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Abstract. In order to enable interoperability between ontology-based systems,
ontology matching techniques have been proposed. However, when the gener-
ated mappings suffer from logical flaws, their usefulness may be diminished. In
this paper we present an approximate method to detect and correct violations to
the so-called conservativity principle where novel subsumption entailments be-
tween named concepts in one of the input ontologies are considered as unwanted.
We show that this is indeed the case in our application domain based on the EU
Optique project. Additionally, our extensive evaluation conducted with both the
Optique use case and the data sets from the Ontology Alignment Evaluation Ini-
tiative (OAEI) suggests that our method is both useful and feasible in practice.

1 Introduction

Ontologies play a key role in the development of the Semantic Web and are being used
in many diverse application domains, ranging from biomedicine to energy industry. An
application domain may have been modeled with different points of view and purposes.
This situation usually leads to the development of different ontologies that intuitively
overlap, but they use different naming and modeling conventions.

In particular, this is the case we are facing in the EU Optique project.3 Optique aims
at facilitating scalable end-user access to big data in the oil and gas industry. The project
is focused around two demanding use cases provided by Siemens and Statoil. Optique
advocates for an Ontology Based Data Access (OBDA) approach [24] so that end-users
formulate queries using the vocabulary of a domain ontology instead of composing
queries directly against the database. Ontology-based queries (e.g., SPARQL) are then
automatically rewritten to SQL and executed over the database.

In Optique two independently developed ontologies co-exist. The first ontology has
been directly bootstrapped from one of the relational databases in Optique and it is
linked to the database via direct ontology-to-database mappings;4 while the second
ontology is a domain ontology based on the Norwegian Petroleum Directorate (NPD)
FactPages5 [41] and it is currently preferred by Optique end-users to feed the visual
query formulation interface6 [42]. This setting requires the “query formulation” ontol-
ogy to be linked to the relational database. In Optique we follow two approaches that

3 http://www.optique-project.eu/
4 http://www.w3.org/TR/rdb-direct-mapping/
5 http://factpages.npd.no/factpages/
6 The query formulation interface has been evaluated with end-users at Statoil.
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will complement each other: (i) creation of ontology-to-database mappings between
the query formulation ontology and the database; (ii) creation of ontology-to-ontology
mappings between the bootstrapped ontology and the query formulation ontology. In
this paper we only deal with ontology-to-ontology mappings (or mappings for short).
The creation, analysis and evolution of ontology-to-database mappings are also key
research topics within Optique, however, they fall out of the scope of this paper.

The problem of (semi-)automatically computing mappings between independently
developed ontologies is usually referred to as the ontology matching problem. A num-
ber of sophisticated ontology matching systems have been developed in the last years
[11, 40]. Ontology matching systems, however, rely on lexical and structural heuristics
and the integration of the input ontologies and the mappings may lead to many un-
desired logical consequences. In [19] three principles were proposed to minimize the
number of potentially unintended consequences, namely: (i) consistency principle, the
mappings should not lead to unsatisfiable classes in the integrated ontology, (ii) locality
principle, the mappings should link entities that have similar neighbourhoods, (iii) con-
servativity principle, the mappings should not introduce new semantic relationships
between concepts from one of the input ontologies.

The occurrence of these violations is frequent, even in the reference mapping sets
of the Ontology Alignment Evaluation Initiative7 (OAEI). Also manually curated align-
ments, such as UMLS-Metathesaurus [3] (UMLS), a comprehensive effort for integrat-
ing biomedical knowledge bases, suffer from these violations. Violations to these prin-
ciples may hinder the usefulness of ontology mappings. In particular, in the Optique’s
scenario, violation of the consistency or conservativity principles will directly affect the
quality of the query results, since queries will be rewritten according to the ontology
axioms, the ontology-to-ontology mappings and the ontology-to-database mappings.

These principles has been actively investigated in the last years (e.g., [31, 30, 15,
19, 17, 29, 37]). In this paper we focus on the conservativity principle and we explore a
variant of violation of this principle which we consider appropriate for the application
domain in Optique. Furthermore, this variant of the conservativity principle allows us to
reduce the problem to a consistency principle problem. We have implemented a method
which relies on the projection of the input ontologies to Horn propositional logic. This
projection allows us to be efficient in both the reduction to the consistency principle and
the subsequent repair process. Our evaluation suggests that our method is feasible even
with the largest test cases of the OAEI campaign.

The remainder of the paper is organised as follows. Section 2 summarises the basics
concepts and definitions we will rely on along the paper. In Section 3 we introduce our
motivating scenario based on Optique. Section 4 describes our method. In Section 5 we
present the conducted evaluation. A comparison with relevant related work is provided
in Section 6. Finally, Section 7 gives some conclusions and future work lines.

2 Preliminaries

In this section, we present the formal representation of ontology mappings and the no-
tions of semantic difference, mapping coherence and conservativity principle violation.

7 http://oaei.ontologymatching.org/
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2.1 Representation of Ontology Mappings

Mappings are conceptualised as 5-tuples of the form 〈id, e1, e2, n, ρ〉, with id a unique
identifier, e1, e2 entities in the vocabulary or signature of the relevant input ontologies
(i.e., e1 ∈ Sig(O1) and e2 ∈ Sig(O2)), n a confidence measure between 0 and 1, and ρ
a relation between e1 and e2, typically subsumption, equivalence or disjointness [10].

RDF Alignment [8] is the main format used in the OAEI campaign to represent
mappings containing the aforementioned elements. Additionally, mappings are also rep-
resented as OWL 2 subclass, equivalence, and disjointness axioms [6]; mapping iden-
tifiers (id) and confidence values (n) are then represented as axiom annotations. Such
a representation enables the reuse of the extensive range of OWL 2 reasoning infras-
tructure that is currently available. Note that alternative formal semantics for ontology
mappings have been proposed in the literature (e.g., [4]).

2.2 Semantic Consequences of the Integration

The ontology resulting from the integration of two ontologies O1 and O2 via a set of
mappingsM may entail axioms that do not follow from O1, O2, orM alone. These
new semantic consequences can be captured by the notion of deductive difference [25].

Intuitively, the deductive difference between O and O′ w.r.t. a signature Σ (i.e., set
of entities) is the set of entailments constructed over Σ that do not hold in O, but do
hold inO′. The notion of deductive difference, however, has several drawbacks in prac-
tice. First, there is no algorithm for computing the deductive difference in expressive
DLs [25]. Second, the number of entailments in the difference can be infinite.

Definition 1 (Approximation of the Deductive Difference). Let A,B be atomic con-
cepts (including >,⊥), Σ be a signature, O and O′ be two OWL 2 ontologies. We
define the approximation of the Σ-deductive difference between O and O′ (denoted
diff≈Σ(O,O′) as the set of axioms of the form A v B satisfying: (i) A,B ∈ Σ,
(ii) O 6|= A v B, and (iii) O′ |= A v B.

In order to avoid the drawbacks of the deductive difference, in this paper we rely on
the approximation given in Definition 1. This approximation only requires comparing
the classification hierarchies of O and O′ provided by an OWL 2 reasoner, and it has
successfully been used in the past in the context of ontology integration [18].

2.3 Mapping Coherence and Mapping Repair

The consistency principle requires that the vocabulary in OU = O1 ∪ O2 ∪ M be
satisfiable, assuming the union of input ontologiesO1 ∪O2 (without the mappingsM)
does not contain unsatisfiable concepts. Thus diff≈Σ(O1 ∪ O2,OU ) should not contain
any axiom of the form A v ⊥, for any A ∈ Σ = Sig(O1 ∪ O2).

Definition 2 (Mapping Incoherence). A set of mappingsM is incoherent with respect
toO1 andO2, if there exists a classA, in the signature ofO1∪O2, such thatO1∪O2 6|=
A v ⊥ and O1 ∪ O2 ∪M |= A v ⊥.

An incoherent set of mappings M can be fixed by removing mappings from M.
This process is referred to as mapping repair (or repair for short).



Definition 3 (Mapping Repair). Let M be an incoherent set of mappings w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 iff
M\R is coherent w.r.t. O1 and O2.

A trivial repair is R = M, since an empty set of mappings is trivially coherent
(according to Definition 2). Nevertheless, the objective is to remove as few mappings
as possible. Minimal (mapping) repairs are typically referred to in the literature as map-
ping diagnoses [29] — a term coined by Reiter [36] and introduced to the field of on-
tology debugging in [39]. A repair or diagnosis can be computed by extracting the jus-
tifications for the unsatisfiable concepts (e.g., [38, 22, 43]), and selecting a hitting set of
mappings to be removed, following a minimality criteria (e.g., the number of removed
mappings). However, justification-based technologies do not scale when the number of
unsatisfiabilities is large (a typical scenario in mapping repair problems [16]). To ad-
dress this scalability issue, mapping repair systems usually compute an approximate
repair using incomplete reasoning techniques (e.g., [17, 29, 37]). An approximate re-
pairR≈ does not guarantee thatM\R≈ is coherent, but it will (in general) significantly
reduce the number of unsatisfiabilities caused by the original set of mappingsM.

2.4 Conservativity Principle

The conservativity principle (general notion) states that the integrated ontology OU =
O1 ∪ O2 ∪ M should not induce any change in the concept hierarchies of the input
ontologies O1 and O2. That is, the sets diff≈Σ1

(O1,OU ) and diff≈Σ2
(O2,OU ) must be

empty for signatures Σ1 = Sig(O1) and Σ2 = Sig(O2), respectively.
In [19] a lighter variant of the conservativity principle was proposed. This variant re-

quired that the mappingsM alone should not introduce new subsumption relationships
between concepts from one of the input ontologies. That is, the set diff≈Σ(O1,O1 ∪M)
(resp. diff≈Σ(O2,O2 ∪M)) must be empty for Σ = Sig(O1) (resp. Σ = Sig(O2)).

In this paper we propose a different variant of the conservativity principle where
we require that the integrated ontology OU does not introduce new subsumption rela-
tionships between concepts from one of the input ontologies, unless they were already
involved in a subsumption relationship or they shared a common descendant. Note that
we assume that the mappingsM are coherent with respect to O1 and O2.

Definition 4 (Conservativity Principle Violations). Let A,B,C be atomic concepts
(not including >,⊥), let O be one of the input ontologies, let Sig(O) be its signature,
and let OU be the integrated ontology. We define the set of conservativity principle
violations of OU w.r.t. O (denoted consViol(O,OU )) as the set of axioms of the form
A v B satisfying: (i) A,B,C ∈ Sig(O), (ii) A v B ∈ diff≈Sig(O)(O,OU ), (iii) O 6|=
B v A, and (iv) there is no C s.t. O |= C v A, and O |= C v B.

This variant of the conservativity principle follows the assumption of disjointness
proposed in [38]. That is, if two atomic concepts A,B from one of the input ontolo-
gies are not involved in a subsumption relationship nor share a common subconcept
(excluding ⊥) they can be considered as disjoint. Hence, the conservativity principle
can be reduced to the consistency principle, if the input ontologies are extended with
sufficient disjointness axioms. This reduction will allow us to reuse the available infras-
tructure and techniques for mapping repair.



Table 1. Fragments of the ontologies used in Optique.
Ontology O1 Ontology O2

α1 WellBore v ∃belongsTo.Well β1 Exploration well v Well
α2 WellBore v ∃hasOperator.Operator β2 Explor borehole v Borehole
α3 WellBore v ∃locatedIn.Field β3 Appraisal exp borehole v Explor borehole
α4 AppraisalWellBore v WellBore β4 Appraisal well v Well
α5 ExplorationWellBore v WellBore β5 Field v ∃hasFieldOperator.Field operator
α6 Operator v Owner β6 Field operator u Owner v Field owner
α7 Operator v Company β7 Company v Field operator
α8 Field v ∃hasOperator.Company β8 Field owner v Owner
α9 Field v ∃hasOwner.Owner β9 Borehole v Continuant t Occurrent

Table 2. Ontology mappings for the vocabulary in O1 and O2.
Mappings M

id e1 e2 n ρ

m1 O1:Well O2:Well 0.9 ≡
m2 O1:WellBore O2:Borehole 0.7 ≡
m3 O1:ExplorationWellBore O2:Exploration well 0.6 v
m4 O1:ExplorationWellBore O2:Explor borehole 0.8 ≡
m5 O1:AppraisalWellBore O2:Appraisal exp borehole 0.7 ≡
m6 O1:Field O2:Field 0.9 ≡
m7 O1:Operator O2:Field operator 0.7 w
m8 O1:Company O2:Company 0.9 ≡
m9 O1:hasOperator O2:hasFieldOperator 0.6 ≡
m10 O1:Owner O2:Owner 0.9 ≡

3 Conservativity Principle Violations in Practice

In this section, we show the problems led by the violation of the conservativity principle
when integrating ontologies via mappings in a real-world scenario. To this end, we
consider as motivating example a use case based on the Optique’s application domain.

Table 1 shows the fragments of two ontologies in the context of the oil and gas
industry. The ontology O1 has been directly bootstrapped from a relational database
in Optique, and it is linked to the data via direct ontology-to-database mappings. The
ontology O2, instead, is a domain ontology, based on the NPD FactPages, preferred by
Optique end-users to feed the visual query formulation interface.8

The integration via ontology matching of O1 and O2 is required since the vocabu-
lary inO2 is used to formulate queries, but only the vocabulary ofO1 is connected to the
database.9 Consider the set of mappingsM in Table 2 between O1 and O2 generated
by an off-the-shelf ontology alignment system. As described in Section 2.1, mappings
are represented as 5-tuples; for example the mapping m2 suggests an equivalence rela-
tionship between the entities O1:WellBore and O2:Borehole, with confidence 0.7.

The integrated ontology OU = O1 ∪O2 ∪M, however, violates the conservativity
principle, according to Definition 4, and introduces non desired subsumption relation-
hips (see Table 3). Note that the entailments σ4 and σ5 are not included in our variant of
conservativity violation, sinceO1:Company andO1:Operator (resp.O2:Field operator
and O2:Company) are involved in a subsumption relationship in O1 (resp. O2). How-

8 In Optique we use OWL 2 QL ontologies for query rewriting, while the query formulation
may be based on much richer OWL 2 ontologies. The axioms that fall outside the OWL 2 QL
profile are either approximated or not considered for the rewriting.

9 As mentioned in Section 1, in this paper we only focus on ontology-to-ontology mappings.



Table 3. Example of conservativity principle violations.
σ Entailment: follows from: Violation?
σ1 O2:Explor borehole v O2:Exploration well m3,m4 YES
σ2 O1:AppraisalWellBore v O1:ExplorationWellBore β3,m4,m5 YES
σ3 O2:Field operator v O2:Field owner α6, β6,m7,m10 YES
σ4 O1:Company ≡ O1:Operator

α7, β7,m7,m8 NO (*)
σ5 O2:Field operator ≡ O2:Company
σ6 O1:Company v O1:Owner σ4, α6 YES
σ7 O2:Company v O2:Field owner σ3, σ5 YES

ever, these entailments lead to other violations included in our variant (σ6 and σ7), and
may also be considered as violations. These conservativity principle violations may hin-
der the usefulness of the generated ontology mappings since may affect the quality of
the results when performing OBDA queries over the vocabulary of O2.

Example 1. Consider the following conjunctive query CQ(x)← O2:Well(x). The query
asks for wells and has been formulated from the Optique’s query formulation interface,
using the vocabulary of O2. The query is rewritten, according to the ontology axioms
and mappings β1, β4,m1,m3,m4 in OU = O1 ∪ O2 ∪M, into the following union
of conjunctive queries UCQ(x)← O2:Well(x)∪O1:Well(x)∪O2:Exploration well(x)∪
O2:Appraisal well(x)∪O1:ExplorationWellBore(x)∪O2:Explor borehole(x). Since only
the vocabulary ofO1 is linked to the data, the union of conjunctive queries could be sim-
plified as UCQ(x)←Well(x)∪ExplorationWellBore(x), which will clearly lead to non
desired results. The original query was only asking for wells, while the rewritten query
will also return data about exploration wellbores.

We have shown that the quality of the mappings in terms of conservativity principle
violations will directly affect the quality of the query results. Therefore, the detection
and repair of these violations arise as an important quality assessment step in Optique.

4 Methods

We have reduced the problem of detecting and solving conservativity principle viola-
tions, following our notion of conservativity (see Section 2), to a mapping (incoherence)
repair problem. Currently, our method relies on the indexing and reasoning techniques
implemented in LogMap, an ontology matching and mapping repair system [17, 20, 21].

Algorithm 1 shows the pseudocode of the implemented method. The algorithm ac-
cepts as input two OWL 2 ontologies, O1 and O2, and a set of mappings M which
are coherent10 with respect to O1 and O2. Additionally, an optimised variant to add
disjointness axioms can be selected. The algorithm outputs the number of added dis-
jointness during the process disj, a set of mappingsM′, and an (approximate) repair
R≈ such thatM′ =M\R≈. The (approximate) repairR≈ aims at solving most of the
conservativity principle violations ofM with respect to O1 and O2. We next describe
the techniques used in each step.

10 Note that M may be the result of a prior mapping (incoherence) repair process.



Algorithm 1 Algorithm to detect and solve conservativity principle violations
Input:O1,O2: input ontologies;M: (coherent) input mappings;Optimization: Boolean value
Output:M′: output mappings;R≈: approximate repair; disj: number of disjointness rules
1: 〈O′1,O

′
2〉 := ModuleExtractor(O1,O2,M)

2: 〈P1,P2〉 := PropositionalEncoding(O′1,O
′
2)

3: SI1 := StructuralIndex(O′1)
4: SI2 := StructuralIndex(O′2)
5: if (Optimization = true) then
6: SIU := StructuralIndex(O′1 ∪ O

′
2 ∪M)

7: 〈Pd
1 , disj1〉 := DisjointAxiomsExtensionOptimized(P1, SI1, SIU ) . See Algorithm 3

8: 〈Pd
2 , disj2〉 := DisjointAxiomsExtensionOptimized(P2, SI2, SIU )

9: else
10: 〈Pd

1 , disj1〉 := DisjointAxiomsExtensionBasic(P1, SI1) . See Algorithm 2
11: 〈Pd

2 , disj2〉 := DisjointAxiomsExtensionBasic(P2, SI2)
12: end if
13: 〈M′,R≈〉 := MappingRepair(Pd

1 ,P
d
2 ,M) . See Algorithm 2 in [21]

14: disj := disj1 + disj2
15: return 〈M′,R≈, disj〉

Module Extraction. In order to reduce the size of the problem our method extracts
two locality-based modules [7], one for each input ontology, using the entities involved
in the mappings M as seed signatures for the module extractor (step 1 in Algorithm
1). These modules preserve the semantics for the given entities, can be efficiently com-
puted, and are typically much smaller than the original ontologies.

Propositional Horn Encoding. The modules O′1 and O′2 are encoded as the Horn
propositional theories, P1 and P2 (step 2 in Algorithm 1). This encoding includes rules
of the form A1 ∧ . . . ∧ An → B. For example, the concept hierarchy provided by an
OWL 2 reasoner (e.g., [32, 23]) will be encoded as A → B rules, while the explicit
disjointness relationships between concepts will be represented as Ai ∧ Aj → false.
Note that the input mappings M can already be seen as propositional implications.
This encoding is key to the mapping repair process.

Example 2. Consider the ontologies and mappings in Tables 1 and 2. The axiom β6 is
encoded as Field operator∧Owner→ Field owner, while the mappingm2 is translated
into rules O1:WellBore→ O2:Borehole, and O2:Borehole→ O1:WellBore.

Structural Index. The concept hierarchies provided by an OWL 2 reasoner (exclud-
ing ⊥) and the explicit disjointness axioms of the modules O′1 and O′2 are efficiently
indexed using an interval labelling schema [1] (steps 3 and 4 in Algorithm 1). This
structural index exploits an optimised data structure for storing directed acyclic graphs
(DAGs), and allows us to answer many entailment queries over the concept hierarchy
as an index lookup operation, and hence without the need of an OWL 2 reasoner. This
kind of index has shown to significantly reduce the cost of answering taxonomic queries
[5, 33] and disjointness relationships queries [17, 20].

Disjointness Axioms Extension. In order to reduce the conservativity problem to a
mapping incoherence repair problem following the notion of assumption of disjoint-
ness, we need to automatically add sufficient disjointness axioms into each module O′i.
However, the insertion of additional disjointness axioms δ may lead to unsatisfiable
classes in O′i ∪ δ.



Algorithm 2 Basic disjointness axioms extension
Input: P : propositional theory; SI: structural index
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: for each pair 〈A,B〉 ∈ OrderedVariablePairs(P) do
4: if not (areDisj(SI,A,B) or inSubSupRel(SI,A,B) or shareDesc(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A u B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

Example 3. Consider the axiom β9 from Table 1. Following the assumption of dis-
jointness a very naı̈ve algorithm would add disjointness axioms between Borehole,
Continuant and Occurrent, which would make Borehole unsatisfiable.

In order to detect if each candidate disjointness axiom leads to an unsatisfiability,
a non naı̈ve algorithm requires to make an extensive use of an OWL 2 reasoner. In
large ontologies, however, such extensive use of the reasoner may be prohibitive. Our
method, in order to address this issue, exploits the propositional encoding and structural
index of the input ontologies. Thus, checking if O′i ∪ δ contains unsatisfiable classes is
restricted to the Horn propositional case.

We have implemented two algorithms to extend the propositional theories P1 and
P2 with disjointness rules of the form A ∧ B → ⊥ (see steps 5-12 in Algorithm 1).
These algorithms guarantee that, for every propositional variable A in the extended
propositional theory Pdi (with i ∈ {1, 2}), the theory Pdi ∪ {true → A} is satisfiable.
Note that this does not necessarily hold if the disjointness axioms are added to the OWL
2 ontology modules, O′1 and O′2, as discussed above.

Algorithm 2 presents a (basic) algorithm to add as many disjointness rules as pos-
sible, for every pair of propositional variables A,B in the propositional theory P given
as input. In order to minimize the number of necessary disjointness rules, the variables
in P are ordered in pairs following a top-down approach. The algorithm exploits the
structural index SI to check if two propositional variables (i.e., classes in the input
ontologies) are disjoint (areDisj(SI,A,B)), they keep a sub/super-class relationship
(inSubSupRel(SI,A,B)), or they share a common descendant (shareDesc(SI,A,B))
(step 4 in Algorithm 2). Note that the structural index is also updated to take into ac-
count the new disjointness rules (step 6 in Algorithm 2).

The addition of disjointness rules in Algorithm 2, however, may be prohibitive for
large ontologies (see Section 5). Intuitively, in order to reduce the number of disjoint-
ness axioms, one should only focus on the cases where a conservativity principle viola-
tion occurs in the integrated ontology OU = O′1 ∪ O′2 ∪M, with respect to one of the
ontology modules O′i (with i ∈ {1, 2}); i.e., adding a disjointness axiom between each
pair of classes A,B ∈ O′i such that A v B ∈ consViol(O′i,OU ), as in Definition 4.
Algorithm 3 implements this idea for the Horn propositional case and extensively ex-
ploits the structural indexing to identify the conservativity principle violations (step 3
in Algorithm 3). Note that this algorithm also requires to compute the structural index



Algorithm 3 Optimised disjointness axioms extension
Input: P : propositional theory; SI: structural index SIU : structural index of the union ontology
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: forA→ B ∈ ConservativityViolations(SI, SIU ) do
4: if not (areDisj(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A u B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

of the integrated ontology, and thus its classification with an OWL 2 reasoner (step 6
in Algorithm 1). The classification of the integrated ontology is known to be typically
much higher than the classification of the input ontologies individually [16]. However,
this was not a bottleneck in our experiments, as shown in Section 5.

Mapping Repair. The step 13 of Algorithm 1 uses the mapping (incoherence) repair
algorithm presented in [17, 21] for the extended Horn propositional theoriesPd1 andPd2 ,
and the input mappingsM. The mapping repair process exploits the Dowling-Gallier
algorithm for propositional Horn satisfiability [9] and checks, for every propositional
variableA ∈ Pd1∪Pd2 , the satisfiability of the propositional theoryPA = Pd1∪Pd2∪M∪
{true→ A}. Satisfiability of PA is checked in worst-case linear time in the size of PA,
and the number of Dowling-Gallier calls is also linear in the number of propositional
variables in Pd1 ∪ Pd2 . In case of unsatisfiability, the algorithm also allows us to record
conflicting mappings involved in the unsatisfiability, which will be considered for the
subsequent repair process. The unsatisfiability will be fixed by removing some of the
identified mappings. In case of multiple options, the mapping confidence will be used
as a differentiating factor.11

Example 4. Consider the propositional encoding P1 and P2 of the axioms of Table 1
and the mappingsM in Table 2, seen as propositional rules. Pd1 and Pd2 have been cre-
ated by adding disjointness rules to P1 and P2, according to Algorithm 2 or 3. For
example, Pd2 includes the rule ψ = O2:Well ∧ O2:Borehole → false. The map-
ping repair algorithm identifies the propositional theory Pd1 ∪ Pd2 ∪ M ∪ {true →
O1:ExplorationWellbore} as unsatisfiable. This is due to the combination of the map-
pingsm3 andm4, the propositional projection of axioms β1 and β2, and the rule ψ. The
mapping repair algorithm also identifies m3 and m4 as the cause of the unsatisfiability,
and discards m3, since its confidence is smaller than that of m4 (see Table 2).

Algorithm 1 gives as output the number of added disjointness rules during the pro-
cess disj, a set of mappings M′, and an (approximate) repair R≈ such that M′ =
M \ R≈. M′ is coherent with respect to Pd1 and Pd2 (according to the propositional
case of Definition 2). Furthermore, the propositional theory P1 ∪ P2 ∪ M′ does not
11 In scenarios where the confidence of the mapping is missing (e.g., in reference or manually

created mapping sets) or unreliable, our mapping repair technique computes fresh confidence
values based on the locality principle [19].



Algorithm 4 Conducted evaluation over the Optique and OAEI data sets
Input:O1,O2: input ontologiesM: reference mappings forO1 andO2

1: OU := O1 ∪ O2 ∪M
2: Store size of Sig(O1) (I), Sig(O2) (II) andM (III)
3: Compute number of conservativity principle violations (our variant as in Definition 4):

consViol := |consViol(O1,OU )|+ |consViol(O2,OU )| (IV)
4: Compute number of conservativity principle violations (general notion as in Section 2.4):

diff≈ := |diff≈Sig(O1)(O1,OU )|+ |diff≈Sig(O2)(O2,OU )| (V)
5: Compute two repairsR≈ using Algorithm 1 forO1,O2,M, with the Optimization set to false (see Table 5) and

true (see Table 6)
6: Store number of added disjointness disj (VI and XII), size of repair |R≈| (VII and XIII), time to compute disjointness

rules td (VIII and XIV), and time to compute the mapping repair tr (IX and XV)
7: OU := O1 ∪ O2 ∪M \R≈
8: Compute number of remaining conservativity principle violations (our variant):

consViol := |consViol(O1,OU )|+ |consViol(O2,OU )| (X and XVI)
9: Compute number of remaining conservativity principle violations (general notion):

diff≈ := |diff≈Sig(O1)(O1,OU )|+ |diff≈Sig(O2)(O2,OU )| (XI and XVII)

contain any conservativity principle violation with respect to P1 and P2 (according to
the propositional case of Definition 4). However, our encoding is incomplete, and we
cannot guarantee that O′1 ∪ O′2 ∪M′ does not contain conservativity principle viola-
tions with respect to O′1 and O′2. Nonetheless, our evaluation suggests that the number
of remaining violations after repair is typically small (see Section 5).

5 Evaluation

In this section we evaluate the feasibility of using our method to detect and correct con-
servativity principle violations in practice. To this end we have conducted the evaluation
in Algorithm 4 (the Roman numbers refer to stored measurements) over the Optique’s
use case and the ontologies and reference mapping sets of the OAEI 2013 campaign:12

i Optique’s use case is based on the NPD ontology and a bootstrapped ontology
(BootsOnto) from one of the Optique databases. The mappings between these on-
tologies were semi-automatically created using the ontology matcher LogMap [20].
Although the NPD ontology is small with respect to the size of the bootstrapped on-
tology, its vocabulary covers a large portion of the current query catalog in Optique.

ii LargeBio: this dataset includes the biomedical ontologies FMA, NCI and (a frag-
ment of) SNOMED, and reference mappings based on the UMLS [3].

iii Anatomy: the Anatomy dataset involves the Adult Mouse Anatomy (MO) ontology
and a fragment of the NCI ontology (NCIAnat), describing human anatomy. The
reference alignment has been manually curated [48].

iv Library: this OAEI dataset includes the real-word thesauri STW and TheSoz from
the social sciences. The reference mappings have been manually validated.

v Conference: this dataset uses a collection of 16 ontologies from the domain of
academic conferences [46]. Currently, there are 21 manually created mapping sets
among 7 of the ontologies.

12 Note that the reference mappings of the OAEI 2013 campaign are coherent with respect to the
test case ontologies [13]. More information about the used ontology versions can be found in
http://oaei.ontologymatching.org/2013/

http://oaei.ontologymatching.org/2013/


Table 4. Test cases and violations with original reference mappings. BootsOnto contains around
3,000 concepts, and a large number of properties.

Dataset O1 ∼ O2

Problem size Original Violations
I II III IV V

|Sig(O1)| |Sig(O2)| |M| consViol diff≈

Optique NPD∼BootsOnto 757 40,671 102 214 220

LargeBio
SNOMED∼NCI 122,519 66,914 36,405 >525,515 >546,181
FMA∼SNOMED 79,042 122,519 17,212 125,232 127,668
FMA∼NCI 79,042 66,914 5,821 19,740 19,799

Anatomy MO∼NCIAnat 2,747 3,306 3,032 1,321 1,335

Library STW∼TheSoz 6,575 8,376 6,322 42,045 42,872

Conference

cmt∼confof 89 75 32 11 11
conference∼edas 124 154 34 8 8
conference∼iasted 124 182 28 9 9
confof∼ekaw 75 107 40 6 6
edas∼iasted 154 182 38 7 7

Table 5. Results of our basic method to detect and solve conservativity principle violations.

Dataset O1 ∼ O2

Solution size Times Remaining Violations
VI VII VIII IX X XI

#disj |R≈| td(s) tr(s) consViol diff≈

Optique NPD∼BootsOnto 4,716,685 49 9,840 121 0 0

LargeBio
SNOMED∼NCI – – – – – –
FMA∼SNOMED 1,106,259 8,234 35,817 1,127 0 121
FMA∼NCI 347,801 2,176 2,471 38 103 112

Anatomy MO∼NCIAnat 1,331,374 461 397 56 0 3

Library STW∼TheSoz 591,115 2,969 4,126 416 0 24

Conference

cmt∼confof 50 6 0.01 0.01 0 0
conference∼edas 774 6 0.03 0.01 0 0
conference∼iasted 2,189 4 0.06 0.02 0 0
confof∼ekaw 296 6 0.02 0.01 0 0
edas∼iasted 1,210 4 0.06 0.02 1 1

Table 4 shows the size of the evaluated ontologies and mappings (I, II and III).
For the Conference dataset we have selected only 5 pair of ontologies for which the
reference mappings lead to more than five conservativity principle violations. Note that
we count equivalence mappings as two subsumption mappings, and henceM represents
subsumption mappings. Table 4 also shows the conservativity principle violations for
the reference mappings (IV and V). For LargeBio and Library the number is expecially
large using both our variant and the general notion of the conservativity principle.13

Tables 5 and 6 show the obtained results for our method using both the basic and
optimised algorithms to add disjointness axioms.14

13 In the SNOMED-NCI case no OWL 2 reasoner could succeed in classifying the integrated
ontology via mappings [16], so we used the OWL 2 EL reasoner ELK [23] for providing a
lower bound on the number of conservativity principle violations.

14 The computation times of Steps 1-4 in Algorithm 1 were negligible with respect to the repair
and disjointness addition times (tr and td) and thus they were not included in the result tables.



Table 6. Results of our optimised method to detect and solve conservativity principle violations.

Dataset O1 ∼ O2

Solution size Times Remaining Violations
XII XIII XIV XV XVI XVII
#disj |R≈| td(s) tr(s) consViol diff≈

Optique NPD∼BootsOnto 214 41 2.54 0.17 0 0

LargeBio
SNOMED∼NCI 525,515 15,957 275 3,755 >411 >1,624
FMA∼SNOMED 125,232 8,342 30 251 0 131
FMA∼NCI 19,740 2,175 34 6.18 103 112

Anatomy MO∼NCIAnat 1,321 491 1.39 0.53 0 3

Library STW∼TheSoz 42,045 3,058 4.93 41 0 40

Conference

cmt∼confof 11 6 0.05 0.01 0 0
conference∼edas 8 6 0.07 0.01 0 0
conference∼iasted 9 1 0.22 0.01 0 0
confof∼ekaw 6 5 0.04 0.01 0 0
edas∼iasted 7 4 0.21 0.02 1 1

We have run the experiments on a desktop computer with an AMD Fusion A6-3670K
CPU and allocating 12 GB of RAM. The obtained results are summarized as follows:

i The number of added disjointness rules disj (VI), as expected, is very large in the
basic algorithm and the required time prohibitive (VIII) when involving SNOMED
(it did not finish for SNOMED-NCI). This is clearly solved in our optimised algo-
rithm that considerably reduces the number of necessary disjoitness rules (XII) and
it requires only 275 seconds to compute them in the SNOMED-NCI case (XIV).

ii The computed repairs R≈ (VII and XIII) using both the basic and optimised al-
gorithms are of comparable size. This suggests that the large number of added
disjointness in the basic algorithm does not have a negative impact (in terms of
aggressiveness) on the repair process.

iii Repair times tr (IX and XV) are small and they do not represent a bottleneck in
spite of the large number of added disjointness rules.

iv The conservativity principle violations using both algorithms and considering our
variant (X and XVI) are completely removed in the Optique, Anatomy and Library
cases, and almost completely removed in the Conference and LargeBio datasets.

v The number of missed violations is only slightly higher when considering the gen-
eral notion of the conservativity principle (XI and XVII), which suggests that our
(approximate) variant is also suitable in practice. Furthermore, in several test cases
these violations are also almost removed.

vi The computed repairs R≈, using both algorithms (VII and XIII), are rather ag-
gressive and they can remove from 16% (Anatomy) up to 48% (Optique) of the
mappings. In the Optique’s use case, however, we follow a better safe than sorry
approach and we prefer to remove as many violations as possible, rather than pre-
serving potentially conflicting mapping sets.

In summary, the results suggest that our method to repair conservativity principle
violations is suitable for Optique, and it is feasible in practice, even when considering
the largest datasets of the OAEI.



6 Related Work

The conservativity principle problem, although indirectly, has been actively studied in
the literature. For example, the assumption of disjointness was originally introduced by
Schlobach [38] to enhance the repair of ontologies that were underspecified in terms of
disjointness axioms. In [30], a similar assumption is followed in the context of repairing
ontology mappings, where the authors restricted the number of disjointness axioms by
using learning techniques [45]. These techniques, however, typically require a manually
created training set. In [12] the authors present an interactive system to guide the expert
user in the manual enrichment of the ontologies with disjointness axioms. In this paper,
as in [45, 30, 12], we have also focused on the addition of a small set of disjointness
axioms, since adding all possible disjointness may be unfeasible for large ontologies.
However, our method does not require manual intervention. Furthermore, to address the
scalability problem when dealing with large ontologies and mapping sets, our method
relies on the propositional projection of the input ontologies.

Ontology matching systems have also dealt with the conservativity principle in or-
der to improve the precision (with respect to a reference mapping set) of the computed
mappings. For example, systems such as ASMOV [15], Lily [47] and YAM++ [34] have
implemented different heuristics and patterns to avoid violations of the conservativity
principle. Another relevant approach has been presented in [2], where a set of sanity
checks and best practices are proposed for computing ontology mappings. In this paper
we present an elegant way to detect and solve conservativity principle violations by re-
ducing the problem to a consistency principle violation problem. Concretely, we have
reused and adapted the infrastructure provided by LogMap [17, 20]. However, other
mapping repair systems, such as Alcomo [29] or AML [37], could be considered. Note
that, to the best of our knowledge, these mapping repair systems have only focused on
solving violations of the consistency principle.

The work presented in [26, 14, 27] deserves a special attention since they propose an
opposite approach with respect to ours. Authors consider the violations of the conser-
vativity principle as false positives, based on the potential incompleteness of the input
ontologies. Hence, the correction strategy does not aim at removing mappings but at in-
serting subsumption axioms to the input ontologies to enrich their concept hierarchies.
Authors in [35] also suggest that removing mapping may not be the best solution in a
mapping repair process, and fixing the input ontologies may be an alternative.

Currently, in the Optique use case, we consider that the input ontologies are not
modifiable. The query formulation ontology is based on the NPD ontology, which in-
cludes knowledge already agreed by the community, while the bootstrapped ontology
is directly linked to the information represented in the database. Nevertheless, future
extensions in Optique may consider appropriate the extension of the input ontologies.

7 Conclusions and Future Work

In this paper we have presented an approximate and fully-automatic method to detect
and correct conservativity principle violations in practice. We have characterised the
conservativity principle problem, following the assumption of disjointness, as a consis-
tency principle problem. We have also presented an elegant and scalable way to detect



and repair violations in the Horn propositional case. Thus, our method is incomplete
and it may fail to detect and repair all violations. However, the conducted evaluation
suggests that our method produces competitive results in practice. In the close future
we plan to consider extensions of the current projection to Horn propositional logic
while keeping the nice scalability properties of the current method.

The implemented method follows a “better safe than sorry” approach, which we
currently consider suitable for the Optique project since we do not want ontology-to-
ontology mappings to lead to unexpected results for the OBDA queries, as motivated
in Section 3. Hence, we currently delegate complex relationhips between ontology en-
tities and the database to the (hand-crafted) schema-to-ontology mappings, which will
also play an important role in Optique. Nevertheless we do not discard in the future
to explore alternative methods to detect and repair conservative principle violations.
In particular, we plan to study the potential application of approaches based on graph-
theory, in order to extend the detection and repair of conservativity principle violations.
Strongly connected compontents of a graph representation of the subsumption relation
between named concepts (as defined in [29]), for instance, may be used to capture vio-
lations between pairs of concepts already involved in a subsumption relationship.

Additionally, we will also consider exploring the use of learning techniques for the
addition of disjointness axioms [45], and to involve the domain experts in the assess-
ment/addition of such disjointness [18, 12]. This manual assessment may also be used
to consider violations as false positives, as proposed in [26, 14, 27], and suggest them
as candidate extensions of the input ontologies.

We consider that the proposed method has also potential in scenarios others than
Optique. For instance, the authors in [28] apply ontology matching in a multi-agent
system scenario in order to allow the exchange and extension of ontology-based ac-
tion plans among agents. In such a context, violations of the conservativity principle
should be taken into account and highly critical tasks should not be performed if viola-
tions are detected. In [44], authors present an ontology-based data integration (OBDI)
system, which integrates ontology mapping and query reformulation techniques. As in
Optique, mappings violating the conservativity principle may compromise the quality
of the query results in the proposed OBDI system.

Finally, we have short-term plans for deployment in the Optique industry partners
Statoil and Siemens. The techniques described in this paper have already been inte-
grated within the “ontology and mapping management module” (see [24] for details
about the Optique architecture).
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