness problemfor both positive
and negative correlations,rare attribute problemfor negative correlations, andfrequent
attribute problemfor positive correlations. In this section, we discuss each of them in
details.

The Sparseness Problem

In schema matching, it is more interesting to measure whether attributes are often co-
present (i.e., f11) or cross-present (i.e., f10 andf01) than whether they are co-absent (i.e.,
f00). Many correlation measures, such asχ2 andLift, include the count of co-absence
in their formulas. This may not be good for our matching task, because the sparseness
of schema data may “exaggerate” the effect of co-absence. This problem has also been
noticed by recent correlation mining work such as [Tan et al. 2002; Omiecinski 2003; Lee
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Ap ¬Ap

Aq 5 5 10
¬Aq 5 85 90

10 90 100

Ap ¬Ap

Aq 1 49 50
¬Aq 1 1 2

2 50 52

Ap ¬Ap

Aq 81 9 90
¬Aq 9 1 10

90 10 100
(a1)Example of sparseness problem(b1) Example of rare attribute problem (c1)Example of frequent attribute problem

with measureLift: with measureJaccard: with measureJaccard:
Less positive correlation Ap as rare attribute Ap andAq are independent
but a higherLift = 17. andJaccard= 0.02. but a higherJaccard= 0.82.

Ap ¬Ap

Aq 55 20 75
¬Aq 20 5 25

75 25 100

Ap ¬Ap

Aq 1 25 26
¬Aq 25 1 26

26 26 52

Ap ¬Ap

Aq 8 1 9
¬Aq 1 90 91

9 91 100
(a2)Example of sparseness problem(b2) Example of rare attribute problem (c2)Example of frequent attribute problem

with measureLift: with measureJaccard: with measureJaccard:
More positive correlation no rare attribute Ap andAq are positively correlated
but a lowerLift = 0.69. andJaccard= 0.02. but a lowerJaccard= 0.8.

Fig. 9. Examples of the three problems.

et al. 2003]. In [Tan et al. 2002], the authors use thenull invarianceproperty to evaluate
whether a measure is sensitive to co-absence. The measures for our matching task should
satisfy this null invariance property.

Example 3: Figure 9(a) illustrates the sparseness problem with an example. In this exam-
ple, we choose a common measure: theLift (i.e., Lift = f00f11

f10f01
). (Other measures consid-

eringf00 have similar behavior.) The value ofLift is between 0 to+∞. Lift = 1 means
independent attributes,Lift > 1 positive correlation andLift < 1 negative correlation. Fig-
ure 9(a) shows thatLift may give a higher value to less positively correlated attributes.
In the scenario of schema matching, the table in Figure 9(a2) should be more positively
correlated than the one in Figure 9(a1) because in Figure 9(a2), the co-presence (f11) is
more frequently observed than the cross-presence (eitherf10 or f01), while in Figure 9(a1),
the co-presence has the same number of observations as the cross-presence. However,Lift
cannot reflect such preference. In particular, Figure 9(a1) gets a much higherLift and Fig-
ure 9(a2) is even evaluated as not positively correlated. Similar example can also be found
for negative correlation withLift. The reasonLift gives an inappropriate answer is thatf00

incorrectly affects the result.

We explored the 21 measures in [Tan et al. 2002] and theχ2 measure in [Brin et al.
1997]. Most of these measures (includingχ2 and Lift) suffer the sparseness problem.
That is, they consider both co-presence and co-absence in the evaluation and thus do not
satisfy the null invariance property. The only three measures supporting the null invariance
property areConfidence, JaccardandCosine.

The Rare Attribute Problem for Negative Correlation

AlthoughConfidence, JaccardandCosinesatisfy the null invariance property, they are
not robust for the rare attribute problem, when considering negative correlations. Specifi-
cally, the rare attribute problem can be stated as when eitherAp or Aq is rarely observed,
the measure should not considerAp andAq as highly negatively correlated because the
number of observations is not convincing to make such judgement. For instance, consider
theJaccard(i.e., Jaccard= f11

f11+f10+f01
) measure, it will stay unchanged when bothf11

andf10+f01 are fixed. Therefore, to some degree,Jaccardcannot differentiate the subtlety
of correlations (e.g., f10 = 49, f01 = 1 andf10 = 25, f01 = 25), as Example 4 illustrates.
Other measures such asConfidenceandCosinehave similar problem. This problem is not
critical for positive correlation, since attributes with strong positive correlations cannot be
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rare.

Example 4: Figure 9(b) illustrates the rare attribute problem. In this example, we choose
a common measure: theJaccard. The value ofJaccardis between 0 to1. Jaccardclose
to 0 means negative correlation andJaccardclose to 1 positive correlation. Figure 9(b)
shows thatJaccardmay not be able to distinguish the situations of rare attribute. In par-
ticular, Jaccard considers the situations in Figure 9(b1) and Figure 9(b2) as the same. But
Figure 9(b2) is more negatively correlated than Figure 9(b1) becauseAp in Figure 9(b1) is
more like a rare event than true negative correlation.

To differentiate the subtlety of negative correlations, we develop a new measure,H-
measure (Equation 3), as the negative correlationmn. The value ofH is in the range from
0 to 1. AnH value close to 0 denotes a high degree of positive correlation; anH value
close to 1 denotes a high degree of negative correlation.

mn(Ap, Aq) = H(Ap, Aq) =
f01f10

f+1f1+
. (3)

A special case in practice is that when one off11, f10, f01 is 0. Whenf11 is 0, H
value is always 1; whenf10 or f01 is 0, H values is always 0. Consequently,H value
cannot distinguish the subtle differences of correlations under such situations. To avoid
this problem, like the solution taken in many other correlation measures, we simply assign
f11, f10, f01 value 1 if they are 0.

H-measure satisfies the quality requirements: On the one hand, similar toJaccard, Co-
sineandConfidence, H-measure satisfies the null invariance property and thus avoids the
sparseness problem by ignoringf00. On the other hand, by multiplying individual effect of
f01 (i.e., f01

f+1
) andf10 (i.e., f10

f1+
), H-measure is more capable of reflecting subtle variation

of negative correlations.

Example 5: To see howH-measure can avoid the sparseness problem and rare attribute
problem, let us applyH-measure for the situations in Figure 9(a) and (b). First, for the table
in Figure 9(a1), we haveH = 0.25 and for the table in Figure 9(a2), we haveH = 0.07.
Therefore,H-measure considers the table in Figure 9(a2) as more positively correlated,
which is consistent with what we want. Second, for the table in Figure 9(b1), we haveH =
0.49 and for the table in Figure 9(b2), we haveH = 0.92. Therefore,H-measure considers
the table in Figure 9(b2) as more negatively correlated, which is also correct.

The Frequent Attribute Problem for Positive Correlation

For positive correlations, we find thatConfidence, Jaccard, CosineandH-measure are
not quite different in discovering attribute groups. However, all of them suffer the frequent
attribute problem. This problem seems to be essential for these measures: Although they
avoid the sparseness problem by ignoringf00, as the cost, they lose the ability to differ-
entiate highly frequent attributes from really correlated ones. Specifically, highly frequent
attributes may co-occur in most schemas just because they are so frequently used, not be-
cause they have grouping relationship (e.g., In the Books domain,isbn andtitle are often
co-present because they are both very frequently used). This phenomenon may generate
uninteresting groups (i.e., false positives) in group discovery.

Example 6: Figure 9(c) illustrates the frequent attribute problem with an example, where
we still useJaccardas the measure. Figure 9(c) shows thatJaccardmay give a higher

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



18 ·
value to independent attributes. In Figure 9(c1),Ap andAq are independent and both of
them have the probabilities 0.9 to be observed; while, in Figure 9(c2),Ap and Aq are
really positively correlated. However,Jaccardconsiders Figure 9(c1) as more positively
correlated than Figure 9(c2). In our matching task, a measure should not give a high value
for frequently observed but independent attributes.

The characteristic of false groupings is that thef11 value is very high (since both at-
tributes are frequent). Based on this characteristic, we add another measuref11

f++
in mp to

filter out false groupings. Specifically, we define the positive correlation measuremp as:

mp(Ap, Aq) =
{

1−H(Ap, Aq), f11
f++

< Td

0, otherwise,
(4)

whereTd is a threshold to filter out false groupings. To be consistent withmn, we also use
theH-measure inmp.

4.2 Sampling Invariance: Threshold Independence of Data Size

In our dual correlation mining algorithm, we have several thresholds to set formp andmn.
Since data integration is fuzzy in nature, like most other schema matching works, such
threshold setting seems inevitable. However, theH-measure (and several other correlation
measures) has a nice property that enables a wider applicability of threshold settings, by
their independence of data size. Specifically, we notice thatH value stays unchanged when
f11, f10, f01 andf00 increase or decrease proportionally at the same rate, which indicates
that H value is independent of the data size. We name this independence of data size
sampling invarianceproperty3. More formally, we say a correlation measureCM has the
sampling invariance property ifCM satisfies the following equality:

CM(nf11, nf10, nf01, nf00) = CM(f11, f10, f01, f00). (5)

Intuitively, the sampling invariance property suggests that the size of input data does
not affect the value of the correlation measure as long as the data are “uniformly” scaled
down or up. Therefore, given a large set of schema data, if we randomly sample a subset
of the schemas and measure theH value over the subset, the value should be the same as
that of all the schemas. However, as most measures require “sufficient observations,” the
sampling size should not be too small. Otherwise, the sampled data may not be sufficiently
representative to the original data (in a statistical sense).

This sampling invariance feature alleviates us much effort on parameter tuning for test-
ing ourDCM approach. As an automatic schema matching algorithm to cope with a large
set of sources, our approach should be able to avoid tuning parameters (i.e., Tm, Tp and
Td) for different sets of input sources. We find the sampling invariance feature of theH-
measure can achieve such a goal, since the size of input does not affect the correlation
value as long as it is sufficient to represent “the reality.” (Our experiment shows that 20
to 30 sources are often quite sufficient to be a representative set, which is not difficult to
collect.) Therefore, we can obtain the optimal parameters by tuning them for one dataset

3SinceH-measure satisfies the sampling invariance property,mn andmp, as the two measures we used in the
dual correlation mining algorithm, also satisfy the sampling invariance property.
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and then these settings can be reusable for any sampled subset of sources (as the ensemble
DCM framework in Section 5 will exploit).

Further, we find that an optimal setting obtained in one domain is also reusable for
other domains. Our survey for deep Web sources [Chang et al. 2004] shows that different
domains often have similar occurrence behavior of attributes. In particular, all the 8 sur-
veyed domains have very similar trends of vocabulary growth over sources and attribute
frequency distribution. Therefore, it is possible to tune the parameters in one domain and
use them for other domains. In our experiment (Section 6), we tune the parameters in
Books and then reuse the setting for all the other 7 domains. The result shows that such a
“cross-domain” setting can indeed achieve good performance.

Finally, we notice that besidesH-measure, several other measures,e.g., Lift andJaccard,
also satisfy the sampling invariance property, while other measures such asχ2 do not
satisfy this property. Therefore, the sampling invariance property can also be a criterion
for choosing an appropriate measure for correlation mining.

5. DEALING WITH NOISES: THE ENSEMBLE DCM FRAMEWORK

To fully automate the matching process, which starts from raw HTML pages as Figure 2
shows, we must integrate theDCM framework (Section 3) with an automatic interface ex-
tractor. It turns out that such integration is not trivial– As automatic interface extractor
cannotbe perfect, it will introduce “noises,” which challenges the performance of the sub-
sequentDCM matching algorithm. This section presents a refined algorithm, theensemble
DCM framework, in contrast to thebaseDCM framework in Section 3, tomaintain the
robustness ofDCM against such noisy input.

We note that such “system integration” issues have not been investigated in earlier
works. Most works on matching query interfaces, for instance our earlier work [He and
Chang 2003] and others [He et al. 2003; Wu et al. 2004], all adopt manually extracted
schema data for experiments. While these works rightfully focus on isolated study of the
matching module to gain specific insight, for our goal of constructing a fully automatic
matching process, we must now address the robustness problem in integrating the interface
extraction step and the matching algorithm.

In particular, we integrate ourDCM algorithm with the interface extractor we devel-
oped recently [Zhang et al. 2004], which tackles the problem of interface extraction with a
parsing paradigm. The interface extractor as reported in [Zhang et al. 2004] can typically
achieve 85-90% accuracy– thus it will make about 1-1.5 mistake for every 10 query condi-
tions to extract. While the result is quite promising, the 10-15% errors (ornoises) may still
affect the matching quality. As our experiment shows in Section 6.2, with noisy schemas
as input, the accuracy of the baseDCM framework may degrade up to 30%.

The performance degradation results mainly from two aspects: First, noises may affect
the qualification of some correlations and decrease theirCmin values (i.e., Equation 1) be-
low the given threshold. In this case, the dual correlation mining algorithm cannot discover
those matchings. Second, noises may affect the right ranking of matchings (with respect
to theCmax measure,i.e., Equation 2) and consequently the result of greedy matching
selection. Although in principle both qualification and ranking can be affected, the influ-
ence on qualification is not as significant as on ranking. Matching qualification will be
affected when there are enough noisy schemas, which make theCmin value lower than
the given thresholdsTp or Tn. In many cases when only a few noises exist, the affected
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matchings are still above the threshold and thus can be discovered in the qualification step.
However, the ranking of matchings usingCmax is more subtle– That is, even when there
are only few noises, the ranking of matchings is still likely to be affected (i.e., incorrect
matchings maybe ranked higher than correct ones). The reason is that other than compar-
ing matchings to a fixed threshold, the ranking step needs to compare matching among
themselves. A single noise is often enough to change the ranking of two conflict match-
ings. Consequently, the ranking is less reliable for the matching selection step to choose
correct matchings. As a result, although correct matchings may be discovered by the dual
correlation mining process, they may be pruned out by the matching selection phase due
to the incorrect ranking of matchings, and thus the final matching accuracy degrades.

While large scale schema matching brings forward the inherent problem of noisy qual-
ity in interface extraction, the large scale also lends itself to an intriguing potential solu-
tion. An interesting question to ask is:Do we need all input schemas in matching their
attributes? In principle, since pursuing a correlation mining approach, our matching tech-
niques exploit “statistics-based” evaluation in nature and thus need only “sufficient obser-
vations.” As query interfaces tend to share attributes,e.g., author, title, subject, ISBN
are repeatedly used in many book sources, a subset of schemas may still contain sufficient
information to “represent” the complete set of schemas. Thus, theDCM matcher in fact
needs only sufficient correct schemas to execute, instead of all of them. This insight is
promising, but it also brings a new challenge: As there is no way to differentiate noisy
schemas from correct ones, how should we select input schemas to guarantee the robust-
ness of our solution?

Tackling this challenge, we propose to extendDCM in anensemblescheme we devel-
oped recently [He and Chang 2005], with sampling and voting techniques. (Figure 10
shows this extension from baseDCM framework, i.e., Figure 10(a), to ensembleDCM
framework,i.e., Figure 10(b), which we will elaborate in Section 5.1.) To begin with, we
consider to execute theDCM matcher on a randomly sampled subset of input schemas.
Such adownsamplinghas two attractive characteristics: First, when schemas are abun-
dant, the downsampling is likely to still contain sufficient correct schemas to be matched.
Second, by sampling away some schemas, it is likely to contain fewer noises and thus is
more probable to sustain theDCM matcher. (Our analysis in Section 5.1 attempts to build
analytic understanding of these “likelihoods.”)

Further, since a single downsampling may (or may not) achieve good result, as a ran-
domized scheme, its expected robustness can only be realized in a “statistical” sense– Thus,
we propose to take an ensemble ofDCM matchers, where each matcher is executed over
an independent downsampling of schemas. We expect that the majority of those ensem-
ble matchers on randomized subsets of schemas will perform more reliably than a single
matcher on the entire set. Thus, by taking majority voting among these matchers, we can
achieve a robust matching accuracy.

We note that, our ensemble idea is inspired bybagging classifiers[Breiman 1996] in
machine learning. Bagging is a method for maintaining the robustness of “unstable” clas-
sification algorithms where small changes in the training set result in large changes in
prediction. In particular, it creates multiple versions of a classifier, trains each classifier on
a random redistribution of the training set and finally takes a plurality voting among all the
classifiers to predict the class. Therefore, our ensemble approach has the same foundation
as bagging classifiers on exploiting majority voting to make an algorithm robust against
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Fig. 10. From the baseDCM framework to the ensembleDCM framework.

outlier data in the input.
However, our approach is different from bagging classifiers in several aspects. First,set-

ting: We apply the idea of the ensemble of randomized data for unsupervised learning (e.g.,
in our scenario, schema matching with statistical analysis), instead of supervised learning
(i.e., human experts give the learner direct feedback about the correctness of the perfor-
mance [Langley 1995]), which bagging classifiers is developed for. Second,techniques:
Our concrete techniques are different from bagging classifiers. In particular, in the sam-
pling part, we take a downsampling other than random redistribution with replacement; in
the voting part, we need to aggregate a set of ranked lists, which is more complicated than
aggregate a set of labels in bagging classifiers. Third,analytic modeling: We build an ana-
lytic modeling specific to our matching scenario (Section 5.1), which enables us to validate
the effectiveness of a particular configuration and thus can be the basis for the design of
the ensemble scheme.

We will next discuss this ensembleDCM framework in details. In particular, we first
more formally model this framework and analyze its effectiveness (Section 5.1). Then,
we aggregate the results of multipleDCM matchers with a voting algorithm, which thus
essentially captures the consensus of the majority (Section 5.3).

5.1 Analytical Modeling

We develop a general modeling to formalize the ensembleDCM framework just moti-
vated. Our goals are two fold: First, based on our modeling, we can analytically judge the
effectiveness of the ensemble approach. Second, the modeling can be used to validate the
setting of parameters in the ensemble scheme.

We first redraw the baseDCM framework in Figure 2 as Figure 10(a) by expanding the
two steps in matching construction,i.e., matching ranking and matching selection. We
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view the dual correlation mining algorithmDUAL CORRELATIONM INING and the match-
ing ranking together as a black boxbase algorithmA. As we just discussed, the perfor-
mance degradation is mainly caused by the impact of noises onA, where the output of
A, denoted byRA

I (i.e., the output ranking determined byA over inputI), is disturbed.
The goal of our ensembleDCM framework is thus to makeA still output reasonably good
ranking of matchings with the presence of noises.

Specifically, given a set ofN schemasI as input, assume there areW problematic
schemas (i.e., noises) that affect the ranking ofM . Suppose the holistic matcherA can
correctly rankM if one trial draws no more thanK noises (K < W )– i.e., in which case,
M as a correct matching can actually be ranked higher.

Next, we need to model the ensemble framework, which consists of two steps:multiple
samplingand rank aggregation, as Figure 10(b) shows.First, in the multiple sampling
step, we conductT downsamplings of the input schemasI, where each downsampling is
a subset of independently sampledS schemas fromI. We name such a downsampling
as atrial and thus haveT trials in total. We denoteith trial asIi(S) (1 ≤ i ≤ T ). By
executing the base algorithmA over each trialIi(S), we get a ranked list of matchings
RA

Ii(S). Second, the rank aggregation step aggregates ranked matchings from all the trials,

i.e., RA
Ii(S) (1 ≤ i ≤ T ), into a merged list of ranked matchings, which we denote as

R(RA
I1(S), ..., R

A
IT (S)), or RA

I(S,T ) in short. We expect the aggregate rankingRA
I(S,T ) can

alleviate the impact of noises and thus is better thanRA
I .

SinceW is determined by “inherent” characteristics of input schemasI andK by the
holistic matcherA, we name them asbase parameters. UnlikeW andK, the sampling size
S and the number of trialsT are “engineered” configurations of the ensemble framework
and thus named asframework parameters.

Our goal of analysis is thus to justify, given estimation of the base parameters,W and
K, which characterize the data quality and the base algorithm, can certain configuration,
in terms ofS andT , of the ensemble framework achieve robustness? (If so, we will then
ask, how to determine appropriate settings ofS andT , which is the topic of Section 5.2.)

In particular, given our modeling, we can derive the probability to correctly rankM in
a single trial, which we name ashit probability, i.e., the chance of “hit” a correct ranking
of M in a single trial (and as we will discuss later, we will do more trials to enhance the
overall hit ratio). Given base parametersW andK of M , hit probability is a function of
S (and notT as it is for a single trial) and thus denoted asα

M
(S). To deriveα

M
(S), we

first compute the probability that there are exactlyi noises in a single trial, denoted by
Pr(k = i|S), i.e., with i noises out ofW andS − i correct ones out ofN −W :

Pr(k = i|S) =
( W

i
)( N −W

S − i
)

( N
S

)
(6)

As our model assumes,M can be correctly ranked when there are no more thanK
noises. We thus have:

αM (S) =
K∑

i=0

Pr(k = i|S) (7)
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Next, we are interested in how many times, amongT trials, can we observeM being
ranked correctly? (This derivation will help us to address the “reverse” question in Sec-
tion 5.2: To observeM in a majority of trials with a high confidence, how many trials are
necessary?) This problem can be transformed as the standard scenario of tossing an unfair
coin in statistics: Given the probability of getting a “head” in each toss asα

M
(S), with T

tosses, how many times can we observe heads? With this equivalent view, we know that
the number of trials in whichM is correctly ranked (i.e., the number of tosses to observe
heads), denoted byOM , is a random variable that has a binomial distribution [Anderson
et al. 1984] with the success probability in one trial asα

M
(S). We usePr(OM = t|S, T )

to denote the probability thatM is correctly ranked in exactlyt trials. According to the
binomial distribution, we have

Pr(OM = t|S, T ) =
T !

t!(T − t)!
α

M
(S)t(1− α

M
(S))T−t (8)

Since our goal is to take majority voting among all the trials (in rank aggregation),
we need a sufficient number of trials to ensure thatM is “very likely” to be correctly
ranked in the relative majority of trials. As an analogy, consider the coin tossing: Even the
probability to get a head in each toss is high, say 0.8, we may not always observe0.8× T
heads inT trials; the actual number of heads may even be a minority of trials– And our goal
is to design aT such that “the number of heads” is very likely to be the majority. We thus
need a sufficient number of trials to enable the majority voting. We name the probability
that M can be correctly ranked in the majority of trials (i.e., more than half of trials) as
voting confidence. Voting confidence is a function ofT (as just intuitively observed) andS
(as it also depends onαM (S) and thusS). We denote the voting confidence asβM (S, T ).
In particular, we have

β
M

(S, T ) =
T∑

t= T+1
2

Pr(OM = t|S, T ). (9)

As a remark, in Equation 9, we constrainT as an odd number and thusT+1
2 is the

minimum number of trials needed to be the majority4.
Our modeling essentially captures the functional relationship of the sampling sizeS

and the number of trialsT to together achieve a desired voting confidence. There are two
interpretations of Equation 9 in examining a framework: First, givenS andT , we can use
Equation 9 to evaluate how effective the framework is. In particular, we illustrate with
Example 7 as a basis of understanding how the framework works. Second, we can use
Equation 9 to design the configuration of a framework. That is, for an objective voting
confidence to achieve, what would be the right configuration ofS andT? Section 5.2 will
focus on this configuration issue.

4WhenT is odd, the notion of majority is always well defined, as there are no ties (of equal halves). This
advantage ensures there is no ambiguous situation in comparing two matchings in the rank aggregation step in
Section 5.3. Also, whenT is odd,βM (S, T ) becomes a monotonic function ofT . We use this property to derive
an appropriate configuration in Section 5.2.
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Fig. 11. The binomial distribution ofOM , with T = 99 andαM (S) = 0.55.

Example 7: Assume there are 50 input schemas (i.e., N = 50). As characteristics of the
data quality and the base algorithm, suppose a matchingM cannot be correctly ranked
because of 6 noisy schemas (i.e., W = 6); on the other hand, supposeM can be correctly
ranked if there are no more than two noisy schemas (i.e., K = 2). Also, as the configuration
of the ensemble framework, suppose we want to sample 20 schemas in a single trial and
conduct 99 trials (i.e., S = 20 andT = 99).

According to Equation 6, in any single trial, we have 0.04 probability to get no noisy
schema, 0.18 probability with one and 0.33 probability with two. Together, we have 0.04
+ 0.18 + 0.33 = 0.55 probability to correctly rankM in one trial (i.e., α

M
(S) = 0.55).

Further, Figure 11 shows the binomial distribution ofOM . Going back to the coin
tossing analogy, this figure essentially shows, if the probability to get a head in one toss is
0.55, after tossing 99 times, the probability of observing a certain number of heads. For
instance, we havePr(OM = 50|S, T ) = 0.05, which means the probability to observe
50 heads in 99 tosses is 0.05. According to Equation 9, we have 0.84 voting confidence
to correctly rankM (or observe heads) in more than 49 trials (or tosses) (i.e., βM (S, T ) =
0.84). Therefore, evenα

M
(S) is not very high,e.g., 0.55 in this example, with sufficient

number of trails, it is still very likely thatM can be correctly ranked in the majority of
trials.

Finally, while our analysis above focuses on a single matching, there are multiple match-
ings, M1, M2, ..., Mn, to discover. We note that our analysis can generally assume a
representative “worst-case” matching, based on which the analysis will also cover all the
matchings. Specifically, the above modeling can be applied to anyMi with its correspond-
ing Wi andKi values. We then assume there is a “worst-case” matchingM∗ with base
parametersW ∗ andK∗. We want to show that if we are likely to correctly rankM∗ in
the majority of trials under some setting, we are even more likely to correctly rank all the
matchingsM1, M2, ...,Mn in the majority of trials with the same setting. If this statement
can be justified, we only need to consider the “worst-case” situation in determining the
ensemble configuration in Section 5.2.

We show that the base parameters of the imaginary “worst-case” matchingM∗ can be
set asW ∗ = max Wi andK∗ = min Ki, 1 ≤ i ≤ n. Intuitively, the higherW is, the lower
αM (S) will be because we have more noises in the input schemasI; on the other hand, the
lower K is, the lowerαM (S) will be because the base algorithmA is less robust against
noises. More formally, we can show thatα

M
(S) is monotonically decreasing with respect
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to W and monotonically increasing with respect toK. (The derivation is straightforward
and thus we do not provide a proof here.) Therefore, if we assume a matchingM∗ with
base parametersW ∗ as the maximal value ofWi andK∗ the minimal value ofKi, we have
α

Mi
(S) ≥ α

M∗ (S) any matchingMi (1 ≤ i ≤ n).
Further, we can show that all the matchings also have higher voting confidence than

M∗. Intuitively, if a matchingM has higher hit probability,M should be more likely to be
observed in the majority of trials, which means it also has a higher voting confidence. In
particular, we can show thatβM (S, T ) is monotonically increasing with respect toαM (S).
(Similarly, the derivation is straightforward and thus we do not provide a proof here.)
Therefore, sinceα

Mi
(S) ≥ α

M∗ (S) (1 ≤ i ≤ n), we haveβ
Mi

(S, T ) ≥ β
M∗ (S, T )

(1 ≤ i ≤ n). This inequality indicates thatM∗ is indeed the “worst-case” matching.
Specifically, if we can find an appropriate setting ofS andT to correctly rankM∗ in the
majority of trials with high confidence, we will have even more confidence to correctly
rank all the matchings in the majority of trials with the same setting ofS andT .

5.2 Sampling and Trials: Configuration

This section focuses on the first phase of the ensemble framework: Sampling and trials.
The key challenge we need to address is: GivenW andK, we need to find an appropriate
configuration ofS andT to provide guarantee on voting confidence. To begin with, we
must characterize our “system environment” by estimating the base parametersW andK.
Then, we discuss our strategy to configureS andT based on our modeling in Section 5.1.

Base Parameters:Before derivingS andT , we need to estimate the “worst-case” base
parametersW ∗ andK∗ in Equations 6 and 7. In particular,W ∗ andK∗ can be related
to the error rate and the tolerance threshold respectively in the modeling of error cascade.
First, asW ∗ characterizes the noisy degree of the input schemasI, we letW ∗ = N × ρ,
whereN is the number of schemas andρ is the error rate ofI. In our development,
we setρ to 0.1, as the worst-case value, according to the accuracy of current interface
extraction technique, as discussed earlier. Second, since the behavior ofA is very specific
and complicated, it may be difficult to accurately obtainK∗. We thus take a conservative
setting, which will lead to a “safe” framework,e.g., setting the worst-caseK∗ as a small
constant.

As just discussed, all matchings that are not worse than the worst-case setting can be
guaranteed to have higher voting confidences. Therefore, with conservative worst-case
settings, we expect to correctly rank more matchings in the aggregate resultRA

I(S,T ).

Framework Parameters: In Section 5.1, we have shown that, for some matchingM with
respect to given base parametersW andK, for certain framework parametersS andT , we
can derive the voting confidenceβ

M∗ (S, T ) with statistical analysis. Now we are facing
the reverse problem: Given estimatedW , K, and our objective voting confidence, what are
the appropriateS andT values we should take? Formally,givenW , K, and an objective
voting confidencec, what are the sampling sizeS and the number of trialsT we should
take to ensureM∗ has at least a probability ofc to be correctly ranked in the majority of
trials, i.e.,β

M∗ (S, T ) ≥ c?
In particular, we want to know, among all the(S, T ) pairs that satisfy the above state-

ment, which pair is the most appropriate? To answer this question, we need to develop
some criteria to evaluate settings. Intuitively, we would like to prefer a(S, T ) pair that can
maximizeS and minimizeT :
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On the one hand, we want to reduce unnecessary downsampling. A very smallS value

may not be able to collect enough schemas to represent the complete input data and con-
sequently degrade the accuracy of the base algorithmA. It may also, by overly-aggressive
downsampling, remove some more “unique” (but correct) schemas from consideration, and
thus reduce the applicability of the matching result. Thus, among all the valid(S, T ) pairs,
we prefer a largerS that can cover more schemas.

On the other hand, we want to reduce unnecessary trials. As Section 5.1 discussed, the
more trials we have, the higher voting confidence will be. We can formally show that when
T is limited to be odd,β

M∗ (S, T ) is monotonically increasing with respect toT . (Again,
the derivation is straightforward and thus we do not provide a proof here.) Considering
the execution time of the ensemble framework, we do not want to be over-tried; therefore,
among all the valid(S, T ) pairs, we prefer a pair with a smallerT .

However, these two goals cannot be optimized at the same time, because as our modeling
shows,S andT are not independent– One will negatively affect the choice of another.
Specifically, when we setβ

M∗ (S, T ) to an objective confidencec, T can be viewed as a
function ofS or vice versa. Choosing one will thus also affect another: A largerS will
result in a lower hit probability and thus more trialsT for the same objective confidence;
on the other hand, a smallerT will demand a higher hit probability and thus a smaller
sampling sizeS. Consequently, in the space of all valid(S, T ) pairs, there does not exist
one that can optimize bothS andT .

To balance these two goals, we have to choose a trade-off setting. We propose two ways
to determineS andT :

First, S → T : In some situations, we may have a reasonable grasp ofS, so that we
know the range of input size (i.e., the degree of downsampling) that the base algorithm
may demand–e.g., some statistical approach typically requires a minimal number of ob-
servations of data to ensure its statistical confidence. In such a case, we can start with an
S value and setT as the minimal (odd) number that can achieve the objective confidence
c, i.e.,

T = min {t|t > 0, t is odd, β
M∗ (S, T )(S, t) ≥ c} (10)

Second,T → S: In other situations, we may be constrained by affordable computation
time, which determines the acceptable range ofT . In this case, we start with a desired
number of trialsT and choose the maximalS to achieve the objective confidence,i.e.,

S = max {s|1 ≤ s ≤ N, β
M∗ (S, T )(s, T ) ≥ c} (11)

Example 8: Assume there are 50 input schemas (i.e., N = 50) and our objective confi-
dence is 0.9 (i.e., c = 0.9). According to our discussion, the settings of the “worst-case”
matchingM∗ areW ∗ = N × ρ = 50 × 0.1 = 5 andK∗ = 2. SettingK∗ to 2 is a “safe”
configuration we also use in our experiments (Section 6).

In the S → T strategy, assume we setS = 20. Based on our modeling, for any odd
numbert, we can compute the voting confidenceβ

M∗ (S, t). According to Equation 10, we
take the minimalt that satisfiesβ

M∗ (S, t) ≥ 0.9 and thus we getT = 11.
On the other hand, in theT → S strategy, assume we setT = 41. Similarly, for anys

(1 ≤ s ≤ N ), we can computeβ
M∗ (s, T ). According to Equation 11, we take the maximal
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S that satisfiesβ
M∗ (s, T ) ≥ 0.9 and thus we getS = 22.

Although bothS → T andT → S are valid configuration strategies, as Example 8
just showed, in practice theT → S strategy is better because it is easier to pickT . To
illustrate this statement, we compute the correspondingS values for all the odd numbersT
between 0 to 200 using theT → S strategy,i.e., Equation 11, with the same system setting
as Example 8 assumed. Figure 12 shows the result, from where we observe that whenT
increase to some point, around 30 in this example, the correspondingS values become
very stable, almost insensitive to the change ofT .

On the other hand, from the same Figure 12, we can infer the opposite trend of the
S → T strategy. Picking anS will significantly affect the value ofT . SomeS values
may result in a very largeT , which is not affordable in practice. In some cases, for a large
S, maybe it is even impossible to find a correspondingT that satisfies the given objective
voting confidence.

Overall, it is much easier to pickT thanS in practice. Therefore, in our experiments
(Section 6), we adopt theT → S strategy. Also, we will show that the empirical result
of testing the framework with various configuration settings is consistent with our analysis
above.

5.3 Voting: Rank Aggregation

This section discusses the second phase of the ensemble framework: Aggregating rankings
RA

I1(S), ..., RA
IT (S) from theT trials into a merged list of ranked matchingsRA

I(S,T ). The
main issue we are facing is to develop a rank aggregation strategy that can reflect the
majority “consensus” inRA

I(S,T ).
We notice that this rank aggregation in our situation is slightly different from the tra-

ditional rank aggregation problem. Traditional rank aggregation assumes all voters share
the same set of candidates and only rank them in different orders. In contrast, in our sce-
nario, no candidate is given before executing the base algorithm and each trial outputs its
own matching result. Therefore, before aggregate rankings, we need to have a candidate
selection step to select matching candidates.

Consequently, the rank aggregation phase consists of two sub-steps: 1) Candidate selec-
tion: To select candidates from eachRA

Ii(S) to form a common pool of candidatesC. 2)

Rank aggregation: To aggregate theT rankingsPRA
I1(S), ...,PRA

IT (S) intoRA
I(S,T ), where

PRA
Ii(S) is the “projected” ranking ofRA

Ii(S) onC, as we will discuss below.

Candidate Selection
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We select candidates based on the intuition that if a matchingM is only discovered by

a minority of trials,M is more likely to be a false matching. Therefore, we consider a
matching as a candidate if it appears in the majority ofT rankings,RA

I1(S), ...,RA
IT (S). All

the matchings whose number of occurrences are less thanT+1
2 are thus pruned.

Let C denote the union of all the candidates in eachRA
Ii(S). After candidate selection,

we will remove the non-candidate matchings from eachRA
Ii(S) and meanwhile preserving

the ordering of candidates; the corresponding new ranked list, which can be viewed as a
“projection” of RA

Ii(S) onC, contains only candidates and is denoted asPRA
Ii(S).

Example 9: Assume we execute the base algorithmA on three trials,i.e., T = 3, and
the outputs are thus three ranked listsRA

I1(S), RA
I2(S) andRA

I3(S). SupposeRA
I1(S) outputs

rankingM1 > M2 > M3 > M4 in descending order,RA
I2(S) outputsM2 > M1 > M3 >

M5, andRA
I3(S) outputsM3 > M1 > M2 > M4.

Since T+1
2 = 2, any matching that occurs only once will be pruned. In particular,M5

is pruned; other matchings,M1, M2, M3 andM4, all at least occur twice and thus are
selected as matching candidates. Therefore, we haveC = {M1,M2,M3,M4}.

The projected rankings are thusRRA
I1(S): M1 > M2 > M3 > M4, PRA

I2(S): M2 >

M1 > M3, andPRA
I3(S): M3 > M1 > M2 > M4. In particular,M5 does not appear in

PRA
I2(S) because it has been pruned.

Rank Aggregation

In rank aggregation, we need to construct an ordered listRA
I(S,T ) for the candidates in

C, based on the individual ranksPRA
I1(S), ...,PRA

IT (S). This problem is essentially arank
aggregationproblem, which has been extensively studied as a particularvotingsystem in
both social science [Kemeny 1959; Young 1988] and computer science [Dwork et al. 2001;
Fagin et al. 2003]. In the literature, many rank aggregation strategies have been proposed,
such as Borda’s aggregation [Borda 1781], Kemeny optimal aggregation [Kemeny 1959],
and footrule optimal aggregation [Dwork et al. 2001]. There does not exist an aggregation
strategy that can beat other strategies in all aspects– Different strategies have different
strength and weakness.

Before discussing concrete aggregation strategies, we first need to solve the partial list
problem. Specifically, since the output of one trial may not contain all the candidates inC,
PRA

Ii(S) may be only a partially ordered list. To be able to apply the aggregation strategy
(as we will discuss below), it is necessary to also assign ranks to the candidates not in
the list. In our development, given a trial with a partial list, we assign all the uncovered
candidates with the same lowest rank. Therefore, in one trial, a covered candidate is always
ranked higher than an uncovered one, and two uncovered candidates are equally ranked.

Since essentially any rank aggregation strategy can be applied in our scenario, in our de-
velopment, we test several different aggregation strategies and our goal is to find the most
appropriate one. We first choose the widely deployed Borda’s aggregation [Borda 1781] as
the baseline aggregation strategy. We then realize that to enforce the majority voting, it is
important that an aggregation strategy satisfies theCondorcet criterion[Young 1988]. We
thus propose a strategy,FK aggregation, by combining Kemeny optimal aggregation [Ke-
meny 1959] and footrule optimal aggregation [Dwork et al. 2001]. We will discuss these
two strategies,i.e., Borda’s aggregation and FK aggregation, in details respectively.
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5.3.1 Baseline: Borda Aggregation.A primary strength of Borda’s aggregation is that
it is rather simple and computationally efficient: It can be implemented in linear time.
Borda’s aggregation also satisfies some good properties such as anonymity, neutrality, and
consistency [Young 1974]. Specifically, in Borda’s aggregation, given a candidateMj ,
let rji be the number of matchings ranked lower thanMj in PRA

Ii(S), theborda scoreof

Mj , denoted asB(Mj), is defined as the sum of allrji, i.e., B(Mj) =
∑T

k=1 rjk. The
aggregation resultRA

I(S,T ) is thus the descending ordering of all the candidates with respect
to their borda scores.

Example 10: Continue on Example 9, after candidate selection, we first complete the par-
tial lists. In particular, sincePRA

I2(S) only partially ranks the four candidates, we assign
the lowest rank to the uncovered candidateM4, i.e., we rankM4 as the4th candidate in
PRA

I2(S). Next, we compute the borda score for each candidate and then apply Borda’s

aggregation. In particular, sinceM1 is ranked higher than 3 candidates inPRA
I1(S), 2

in PRA
I2(S) and 2 inPRA

I3(S), the borda score forM1 is 3 + 2 + 2 = 7. Similarly, the

borda scores forM2 to M4 are 6, 5, 0 respectively. The final rankingRA
I(S,T ) is thus

M1 > M2 > M3 > M4.

5.3.2 Enforcing Majority by Satisfying the Condorcet Criterion: FK Aggregation.Our
analysis of the effectiveness of the ensembleDCM framework in Section 5.1 is based
on the assumption that when a matching is correctly ranked in the majority of trials, it
will be correctly ranked inRA

I(S,T ). Therefore, our aggregation strategy should reflect this
requirement of majority– That is, if a matching can be correctly ranked in most trials, its
ranking inRA

I(S,T ) should also be correct.
We notice that this requirement is consistent with the classicCondorcet criterion[Young

1988]. Specifically, the Condorcet criterion requires that, given any two candidatesMi and
Mj , if a majority of trials ranksMi higher thanMj , thenMi should be ranked higher than
Mj in the aggregate listRA

I(S,T ). (As we can see here, setting the number of trialsT as
an odd number, as Section 5.1 discussed, can ensure that there will be no tie situation
between any twoMi and Mj .) The fact that aggregation mechanisms that satisfy the
Condorcet criterion can yield robust results has also been noticed and exploited by [Dwork
et al. 2001]. However, Borda’s aggregation, although computationally very fast, does not
satisfy the Condorcet criterion. To our knowledge, the only aggregation strategy exactly
satisfies the Condorcet criterion is Kemeny optimal aggregation. Another strategy, footrule
optimal aggregation, does not directly satisfy the Condorcet criterion, but its ordering of
matchings yields a factor-2 approximation to Kemeny optimal aggregation.

Example 11: To see how Borda’s aggregation may not satisfy the Condorcet criterion, let
us see an example, which is slightly different from Example 9. Assume after candidate
selection, we haveRRA

I1(S): M1 > M2 > M3 > M4, PRA
I2(S): M1 > M2 > M4 > M3,

andPRA
I3(S): M2 > M3 > M4.

With Borda’s aggregation, we have the borda scores forM1, M2, M3 andM4 as 6, 7, 3,
2 respectively. The ranking of matchings under Borda’s aggregation is thusM2 > M1 >
M3 > M4. However,M1 is ranked higher thanM2 in the majority of trials,i.e., RRA

I1(S)

andRRA
I2(S), which shows that Borda’s aggregation violates the Condorcet criterion and

therefore may not reflect the results of majority.

Although Kemeny optimal aggregation satisfies the Condorcet criterion, it is compu-
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tationally expensive. Kemeny optimal aggregation is to find the ordered listRA

I(S,T ) that

minimizes
∑T

i=1 K(PRA
Ii(S),R

A
I(S,T )), whereK(PRA

Ii(S),R
A
I(S,T )) denotes theKendall

tau distance. That is, it is the number of pairs of candidates (Mi, Mj) on which the or-
dered listsPRA

Ii(S) andRA
I(S,T ) disagree (i.e., one ranksMi higher thanMj , while another

one ranksMj higher thanMi). It has been proven that computing Kemeny optimal ag-
gregation is NP-Hard [Dwork et al. 2001], which is not affordable in practice. Hence, we
cannot only apply this aggregation strategy.

As the approximation to Kemeny optimal aggregation, footrule optimal aggregation has
good computational complexity. In footrule optimal aggregation, the aggregate listRA

I(S,T )

contains the median ranks of all the matchings. Specifically, given a candidateMj , let
qji be the rank ofMj in PRA

Ii(S), themedian rankof Mi is defined asmedain(Mj) =
median(qj1, ..., qjT ). The aggregation resultRA

I(S,T ) is thus the ordered list of median
ranks of all the candidates. Footrule optimal aggregation can be computed in polynomial
time. Although it may not satisfy the Condorcet criterion, it has been shown that its order-
ing of matchings (i.e., the footrule distance) has a factor-2 approximation to the Kendall tau
distance in Kemeny optimal aggregation [Diaconis and Graham 1977]. However, footrule
optimal aggregation suffers the tie problem. That is, some matchings may have the same
median rank and it is unclear how to break ties in footrule optimal aggregation.

Combining the strength of these two aggregation strategies, in our development, we
develop a hybrid aggregation strategy,FK aggregation. In particular, we first apply footrule
optimal aggregation. To break a tie, we apply Kemeny optimal aggregation only locally
for ranking the candidates that cause the tie. Empirically, since the number of candidates
result in a tie is often very few (e.g., less than 4), the computation is very efficient.

Example 12: Let us apply FK aggregation for the case in Example 11. We first complete
the partial lists. In particular, sincePRA

I3(S) only partially rank the four candidates, we
assign the lowest rank to the uncovered candidateM1.

We then compute the median rank for each candidate and apply footrule optimal aggre-
gation. In particular, the median rank forM1 is median(1, 1, 4) = 1. Similarly, the median
ranks forM2 to M4 are 2, 3, 3 respectively.

SinceM3 andM4 get a tie in footrule optimal aggregation, we break the tie by ap-
plying Kemeny optimal aggregation only onM3 andM4. Since two out of the three tri-
als preferM3 thanM4, we rankM3 higher thanM4. The final rankingRA

I(S,T ) is thus
M1 > M2 > M3 > M4, which is consistent with the result of only applying Kemeny
optimal aggregation, but more efficient.

6. EXPERIMENTS

We evaluate theDCM framework over real query interfaces. In particular, we implement
all the algorithms in Python 2.4 and test all the experiments on a Windows XP machine
with Pentium M 1.6GHz CPU and 512M memory. We choose the TEL-8 dataset of the
UIUC Web integration repository [Chang et al. 2003] as the testbed of both the baseDCM
framework and the ensemble one. The TEL-8 dataset contains raw Web pages for 447 deep
Web sources in 8 popular domains, where each domain has about 20-70 sources.

Experiment Suites
To evaluate the performance of the algorithms we have developed in this article, we

design two suites of experiments. The first suite of experiments is to evaluate the effec-
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tiveness of the baseDCM framework by testing it on manually extracted interfaces. Our
goal is to isolate the matching process to study and thus fairly evaluate its performance. In
particular, we assume a perfect interface extractor to extract all the interfaces in the TEL-8
dataset into query capabilities by manually doing the extraction work. After extracting the
raw data, we do the data preprocessing according to the process explained in Section 3.3.
Then, we run the dual correlation mining and matching construction algorithms on the pre-
processed data in each domain. In the results, we use attribute name and type together as
the attribute identifier for an attribute entity since we incorporate the type recognition step
to identify homonyms (Section 3.3). The experimental result shows that the baseDCM
framework achieves goodtarget accuracyon manually extracted schemas. We also evalu-
ate the effectiveness of the matching selection algorithm and the data preprocessing step.
Further, we compare theH-measure with other measures on the same dataset and the result
shows thatH-measure outperforms the others in most cases. Section 6.1 will report these
results.

The second suite of experiments is to verify the impact of noises in the interface extrac-
tion on our matching algorithm and evaluate the performance of the ensemble approach.
In particular, we conduct our evaluations on automatically extracted interfaces in two do-
mains: Books and Airfares. First, we directly run the baseDCM framework on automati-
cally extracted interfaces as the baseline result that we will compare to. Second, we mea-
sure the accuracy of the ensembleDCM framework and compare it to the baseline result.
The experiments show that the ensemble approach can significantly improve the matching
accuracy ofDCM. Third, we execute the ensembleDCM framework under various para-
meter settings and compare the empirical values with our theoretical analysis. Section 6.2
will report these results.

Note that, to illustrate the effectiveness of the dual correlation mining, we only list and
count the “semantically difficult” matchings discovered by the mining algorithm, not the
simple matchings by the syntactic merging in the data preprocessing (e.g., merging “title
of book” to “title”). Our experiment shows that many frequently observed matchings are
in fact “semantically difficult” and thus cannot be found by syntactic merging.

Metrics
We compare experimentally discovered matchings, denoted byMh, with correct match-

ings written by human experts, denoted byMc. In particular, we adopt thetarget accuracy,
a metric initially developed in [He and Chang 2003], by customizing thetarget questions
to the complex matching scenario. The idea of the target accuracy is to measure how accu-
rately the discovered matchings answer the target questions. Specifically, for our complex
matching task, we consider the target question as, given any attribute, to find its synonyms
(i.e., word with exactly the same meaning as another word,e.g., subject is a synonym of
category in the Books domain), hyponyms (i.e., word of more specific meaning,e.g., last
name is a hyponym ofauthor) and hypernyms (i.e., word with a broader meaning, e.g,
author is a hypernym oflast name).

It is quite complicated to use different measures for different semantic relationships, we
therefore report an aggregate measure for simplicity and, at the same time, still reflecting
semantic differences. For our discussion here, we name synonym, hyponym and hypernym
together asclosenym– meaning that they all denote some degrees of closeness in semantic
meanings. Our target question now is to ask the set of closenyms of a given attribute.

Example 13: For instance, for matching{A} = {B, C}, the closenym sets of attributesA,
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Step Value of Result Cmin Cmax

group G G1 = {last name (unknown),first name (any)} 0.94
discovery G2 = {title (any),keyword (any)} 0.93

G3 = {last name (any),title (any)} 0.91
G4 = {first name (any),catalog (any)} 0.90
G5 = {first name (any),keyword (any)} 0.87

matching R M1: {author (any)} = {last name (any),first name (any)} 0.87 0.87
discovery M2: {author (any)} = {last name (any)} 0.87 0.87

M3: {subject (string)} = {category (string)} 0.83 0.83
M4: {author (any)} = {last name (any),catalog (any)} 0.82 0.82
M5: {author (any)} = {first name (any)} 0.82 0.82
M6: {category (string)} = {publisher (string)} 0.76 0.76

matching {author (any)} = {last name (any),first name (any)} 0.87
selection {subject (string)} = {category (string)} 0.83

Fig. 13. Running dual correlation mining and matching construction on the Books domain.

B, C are{B, C}, {A}, {A} respectively. In particular, the closenym sets ofB does not have
C sinceB andC only have grouping relationship. In contrast, for matching{A} = {B} =
{C}, the closenym sets of attributesA, B, C are{B, C}, {A, C}, {A, C} respectively. We
can see that the difference of matchings can be reflected in the corresponding closenym
sets.

Except this difference in target question, we use the same metric of target accuracy
as [He and Chang 2003]. Specifically, we assume a “random querier” to ask for the
closenym set of each attribute according to its frequency. The answer to each question is
the closenym set of the queried attribute in discovered matchings. We defineCls(Aj |M)
as the closenym set of attributeAj . GivenMc andMh, the precision and recall of the
closenym sets of attributeAj are:

PAj (Mh,Mc) = |Cls(Aj |Mc)∩Cls(Aj |Mh)|
|Cls(Aj |Mh)| and

RAj (Mh,Mc) = |Cls(Aj |Mc)∩Cls(Aj |Mh)|
|Cls(Aj |Mc)| .

Since more frequently used attributes have higher probabilities to be asked in this “ran-
dom querier,” we compute the weighted average of all thePAj ’s andRAj ’s as thetarget

precisionandtarget recall. The weight is assigned asOjP
Ok

, whereOj is the frequency of
attributeAj in the dataset (i.e., its number of occurrences in different schemas). Therefore,
target precisionandtarget recallof Mh with respect toMc are:

PT (Mh,Mc) =
∑

Aj

OjP
Ok

PAj (Mh,Mc)

RT (Mh,Mc) =
∑

Aj

OjP
Ok

RAj (Mh,Mc).

6.1 Base DCM Framework

In this subsection, we report the first suite of experiment: The evaluation of the baseDCM
framework.

Result on the TEL-8 dataset: In this experiment, we run our algorithm (withH-measure
as the correlation measure) on manually extracted TEL-8 dataset. We set the thresholdsTp

to 0.85 andTd to 0.6 for positive correlation mining andTn to 0.75 for negative correlation
mining. We empirically get these numbers by testing the algorithm with various thresh-
olds and choose the best one in the Books domain. As we discussed in Section 4.2, the
reason we do not need to consider the number of input schemas in the parameter setting is
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Domain Final Output After Matching Selection Correct?
Airfares {destination (string)} = {to (string)} = {arrival city (string)} Y

{departure date (datetime)} = {depart (datetime)} Y
{passenger (integer)} = {adult (integer),child (integer),infant (integer)} P
{from (string),to (string)} = {departure city (string),arrival city (string)} Y
{from (string)} = {depart (string)} Y
{return date (datetime)} = {return (datetime)} Y

Movies {artist (any)} = {actor (any)} = {star (any)} Y
{genre (string)} = {category (string)} Y
{cast & crew (any)} = {actor (any),director (any)} Y

MusicRecords title (unknown) =album (unknown) Y
keyword (unknown) ={song (unknown), album (unknown)} N
genre (string) =category (string) Y

Hotels {check in (date),check out (date)} = Y
{check in date (date),check out date (date)}
check in (date) =check in date (date) Y
check out (date) =check out date (date) Y
type (string) =country (string) N
guest (integer) ={adult (integer),child (integer),night (integer)} P

Fig. 14. Experimental results for Airfares and Movies.

thatH-measure satisfies the sampling invariance property. We then observe that different
domains often have similar popularity and occurrence behavior of attributes, as our deep
Web survey [Chang et al. 2004] studies. Therefore, we reuse the setting of parameters
in the Books domain for all the other domains in both the baseDCM and the ensemble
DCM frameworks. The sampling invariance property ofH-measure and the observation
of attribute distribution similarity across domains greatly alleviate our effort on parameter
tuning for developing an automatic query interface matcher for various sampling sizes and
different domains.

Figure 13 illustrates the detailed results ofn-ary complex matchings discovered in the
Books domain. The step of group discovery found 5 likely groups (G1 to G5 in Figure 13).
In particular,mp gives a high value (actually the highest value) for the group oflast name
(any) andfirst name (any). The matching discovery found 6 likely complex matching (M1

to M6 in Figure 13). We can see thatM1 andM3 are fully correct matchings, while others
are partially correct or incorrect. Last, the matching construction will chooseM1 andM3

(i.e., the correct ones) as the final output.
Figure 14 shows the results of some other domains,i.e., Airfares, Movies, Music Records

and Hotels. The third column denotes the correctness of the matching. In particular,Y
means a fully correct matching,P a partially correct one andN an incorrect one. Our
mining algorithm does find interesting matchings in almost every domain. For instance, in
the Airfares domain, we find 5 fully correct matchings,e.g., {destination (string)} = {to
(string)} = {arrival city (string)}. Also, {passenger (integer)} = {adult (integer),child
(integer),infant (integer)} is partially correct because it missessenior (integer).

Since, as a statistical method, our approach replies on “sufficient observations” of at-
tribute occurrences, it is likely to perform more favorably for frequent attributes (i.e., the
head-ranked attributes in Figure 8). To quantify this “observation” factor, we report the
target accuracy with respect to the attribute frequencies. In particular, we consider the
attributes above afrequency thresholdF (i.e., the number of occurrences of the attribute
over the total number of schemas is aboveF ) in both discovered matchings and correct
matchings to measure the target accuracy. Specifically, we run the algorithms on all the
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Domain PT RT PT RT

(20%) (20%) (10%) (10%)
Books 1 1 1 1
Airfares 1 1 1 0.71
Movies 1 1 1 1
MusicRecords 1 1 0.76 1
Hotels 0.86 1 0.86 0.87
CarRentals 0.72 1 0.72 0.60
Jobs 1 0.86 0.78 0.87
Automobiles 1 1 0.93 1

Fig. 15. Target accuracy of the 8 domains.

Domain reduced missed reduced missed
false positive false positive false positive false positive

(20%) (20%) (10%) (10%)
Books 0 0 3 0
Airfares 2 0 22 0
Movies 0 0 2 0
MusicRecords 3 0 5 1
Hotels 6 1 11 2
CarRentals 2 1 2 1
Jobs 4 0 9 1
Automobiles 0 0 2 1

Fig. 16. The effectiveness of reducing false matchings in the matching selection step.

attributes and then report the target accuracy in terms of the frequency-divided attributes.
In the experiment, we chooseF as 20% and 10%.

Consider the Airfares domain, if we only consider the attributes above 20% frequency in
the matching result, only 12 attributes are above that threshold. The discovered matchings
in Figure 14 become{destination (string)} = {to (string)}, {departure date (datetime)}
= {depart (datetime)}, and{return date (datetime) =return (datetime)}. (The other
attributes are removed since they are all below 20% frequency.) These three matchings are
exactly the correct matchings the human expert can recognize among the 12 attributes and
thus we get 1.0 in both target precision and recall.

Next, we apply the 10% frequency threshold and get 22 attributes. The discovered
matchings in Figure 14 are unchanged since all the attributes (in the matchings) are now
passing the threshold. Compared with the correct matchings among the 22 attributes, we do
miss some matchings such as{cabin (string)} = {class (string)} and{departure (date-
time) = departure date (datetime)}. Also, some matchings are partially correct such as
{passenger (integer)} = {adult (integer),child (integer),infant (integer)}. Hence, we get
1.0 in target precision and 0.71 in target recall.

Figure 15 lists the target accuracies of the 8 domains under thresholds 20% and 10%.
From the result, we can see that our approach does perform better for frequent attributes.

Evaluating the Matching Selection Strategy: To evaluate the effectiveness of the match-
ing selection algorithm we developed in Section 3.2, which exploits conflict between
matching candidates to remove false positives, we count the number of false matchings
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Domain PT RT PT RT

(20%) (20%) (10%) (10%)
Books 0.79(-0.21) 1 0.74(-0.26) 1
Airfares 1 1 0.81(-0.19) 0.82(+0.11)
Movies 1 1 0.87(-0.13) 1
MusicRecords 0.93(-0.07) 1 0.70(-0.06) 1
Hotels 0.66(-0.20) 1 0.47(-0.39) 0.46(-0.41)
CarRentals 1 (+0.28) 0.63(-0.37) 1 (+0.28) 0.16(-0.44)
Jobs 0.70(-0.30) 1 (+0.14) 0.52(-0.26) 0.87
Automobiles 1 1 0.66(-0.27) 0.68(-0.32)

Fig. 17. Target accuracy of the 8 domains without data preprocessing.

reduced and missed by the selection step respectively. Figure 16 lists this result for the
eight domains under both 20% and 10% frequency thresholds. We can see that the greedy
selection strategy based onCmax measure is quite effective in reducing false matchings.
Most false matchings are removed in the selection step. In particular, although the 10%
frequency threshold may result in more false matchings comparing to the 20% one, the
selection strategy can remove most of them and keep the performance good. For instance,
in the Airfares domain under 10% frequency threshold, 22 false matchings are removed
and no false matching is missed.

Evaluating the Data Preprocessing Step: To evaluate the effectiveness of the data pre-
processing step, we test theDCM algorithm over schemas without data preprocessing. In
particular, we only perform the standard normalization sub-step in Section 3.3 for the input
schemas and ignore the type recognition and syntactic merging sub-steps. Our goal is to
see the impact of these sub-steps on the accuracy of matching.

Intuitively, although query interfaces are quite concerted in terms of the attributes they
use, there still are many syntactic variations for expressing the same attribute,e.g., title,
book title, title of book and search by title for attribute “title.” As discussed in Sec-
tion 3.3, type recognition and syntactic merging can help merge these variations into a
single attribute and thus increase attribute occurrences across query interfaces, which can
improve the performance of the subsequent correlation mining algorithm.

Figure 17 shows the result of running theDCM algorithm with non-preprocessed schemas
as input. In Figure 17, we write accuracies that change after removing the data preprocess-
ing step in italic font and show the differences in brackets. As we can see, the accuracies
for many domains are much worse than the ones with data preprocessing in Figure 15.
In particular, under the 10% frequency threshold, where more attributes are considered
for mining matchings, accuracies are greatly reduced. Therefore, applying the data pre-
processing step, although may itself result in some errors, is crucial for our mining-based
matching approach and can indeed significantly enhance the matching accuracy.

Evaluating the H-measure: We compare theH-measure with other measures and the
result shows that theH-measure gets better target accuracy. As an example, we choose
Jaccard(ζ) as the measure we compare to. WithJaccard, we define themp andmn as

mp(Ap, Aq) =
{

ζ(Ap, Aq), f11
f++

< Td

0, otherwise,

and
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Domain PT (H) RT (H) PT (ζ) RT (ζ)

(10%) (10%) (10%) (10%)
Books 1 1 0.80(-0.20) 1
Airfares 1 0.71 0.79(-0.21) 0.61(-0.10)
Movies 1 1 0.93(-0.07) 1
MusicRecords 0.76 1 0.76 1
Hotels 0.86 0.87 0.44(-0.42) 0.95(+0.08)
CarRentals 0.72 0.60 0.68(-0.04) 0.62(+0.02)
Jobs 0.78 0.87 0.64(-0.14) 0.87
Automobiles 0.93 1 0.78(-0.15) 1

Fig. 18. Comparison ofH-measure andJaccard.

Fig. 19. An example of incorrectly extracted query interfaces.

mn(Ap, Aq) = 1− ζ(Ap, Aq).

We set theTp andTn for this Jaccard-basedmp andmn as 0.5 and 0.9 respectively.
(SinceJaccardalso satisfies thesampling invarianceproperty, we can similarly find the
optimal thresholds within one domain and the values are reusable for other domains.) We
compare the target accuracy of theH-measure andJaccard in the situation of 10% fre-
quency threshold. The result (Figure 18) shows that theH-measure is better in both target
precision and target recall in most cases. Similar comparisons show thatH-measure is also
better than other measures such asCosineandConfidence.

6.2 Ensemble DCM Framework

In this subsection, we report the second suite of experiment: The evaluation of the ensem-
bleDCM framework. All the experiments in this subsection are conducted with the setting
of frequency threshold as 20% (i.e., F = 20%).

The baseline matching result: The baseline result we will compare to is executing the
baseDCM algorithm on automatically extracted interfaces. In particular, we use the tech-
niques in [Zhang et al. 2004] to extract interfaces in two domains, Books and Airfares.
The second and third columns in Figure 20 show the result, where the second column is
the target precision and the third column the target recall.

We can see that the accuracies of the baseline approach degrades up to 30%, comparing
to the results in Figure 15. This performance degradation is mainly because the existence
of noises affects the qualification and ranking of matchings and thus the result of matching
selection. For instance, in the Books domain,author = last name is ranked higher than
author = {last name, first name} because in some interfaces (e.g., the ones shown in
Figure 19), the input box which should be associated with “Last Name” is incorrectly
associated with “Search for books by the following Author”. Such errors lower down the
negative correlation betweenauthor andfirst name and thus result in the selection of the
partially correct matchingauthor = last name.
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Domain The base The ensembleDCM framework The ensembleDCM framework
DCM framework with Borda’s aggregation with FK aggregation
PT RT PAT RAT PFT RFT PAT RAT PFT RFT

Books 0.73 0.75 0.83 0.89 0.9 1.0 0.83 0.9 0.9 1.0
Airfares 0.67 0.68 0.79 0.79 0.71 0.82 0.91 0.73 1.0 0.73

Fig. 20. The comparison of target accuracy on Books and Airfares.

Also, due to the greedy selection strategy, the errors caused in one iteration may cascade
to its subsequent iterations. For instance, still in the Books domain, whenauthor = {last
name, first name} is pruned out (because of the above reason), in the next iteration of
selection,isbn = {last name, first name} is selected as a correct matching, which makes
the result even worse.

The performance of the ensembleDCM framework : Before running the ensemble
framework, we need to first determine its configuration. In our experiment, we choose
theT → S configuration strategy developed in Section 5.2. Specifically, we set the num-
ber of trialsT as 41 and objective voting confidencec as 0.9 for both Books and Airfares.
(As we modeled in Section 5.1,T is set as an odd number. We have no particular reason
for choosing 41. As Section 5.2 discussed,S is insensitive toT and thus picking otherT
values will not significantly affect the final performance. We also empirically verify this
fact later.) We then setW ∗ andK∗ values according to our estimation strategy of the base
parameters. In particular, for Books, we haveW ∗ = 6 and for Airfares,W ∗ = 5. For both
domains, we setK∗ as a small constant 2. Thus, according to Equation 11, we haveS
= 22 for Books andS = 19 for Airfares. Also, for each dataset, we test it with the two
aggregation strategies we developed in Section 5.3 respectively: The Borda’s aggregation
and the FK aggregation.

As the ensemble framework is essentially a data-randomized approach (with multiple
random trials), it is “non-deterministic”– We thus measure the distribution of its perfor-
mance. Specifically, we execute the framework 100 times on Books with the same setting
S = 22,T = 41. Similarly, we execute it 100 times on Airfares with the same settingS =
19,T = 41. To quantify the comparison with the baseline result, we measure two suites of
target accuracies: theaverage target accuracy(i.e., the average precision and recall of the
100 executions, denoted asPAT andRAT respectively) and themost frequent target accu-
racy (i.e., the most frequently obtained precision and recall of the 100 executions, denoted
asPFT andRFT respectively). Note that we do not use the best target accuracy (i.e., the
best precision and recall of the 100 executions) as we did in [He and Chang 2005] because
in practice we cannot judge which result is the best without knowledge from human ex-
perts. In contrast, most frequent accuracy is more meaningful since it can be obtained by
executing the ensemble framework multiple times and taking their majority.

The results of both average and most frequent accuracies are listed in Figure 20 (columns
3-6 for Borda’s aggregation and columns 7-10 for FK aggregation). We can see that: 1)
Comparing to the baseline result, precision and recall are improved by the ensemble frame-
work under both aggregation strategies. 2) For the Books domain, Borda’s aggregation and
FK aggregation have roughly the same accuracy; For the Airfares domain, FK aggregation
can achieve much higher precision than Borda’s aggregation, but with slightly lower recall.

Overall, the ensemble framework is quite effective in maintaining the robustness of the
DCM matcher. The FK aggregation strategy can yield more robust results than Borda’s
aggregation. We believe this experiment shows that, while Borda is actually a reasonable
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(a) Books. (b) Airfares.
Fig. 21. The target precision with 100 executions on two domains (Borda’s aggregation).

(a) Books. (b) Airfares.
Fig. 22. The target recall with 100 executions on two domains (Borda’s aggregation).

(a) Books. (b) Airfares.
Fig. 23. The target precision with 100 executions on two domains (FK aggregation).

baseline choice, FK is indeed more robust. Next, we illustrate and interpret the results of
the ensemble framework with more details.

First, in most executions, the ensemble framework achieves better accuracy than the
baseline result. For instance, Figure 21 shows the 100 target precisions of the 100 ex-
ecutions over Books and Airfares with Borda’s aggregation. To make Figure 21 more
illustrative, we use straight horizontal lines to denote the baseline accuracies. We can see
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(a) Books. (b) Airfares.
Fig. 24. The target recall with 100 executions on two domains (FK aggregation).

that, although accuracies may be varying in different executions, most precisions in both
Books and Airfares are better than their corresponding baseline precisions. Similar result
can also be observed in the target recall part (Figure 22) under Borda’s aggregation and
both precision (Figure 24) and recall (Figure 24) under FK aggregation. Hence, this ex-
periment indicates that the ensemble framework can indeed boost the matching accuracy
under noisy schema input, and thus maintain the desired robustness of a holistic matcher.
Note that the recall graphs looks more regular than the precision ones because for recall,
only the value on numerator is changing, while for precision, values on both numerator
and denominator are changing.

Second, from Figures 21 to 24, we also observe an interesting phenomenon: It seems
that there are upper-bounds for both precision and recall, which the ensemble framework
cannot exceed. The existence of such upper bounds is because, in essence, there are two
types of data quality problems, noises and missing data, and the ensemble framework
can deal with noises, but not missing data. Specifically, noises are some observed data
that ideally should not be observed,i.e., outliers. For instance, the extraction of a book
schema,e.g., the one in Figure 19, may incorrectly consider “author” as an attribute and
thus lowers down the correlation of “author” and “first name.” Although noises may affect
the accuracy of the base algorithm, they are minority in quantity. Downsampling is thus a
good approach to filtering them out and, consequently, the majority voting can be effective.
On the other hand,missing dataare some data that ideally should be observed, but in reality
are not. For instance, the input schemas may contain only a small number of occurrences
of the attribute “last name” and thus we cannot sufficiently identify to find the grouping of
“last name” and “first name.” For this missing data case, sampling and voting techniques
will not help, since when the entire dataset has missing data, all the trials will also have
missing data and their aggregate result cannot fix the problem. The ensemble framework,
with the limit imposed by such missing data, has an upper bound for the best accuracy.

Finally, the execution time of the ensemble framework is also acceptable. The 100
executions on Books take 118 seconds for Borda’s aggregation and 117 seconds for FK
aggregation. The 100 executions on Airfares take 109 seconds for Borda’s aggregation and
128 seconds for FK aggregation. Therefore, the average time for one execution is about
only 1 second.

The result under various configuration settings:The purpose of this set of experiments
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(a) Books (T=41). (b) Airfares (T=41).

Fig. 25. The target accuracy under various sampling sizes (Borda’s aggregation).

is to empirically verify our analysis in Section 5.2: 1) We want to verify whether our
setting ofS using Equation 11 is consistent with empirical observation. 2) We want to
verify whether the performance of the framework is indeed insensitive toT , but sensitive
to S.

First, we measure the accuracy of the ensemble framework with different sampling sizes
on the two domains. In particular, we fixT at 41 and letS progressively increase from
10 to 55 with an increment size 5 (i.e., 10, 15, 20, ..., 55) for Books and from 10 to 40
with an increment size 3 for Airfares. For each sampling size, we execute the ensemble
framework 30 times under the two aggregation strategies respectively and compute the
average precisions and recalls. Figure 25 shows the experimental result under Borda’s
aggregation and Figure 26 FK aggregation.

From Figures 25 and 26, we can observe the same trend in both domains, which seems
to be independent of the aggregation strategy we choose. Specifically, when sampling
size increases, the target precision mostly keeps on decreasing, while the target recall goes
up first and then goes down at some point. We give the explanation as below: A small
sampling size may miss some attributes in downsampling and thus discover less matchings,
which results in trivially high precision but low recall. With larger sampling size, we are
able to cover more attributes and thus discover not only more correct matchings, but also
a few false matchings. Consequently, the precision decreases and recall increases. When
the sampling size is too large, a downsampling is likely to have many noises and thus the
recall starts to decrease again.

The best sampling size we should take is thus some values in the middle. We choose the
F -measure, which combines precisionP and recallR asF = 2PR

P+R , to measure the overall
accuracy. From Figure 25(a) and Figure 26(a), we can see the best range of sampling size
for Books, according toF -measure, is around 20. Our setting based on Equation 11 is 22,
which is quite close to 20. Similarly, from Figure 25(b) and Figure 26(b), the best range
of sampling size for Airfares is around 16. Our setting based on Equation 10 is 19, which
is also close. Therefore, our configuration strategy of determining the sampling size is
consistent with the empirical result.

Second, since we chooseT as 41 with no particular reason in the experiment, we want
to verify that the choosing otherT values is in fact not quite different, because of the
insensitivity ofS on T (Section 5.2). In particular, we fixS at 22 for Books and 19 for
Airfares. We changeT from 5 to 49 with increment size 4 for both domains. For eachT ,
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Fig. 26. The target accuracy under various sampling sizes (FK aggregation).
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Fig. 27. The target accuracy under various number of trials (Borda’s aggregation).

we again execute the framework 30 times under the two aggregation strategies and compute
the average precisions and recalls. Figures 27 and 28 shows the experimental results. From
the results, we can see that, in both domains, both the precision and recall become more
and more flat and stable whenT increases. This result indicates that with otherT values
(as long as it is not too small), we can also have roughly the same performance and thus
the decision onT is not a critical factor.

Also, comparing Figure 27 and Figure 28, we can observe that the ensemble framwork
with FK aggregation generally can achieve better precision than the one with Borda’s ag-
gregation. This result indicates that FK aggregation is more robust than Borda’s aggrega-
tion in dealing with noisy data, since it approximates the Condorcet criterion (Section 5.3).

Overall, from these two experiments onS andT , we can see that under the sameT ,
different sampling sizesS will significantly affect the performance of the data-ensemble
framework, while on the other hand, under the sameS, different number of trialsT have
little impact on the performance. This sensitivity of performance onS but notT indicates
that theT → S configuration strategy is better thanS → T becauseT is much easier to
pick in practice, which verifies our analysis in Section 5.2.
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Fig. 28. The target accuracy under various number of trials (FK aggregation).

7. RELATED WORK

We relate our work to the literature in two aspects: theproblemand ourtechniques. In
particular, in terms of the problem, we discuss the difference of our work with 1) tradi-
tional schema matching works; 2) recent works on matching Web databases. In terms of
our techniques, we discuss the distinctions of 1) our mining techniques; 2) our ensemble
matching approach.

First, in terms of theproblem: Schema matching is important for schema integra-
tion [Batini et al. 1986; Seligman et al. 2002] and thus has got great attention. However,
existing schema matching works mostly focus on simple 1:1 matching [Rahm and Bern-
stein 2001; Doan et al. 2001; Madhavan et al. 2001] between two schemas. Complex
matching has not been extensively studied, mainly due to the much more complex search
space of exploring all possible combinations of attributes. Consider two schemas withu
andv attributes respectively, while there are onlyu×v potential 1:1 matchings, the number
of possiblem:n matchings is exponential. A recent work iMAP [Dhamankar et al. 2004]
proposes to construct 1:n matchings between two schemas by combining their simple 1:1
matchings. Although both aiming at complex matchings, our work is different from iMAP
in: 1) scenario: iMAP focuses on matching two schemas, while we targets at large scale
schema matching. 2)techniques: iMAP relies on the availability of instance values to con-
struct complex matchings from simple 1:1 matchings, while we explore the co-occurrence
information across schemas and thus develop a correlation mining approach.

Some recent works are particularly focusing on matching Web databases [He et al. 2003;
Wu et al. 2004; Wang et al. 2004]. WISE [He et al. 2003] is a comprehensive query inter-
face integrator, which evaluates the similarity of attributes in multiple aspects. However, it
only deals with simple 1:1 matchings. Reference [Wang et al. 2004] matches query inter-
faces based on the results of probing some instance values from the back-end databases via
interfaces. It also only deals with simple 1:1 matchings. Comparing with other matching
approaches, probing-based matching is much more expensive due to the large number of
HTTP requests sent for each interface. In addition, it needs global model for each domain
and thus less scalable as an automatic generic solution for handling various domains of
Web sources. Reference [Wu et al. 2004] pursues a clustering-based approach to discover
1:n matchings by exploring the “bridging” effect among query interfaces. However, its dis-
covery of complex matchings essentially depends on a “hierarchical” interface extractor–
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That is, the grouping of attributes (e.g., the grouping oflast name andfirst name) must
be identified, in the first place, by the interface extractor (and not the matching algorithm).
This “hierarchy-recognition” requirement makes interface extraction a very challenging
task. In contrast, theDCM framework only requires an interface extractor to extract a query
interface as a “flat” set of query conditions, instead of a hierarchy of attributes, which can
thus be easily satisfied (e.g., our recent work of automatic interface extraction [Zhang et al.
2004] is such an extractor). In fact, even with a simple “flat” extractor, it already introduces
enough errors to impact the matching performance. In this article, we study such impact
and propose an ensemble approach for maintaining the robustness of matching, which sig-
nificantly extends theDCM framework (Figure 2), as described in our earlier work [He
et al. 2004].

Our previous schema matching work, theMGS framework [He and Chang 2003], also
matches Web interfaces by exploiting holistic information. Although built upon the same
insight,DCM is different fromMGS in: 1) abstraction: DCM abstracts schema matching
as correlation mining, whileMGS as hidden model discovery by applying statistical hy-
pothesis testing. The difference in abstraction leads to fundamentally different approaches.
2) expressiveness: DCM findsm:n matchings, whileMGS currently finds 1:1 matchings
and it is unclear that how it can be extended to supportm:n matchings.

Second, in terms of ourtechniques: In this article, we propose a correlation mining view
for the schema matching problem. Unlike previous correlation mining algorithms, which
mainly focus on finding strong positive correlations [Agrawal et al. 1993; Tan et al. 2002;
Omiecinski 2003; Lee et al. 2003; Brin et al. 1997], our algorithm cares not only positive
but also negative correlations. In particular, as a new application for correlation mining, the
correctness of schema matching mainly depends on the subtlety of negative correlations.
We thus study the rare attribute problem and develop theH-measure, which empirically
outperforms existing ones on evaluating negative correlations.

In addition, as discussed in Section 5, our ensemble idea is inspired bagging classi-
fiers [Breiman 1996]. However, our approach is different from bagging classifiers in three
aspects: The setting, the techniques and the analytical modeling.

8. CONCLUSION

This article explores co-occurrence patterns among attributes to tackle the complex match-
ing problem. This exploration is well suited for the integration of large-scale heteroge-
nous data sources, such as the deep Web. Specifically, we abstract complex matching as
correlation mining and develop theDCM framework. Unlike previous correlation mining
algorithms, which mainly focus on finding strong positive correlations, our algorithm cares
both positive and negative correlations, especially the subtlety of negative correlations, due
to its special importance in schema matching. This difference leads to the introduction of
a new correlation measure,H-measure, distinct from those proposed in previous work.
Further, when connecting theDCM framework with automatic interface extractor to fully
automate the matching process, we notice that noises in the interface extraction may sig-
nificantly affect the matching result. To make theDCM framework robust against noisy
schemas, we integrate it with an ensemble scheme by exploiting statistical sampling and
voting. Our experiments validate the effectiveness of the correlation mining algorithm, the
H-measure and the ensembleDCM framework.

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006.



44 ·
REFERENCES

AGRAWAL , R., IMIELINSKI , T., AND SWAMI , A. N. 1993. Mining association rules between sets of items in
large databases. InSIGMOD 1993 Conference.

ANDERSON, D. R., SWEENEY, D. J., AND WILLIAMS , T. A. 1984. Statistics for Business and Economics
(Second Edition). West Pub. Co.

BATINI , C., LENZERINI, M., AND NAVATHE , S. B.1986. A comparative analysis of methodologies for database
schema integration.ACM Computing Surveys 18,4, 323–364.

BERGMAN, M. K. 2000. The deep web: Surfacing hidden value. Tech. rep., BrightPlanet LLC. Dec.
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